Files
pytorch/torch/csrc/cuda/Module.cpp
Frank Lin 0c0e056a9e [CUDA] Reuse blocks with record_stream during CUDA Graph capture in the CUDACachingAllocator (#158352)
## Introduction

During CUDA Graph capture, the CUDA caching allocator currently defers reclaiming blocks until capture ends. This is because CUDA forbids querying events recorded during capture (the CUDA operation is not executed during the capture stage), so the allocator cannot use its normal event-based logic. However, capture records an DAG (we call it **capturing graph**) of work. We can use the capturing graph to determine when a block’s old lifetime is fully before future work, and safely reuse it within the same capture.

This PR adds an experimental flag `graph_capture_record_stream_reuse: True|False (default: False)`. When enabled, the allocator inserts lightweight free markers and uses capture ordering to decide if a freed block is safe to reuse during capture. If the proof cannot be established, we fall back to the existing post-capture path.

## Terms

* **Free marker**: A capture-legal no-op (created with `cudaGraphAddEmptyNode`) inserted after the last captured use of the block on each stream that used it.
* **Terminal**: The set of the lastest operations of the stream (or the capturing graph). Any newly captured op on that stream will attach after all nodes in this set. For a stream currently capturing, it is the set of nodes returned in `dependencies_out` by `cudaStreamGetCaptureInfo`.

## When can we reuse a block during capture?

### Strong Rule (Graph-Wide Safety)

This rule provides a universal guarantee that a block is safe for reuse by any stream in the graph.

> A block is safe to reuse if every free marker is a predecessor of every terminal of all active streams in the graph.

Why it's safe:

This rule establishes a strict global ordering. Since any new operation on any stream must be appended after that stream's terminals, this condition guarantees that the block's new lifetime begins only after its old lifetime has completely ended everywhere. This prevents lifetime overlaps when the graph is replayed, ensuring correctness.

### Per-stream Rule (A Practical Optimization)

The strong rule, while safe, is often unnecessarily restrictive. The `DeviceCachingAllocator` introduces a crucial constraint that allows for a simpler check.

In `DeviceCachingAllocator`, `get_free_block` only returns blocks whose `block->stream == p.stream()`. In other words, we never reuse a block on a stream different from the allocation stream. This means we don't need to verify safety across the entire graph. We only need to confirm that the block is safe to reuse from the perspective of its own allocation stream.

> Reuse a block for allocations on stream S if every free marker is a predecessor of every node in the terminal set of S.

In short, a block is considered **reusable** on stream S as long as all marker marking it "free" are guaranteed to complete before any new work that might need it on stream S begins.

## Implementation

* On `free(block)` during capture
  * For each stream in `block->stream_uses` and the allocation stream, insert a free marker (empty node) and make it that stream’s tail.
  * If we cannot place markers for all such streams (for example, a stream is not in capture), defer to the post-capture path.
  * Otherwise, store the marker handles and keep the block in the capture-private structures.
* On `allocate(stream)` during capture (attempt per-stream reclaim)
  * Query the allocation stream S’s terminal via `cudaStreamGetCaptureInfo`.
  * For each deferred block, check whether it is allocated on this stream, and each of its free markers is a predecessor of the terminal.
    * If yes, hand the block to S for immediate reuse within the same capture.
    * If no, keep it deferred; it will be reconsidered as capture progresses and S’s terminal advances.
* On capture end
  * Any still-deferred blocks follow the existing post-capture reclamation (event insertion/polling). External behavior remains unchanged if we cannot prove safety during capture.

