Files
pytorch/android/pytorch_android/generate_test_torchscripts.py
PyTorch MergeBot 084c4aa614 Revert "Reapply "Delete TorchScript based Android demo app and point to ExecuTorch (#153633)" (#153656)"
This reverts commit 7ed377f5776578aec4a6a9bc4eeef221a6b80a77.

Reverted https://github.com/pytorch/pytorch/pull/153656 on behalf of https://github.com/larryliu0820 due to Still being used internally so can't remove ([comment](https://github.com/pytorch/pytorch/pull/153656#issuecomment-2887665403))
2025-05-16 21:00:11 +00:00

152 lines
4.1 KiB
Python

from typing import Optional
import torch
from torch import Tensor
OUTPUT_DIR = "src/androidTest/assets/"
def scriptAndSave(module, fileName):
print("-" * 80)
script_module = torch.jit.script(module)
print(script_module.graph)
outputFileName = OUTPUT_DIR + fileName
# note that the lite interpreter model can also be used in full JIT
script_module._save_for_lite_interpreter(outputFileName)
print("Saved to " + outputFileName)
print("=" * 80)
class Test(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, input):
return None
@torch.jit.script_method
def eqBool(self, input: bool) -> bool:
return input
@torch.jit.script_method
def eqInt(self, input: int) -> int:
return input
@torch.jit.script_method
def eqFloat(self, input: float) -> float:
return input
@torch.jit.script_method
def eqStr(self, input: str) -> str:
return input
@torch.jit.script_method
def eqTensor(self, input: Tensor) -> Tensor:
return input
@torch.jit.script_method
def eqDictStrKeyIntValue(self, input: dict[str, int]) -> dict[str, int]:
return input
@torch.jit.script_method
def eqDictIntKeyIntValue(self, input: dict[int, int]) -> dict[int, int]:
return input
@torch.jit.script_method
def eqDictFloatKeyIntValue(self, input: dict[float, int]) -> dict[float, int]:
return input
@torch.jit.script_method
def listIntSumReturnTuple(self, input: list[int]) -> tuple[list[int], int]:
sum = 0
for x in input:
sum += x
return (input, sum)
@torch.jit.script_method
def listBoolConjunction(self, input: list[bool]) -> bool:
res = True
for x in input:
res = res and x
return res
@torch.jit.script_method
def listBoolDisjunction(self, input: list[bool]) -> bool:
res = False
for x in input:
res = res or x
return res
@torch.jit.script_method
def tupleIntSumReturnTuple(
self, input: tuple[int, int, int]
) -> tuple[tuple[int, int, int], int]:
sum = 0
for x in input:
sum += x
return (input, sum)
@torch.jit.script_method
def optionalIntIsNone(self, input: Optional[int]) -> bool:
return input is None
@torch.jit.script_method
def intEq0None(self, input: int) -> Optional[int]:
if input == 0:
return None
return input
@torch.jit.script_method
def str3Concat(self, input: str) -> str:
return input + input + input
@torch.jit.script_method
def newEmptyShapeWithItem(self, input):
return torch.tensor([int(input.item())])[0]
@torch.jit.script_method
def testAliasWithOffset(self) -> list[Tensor]:
x = torch.tensor([100, 200])
a = [x[0], x[1]]
return a
@torch.jit.script_method
def testNonContiguous(self):
x = torch.tensor([100, 200, 300])[::2]
assert not x.is_contiguous()
assert x[0] == 100
assert x[1] == 300
return x
@torch.jit.script_method
def conv2d(self, x: Tensor, w: Tensor, toChannelsLast: bool) -> Tensor:
r = torch.nn.functional.conv2d(x, w)
if toChannelsLast:
r = r.contiguous(memory_format=torch.channels_last)
else:
r = r.contiguous()
return r
@torch.jit.script_method
def conv3d(self, x: Tensor, w: Tensor, toChannelsLast: bool) -> Tensor:
r = torch.nn.functional.conv3d(x, w)
if toChannelsLast:
r = r.contiguous(memory_format=torch.channels_last_3d)
else:
r = r.contiguous()
return r
@torch.jit.script_method
def contiguous(self, x: Tensor) -> Tensor:
return x.contiguous()
@torch.jit.script_method
def contiguousChannelsLast(self, x: Tensor) -> Tensor:
return x.contiguous(memory_format=torch.channels_last)
@torch.jit.script_method
def contiguousChannelsLast3d(self, x: Tensor) -> Tensor:
return x.contiguous(memory_format=torch.channels_last_3d)
scriptAndSave(Test(), "test.pt")