## Examples (2 streams)

<img width="641" height="801" alt="pytorch-remove-cudagraph-defer-reclaiming (6)" src="https://github.com/user-attachments/assets/41adc835-d448-483b-99ba-b4341cb7d2a2" />

* Case 0 — Unsafe
The two frees are not ordered with respect to each other. For stream 1, the other stream’s free marker does not precede this stream’s terminal, so the per-stream condition fails.
Counterexample intuition for the unsafe setups: imagine `f2(x)` runs for a long time. If DeviceCachingAllocator reused block `x` on a stream whose terminal is not ordered after the free markers, the new lifetime could overlap the old one on replay, risking use-after-free or data corruption. The per-stream rule prevents exactly this.
* Case 1 — Reusable on stream 1
Stream 1’s terminal is after both frees, so every free marker precedes stream 1’s terminal. The block is reusable for allocations on stream 1.
* Case 2 — Not reusable on stream 2, but this cannot occur in `DeviceCachingAllocator`
This depicts reusing the block on stream 2 while stream 1’s free is not yet ordered before stream 2’s terminal. Though the block is not safe to reuse on stream 2, DeviceCachingAllocator will not choose that block for stream 2 anyway: `get_free_block` rejects blocks whose `stream != p.stream()`. So this case is unreachable.
* Case 3 — Safe (strong rule holds)
In this scenario, the terminal nodes of all streams are positioned after the block's free markers, satisfying the strong rule. This guarantees the block is safe for reuse by any stream in the capturing graph. However, since `DeviceCachingAllocator ` only reuses a block on its original allocation stream, verifying this strong condition is unnecessary. We only need to ensure the per-stream rule is met for the specific stream requesting the block.
* Case 4 — Freeing after a join
See the note below.

## Edge Case: Freeing after a join

Our current dependency tracking has a limitation in scenarios where a block is freed after a stream join, see @galv's [comments here](https://github.com/pytorch/pytorch/pull/158352#pullrequestreview-3112565198)).

In the case 4, we have a missed opportunity. Because the block's usage is not explicitly marked, we cannot determine that the block's actual last use may have occurred much earlier, long before the join. Then, we must wait for the subsequent join before the block can be reused.

## Thanks
Thanks to @galv for his great idea around graph parsing and empty nodes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158352
Approved by: https://github.com/ngimel, https://github.com/eqy

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
2025-09-04 17:21:26 +00:00

2201 lines
73 KiB
C++

#include <ATen/ATen.h>
#include <ATen/core/TensorBody.h>
#include <ATen/cuda/CUDAConfig.h>
#include <ATen/native/ConvUtils.h>
#include <c10/core/Device.h>
#include <c10/core/TensorImpl.h>
#include <c10/util/UniqueVoidPtr.h>
#include <pybind11/pytypes.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <unordered_set>
#if AT_CUDNN_ENABLED()
#endif
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAGeneratorImpl.h>
#include <ATen/cuda/CachingHostAllocator.h>
#include <ATen/cuda/Sleep.h>
#include <ATen/cuda/detail/CUDAHooks.h>
#include <ATen/cuda/jiterator.h>
#include <ATen/cuda/tunable/Tunable.h>
#include <c10/core/StorageImpl.h>
#include <c10/cuda/CUDAAllocatorConfig.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAFunctions.h>
#include <ATen/cuda/CUDAGraphsUtils.cuh>
#ifdef USE_NCCL
#include <torch/csrc/cuda/python_nccl.h>
#endif
#include <c10/util/irange.h>
#include <torch/csrc/CudaIPCTypes.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/cuda/CUDAPluggableAllocator.h>
#include <torch/csrc/cuda/GdsFile.h>
#include <torch/csrc/cuda/THCP.h>
#include <torch/csrc/cuda/memory_snapshot.h>
#include <torch/csrc/cuda/python_comm.h>
#include <torch/csrc/profiler/python/combined_traceback.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/device_lazy_init.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/pycfunction_helpers.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <array>
#include <chrono>
#include <iostream>
#include <sstream>
#include <thread>
#include <unordered_map>
using namespace torch;
////////////////////////////////////////////////////////////////////////////////
// CUDA management methods
////////////////////////////////////////////////////////////////////////////////
PyObject* THCPModule_setDevice_wrap(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to setDevice");
auto device = THPUtils_unpackLong(arg);
torch::utils::device_lazy_init(at::kCUDA);
c10::cuda::set_device(static_cast<c10::DeviceIndex>(device), /*force*/ true);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_exchangeDevice(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to exchangeDevice");
auto device_index = THPUtils_unpackDeviceIndex(arg);
if (device_index < 0) {
return THPUtils_packInt32(-1);
}
torch::utils::device_lazy_init(at::kCUDA);
auto current_device = c10::cuda::ExchangeDevice(device_index);
return THPUtils_packDeviceIndex(current_device);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_maybeExchangeDevice(PyObject* self, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to exchangeDevice");
auto device_index = THPUtils_unpackDeviceIndex(arg);
if (device_index < 0) {
return THPUtils_packInt32(-1);
}
torch::utils::device_lazy_init(at::kCUDA);
auto current_device = c10::cuda::MaybeExchangeDevice(device_index);
return THPUtils_packDeviceIndex(current_device);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getDevice_wrap(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
torch::utils::device_lazy_init(at::kCUDA);
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
auto device = static_cast<int32_t>(c10::cuda::current_device());
return THPUtils_packInt32(device);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_canDeviceAccessPeer_wrap(PyObject* self, PyObject* args) {
HANDLE_TH_ERRORS
PyObject* arg1 = nullptr;
PyObject* arg2 = nullptr;
if (!PyArg_ParseTuple(args, "OO", &arg1, &arg2)) {
THPUtils_invalidArguments(
args,
nullptr,
"can_device_peer_access",
1,
"(int device, int peer_device);");
return nullptr;
}
TORCH_CHECK(
THPUtils_checkLong(arg1), "invalid argument to canDeviceAccessPeer");
TORCH_CHECK(
THPUtils_checkLong(arg2), "invalid argument to canDeviceAccessPeer");
auto device = THPUtils_unpackDeviceIndex(arg1);
auto peer_device = THPUtils_unpackDeviceIndex(arg2);
torch::utils::device_lazy_init(at::kCUDA);
auto can_access = at::cuda::canDeviceAccessPeer(device, peer_device);
return PyBool_FromLong(can_access);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getDeviceCount_wrap(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
// Note: This is distinct from initExtension because a stub cuda
// implementation has some working functions (e.g. device_count) but cannot
// fully initialize.
torch::utils::register_fork_handler_for_device_init(at::kCUDA);
return THPUtils_packUInt64(at::cuda::device_count());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getArchFlags(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
torch::utils::register_fork_handler_for_device_init(at::kCUDA);
#ifdef CUDA_ARCH_FLAGS
static const char* flags = C10_STRINGIZE(CUDA_ARCH_FLAGS);
return THPUtils_packString(flags);
#else
Py_RETURN_NONE;
#endif
END_HANDLE_TH_ERRORS
}
static PyObject* THCPModule_isInBadFork(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
return PyBool_FromLong(torch::utils::is_device_in_bad_fork(at::kCUDA));
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCurrentStream_wrap(
PyObject* /* unused */,
PyObject* device_index) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
auto c10_device_index = THPUtils_unpackDeviceIndex(device_index);
auto stream = at::cuda::getCurrentCUDAStream(c10_device_index);
PyObject* output_tuple = PyTuple_New(3);
PyTuple_SetItem(
output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id())));
PyTuple_SetItem(
output_tuple, 1, THPUtils_packDeviceIndex(stream.device_index()));
PyTuple_SetItem(
output_tuple,
2,
THPUtils_packInt64(static_cast<int64_t>(stream.device_type())));
return output_tuple;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCurrentStream_raw(
PyObject* /* unused */,
PyObject* device_index) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(device_index), "invalid argument to getCurrentStream");
auto c10_device_index = THPUtils_unpackDeviceIndex(device_index);
return PyLong_FromVoidPtr(
at::cuda::getCurrentCUDAStream(c10_device_index).stream());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getDefaultStream_wrap(
PyObject* /* unused */,
PyObject* device_index) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(device_index), "invalid argument to getDefaultStream");
auto c10_device_index = THPUtils_unpackDeviceIndex(device_index);
auto stream = at::cuda::getDefaultCUDAStream(c10_device_index);
PyObject* output_tuple = PyTuple_New(3);
PyTuple_SetItem(
output_tuple, 0, THPUtils_packInt64(static_cast<int64_t>(stream.id())));
PyTuple_SetItem(
output_tuple, 1, THPUtils_packDeviceIndex(stream.device_index()));
PyTuple_SetItem(
output_tuple,
2,
THPUtils_packInt64(static_cast<int64_t>(stream.device_type())));
return output_tuple;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_setStream_wrap(
PyObject* self,
PyObject* args,
PyObject* kwargs) {
HANDLE_TH_ERRORS
int64_t stream_id = 0;
int64_t device_index = 0;
int64_t device_type = 0;
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
constexpr const char* kwlist[] = {
"stream_id", "device_index", "device_type", nullptr};
if (!PyArg_ParseTupleAndKeywords(
args,
kwargs,
"|LLL",
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<char**>(kwlist),
&stream_id,
&device_index,
&device_type)) {
}
auto stream = at::cuda::CUDAStream::unpack3(
stream_id,
static_cast<c10::DeviceIndex>(device_index),
static_cast<c10::DeviceType>(device_type));
auto device = c10::cuda::current_device();
if (device != stream.device_index()) {
c10::cuda::set_device(stream.device_index());
}
at::cuda::setCurrentCUDAStream(stream);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCompiledVersion(PyObject* self, PyObject* noargs) {
#if defined(USE_ROCM)
return THPUtils_packInt64((int64_t)ROCM_VERSION);
#else
return THPUtils_packInt64((int64_t)CUDA_VERSION);
#endif
}
PyObject* THCPModule_cudaHostAllocator(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
c10::Allocator* allocator = at::getHostAllocator(at::kCUDA);
return PyLong_FromVoidPtr(allocator);
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_raw_alloc(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
PyObject* size_o = nullptr;
PyObject* stream_o = nullptr;
if (!PyArg_ParseTuple(args, "OO", &size_o, &stream_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"caching_allocator_alloc",
1,
"(ssize_t size, intptr_t stream);");
return nullptr;
}
auto size = PyLong_AsSsize_t(size_o);
cudaStream_t stream = static_cast<cudaStream_t>(PyLong_AsVoidPtr(stream_o));
void* mem = nullptr;
{
pybind11::gil_scoped_release no_gil;
mem = c10::cuda::CUDACachingAllocator::raw_alloc_with_stream(size, stream);
}
return PyLong_FromVoidPtr(mem);
END_HANDLE_TH_ERRORS
}
// Unpack a PyObject to at::Scalar, throw an exception if it fails
at::Scalar as_scalar(PyObject* arg) {
// Zero-dim tensors are converted to Scalars as-is. Note this doesn't
// currently handle most NumPy scalar types except np.float64.
if (THPVariable_Check(arg)) {
return THPVariable_Unpack(arg).item();
}
if (THPUtils_checkLong(arg)) {
return at::Scalar(static_cast<int64_t>(THPUtils_unpackLong(arg)));
}
if (PyBool_Check(arg)) {
return at::Scalar(THPUtils_unpackBool(arg));
}
if (PyComplex_Check(arg)) {
return at::Scalar(THPUtils_unpackComplexDouble(arg));
}
return at::Scalar(THPUtils_unpackDouble(arg));
}
// Entrypoint for the callable created by torch.cuda.jiterator
// See jiterator.py for more details
PyObject* THCPModule_cudaJiteratorCompileAndLaunchKernel(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
PyObject* code_string_o = nullptr;
PyObject* kernel_name_o = nullptr;
PyObject* return_by_ref_o = nullptr;
PyObject* num_outputs_o = nullptr;
PyObject* tensors_o = nullptr;
PyObject* kwargs_o = nullptr;
if (!PyArg_ParseTuple(
args,
"OOOOO|O",
&code_string_o,
&kernel_name_o,
&return_by_ref_o,
&num_outputs_o,
&tensors_o,
&kwargs_o)) {
return nullptr;
}
const std::string code_string = THPUtils_unpackString(code_string_o);
const std::string kernel_name = THPUtils_unpackString(kernel_name_o);
const bool return_by_ref = THPUtils_unpackBool(return_by_ref_o);
const int num_outputs = static_cast<int>(THPUtils_unpackLong(num_outputs_o));
TORCH_CHECK(
PyTuple_Check(tensors_o),
"tensors argument is expected to "
"be a tuple, but got ",
THPUtils_typename(tensors_o));
Py_ssize_t num_tensors = PyTuple_GET_SIZE(tensors_o);
c10::SmallVector<at::Tensor> tensors;
for (const auto i : c10::irange(num_tensors)) {
PyObject* _tensor = PyTuple_GET_ITEM(tensors_o, i);
TORCH_CHECK(
THPVariable_Check(_tensor),
i,
" of input tensors tuple is not a Tensor");
tensors.emplace_back(THPVariable_Unpack(_tensor));
}
c10::SmallVector<at::Scalar> extra_args;
PyObject* key = nullptr;
PyObject* value = nullptr;
Py_ssize_t pos = 0;
Py_BEGIN_CRITICAL_SECTION(kwargs_o);
while (PyDict_Next(kwargs_o, &pos, &key, &value)) {
extra_args.emplace_back(as_scalar(value));
}
Py_END_CRITICAL_SECTION();
c10::SmallVector<at::Tensor> outputs = at::cuda::CompileAndLaunchKernel(
code_string,
kernel_name,
num_outputs,
tensors,
extra_args,
return_by_ref);
if (num_outputs == 1) {
return THPVariable_Wrap(outputs[0]);
} else {
PyObject* output_tuple = PyTuple_New(num_outputs);
for (int i = 0; i < num_outputs; ++i) {
PyTuple_SetItem(output_tuple, i, THPVariable_Wrap(outputs[i]));
}
return output_tuple;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_raw_delete(
PyObject* _unused,
PyObject* obj) {
HANDLE_TH_ERRORS
void* mem_ptr = PyLong_AsVoidPtr(obj);
{
pybind11::gil_scoped_release no_gil;
c10::cuda::CUDACachingAllocator::raw_delete(mem_ptr);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_enable(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkBool(arg),
"cudaCachingAllocator_enable expects a bool, but got ",
THPUtils_typename(arg));
c10::cuda::CUDACachingAllocator::enable(THPUtils_unpackBool(arg));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaCachingAllocator_set_allocator_settings(
PyObject* _unused,
PyObject* env) {
HANDLE_TH_ERRORS
c10::cuda::CUDACachingAllocator::setAllocatorSettings(
THPUtils_unpackString(env));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getAllocatorBackend(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(c10::cuda::CUDACachingAllocator::name());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaSynchronize(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS {
pybind11::gil_scoped_release no_gil;
c10::cuda::device_synchronize();
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaIPCCollect(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
torch::CudaIPCCollect();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaSleep(PyObject* _unused, PyObject* cycles) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(cycles), "torch.cuda._sleep(): expected 'int'");
int64_t unpacked_cycles = THPUtils_unpackLong(cycles);
{
pybind11::gil_scoped_release no_gil;
at::cuda::sleep(unpacked_cycles);
}
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
// We need to ensure that as long as a thread will NEVER loose the GIL as long
// as it holds the CUDA mutex. Otherwise another thread might be scheduled and
// try to e.g. allocate a new tensor which will cause a deadlock. It's enough to
// have a single global, because it can be only set once (cudaMutex is not
// recursive) by the thread that owns the mutex (obviously there can be only one
// such thread).
static PyGILState_STATE cudaMutexGILState;
PyObject* THCPModule_cudaLockMutex(PyObject* module, PyObject* noargs) {
auto mutex = c10::cuda::getFreeMutex();
// This has to be a busy loop because we **absolutely need to** hold the GIL
// or it's a recipe for a deadlock otherwise (if we let other Python threads
// run while we have the cudaMutex, but not the GIL, they might try to e.g.
// free a CUDA tensor and acquire the cudaMutex without giving up the GIL,
// because it happens deep within THC).
while (true) {
if (mutex->try_lock())
break;
{
pybind11::gil_scoped_release no_gil;
std::this_thread::sleep_for(std::chrono::microseconds(10));
}
}
cudaMutexGILState = PyGILState_Ensure();
Py_RETURN_NONE;
}
PyObject* THCPModule_cudaUnlockMutex(PyObject* module, PyObject* noargs) {
auto mutex = c10::cuda::getFreeMutex();
PyGILState_Release(cudaMutexGILState);
mutex->unlock();
Py_RETURN_NONE;
}
PyObject* THCPModule_hasPrimaryContext(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg), "invalid argument to has_primary_context");
auto device_index = THPUtils_unpackDeviceIndex(arg);
if (c10::cuda::hasPrimaryContext(device_index)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getMemoryFraction(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
PyObject* device_o = nullptr;
if (!PyArg_ParseTuple(args, "O", &device_o)) {
THPUtils_invalidArguments(
args, nullptr, "get_memory_fraction", 1, "(int device);");
return nullptr;
}
auto device_index = THPUtils_unpackDeviceIndex(device_o);
return PyFloat_FromDouble(
c10::cuda::CUDACachingAllocator::getMemoryFraction(device_index));
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_setMemoryFraction(PyObject* _unused, PyObject* args) {
HANDLE_TH_ERRORS
PyObject* fraction_o = nullptr;
PyObject* device_o = nullptr;
if (!PyArg_ParseTuple(args, "OO", &fraction_o, &device_o)) {
THPUtils_invalidArguments(
args,
nullptr,
"set_memory_fraction",
1,
"(double fraction, int device);");
return nullptr;
}
double fraction = PyFloat_AsDouble(fraction_o);
auto device_index = THPUtils_unpackDeviceIndex(device_o);
c10::cuda::CUDACachingAllocator::setMemoryFraction(fraction, device_index);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_hostEmptyCache(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS {
pybind11::gil_scoped_release no_gil;
at::getHostAllocator(at::kCUDA)->empty_cache();
}
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_emptyCache(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS {
pybind11::gil_scoped_release no_gil;
c10::cuda::CUDACachingAllocator::emptyCache();
}
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_memoryStats(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(THPUtils_checkLong(arg), "invalid argument to memory_allocated");
const auto device_index = THPUtils_unpackDeviceIndex(arg);
using c10::CachingAllocator::Stat;
using c10::CachingAllocator::StatArray;
using c10::CachingAllocator::StatType;
using c10::CachingDeviceAllocator::DeviceStats;
const auto statToDict = [](const Stat& stat) {
py::dict dict;
dict["current"] = stat.current;
dict["peak"] = stat.peak;
dict["allocated"] = stat.allocated;
dict["freed"] = stat.freed;
return dict;
};
const auto statArrayToDict = [=](const StatArray& statArray) {
const std::array<const char*, static_cast<size_t>(StatType::NUM_TYPES)>
statTypeNames = {"all", "small_pool", "large_pool"};
py::dict dict;
for (const auto i : c10::irange(statTypeNames.size())) {
dict[statTypeNames[i]] = statToDict(statArray[i]);
}
return dict;
};
const DeviceStats stats =
c10::cuda::CUDACachingAllocator::getDeviceStats(device_index);
py::dict result;
result["num_alloc_retries"] = stats.num_alloc_retries;
result["num_ooms"] = stats.num_ooms;
result["max_split_size"] = stats.max_split_size;
result["num_sync_all_streams"] = stats.num_sync_all_streams;
result["num_device_alloc"] = stats.num_device_alloc;
result["num_device_free"] = stats.num_device_free;
result["allocation"] = statArrayToDict(stats.allocation);
result["segment"] = statArrayToDict(stats.segment);
result["active"] = statArrayToDict(stats.active);
result["inactive_split"] = statArrayToDict(stats.inactive_split);
result["allocated_bytes"] = statArrayToDict(stats.allocated_bytes);
result["reserved_bytes"] = statArrayToDict(stats.reserved_bytes);
result["active_bytes"] = statArrayToDict(stats.active_bytes);
result["inactive_split_bytes"] = statArrayToDict(stats.inactive_split_bytes);
result["requested_bytes"] = statArrayToDict(stats.requested_bytes);
result["oversize_allocations"] = statToDict(stats.oversize_allocations);
result["oversize_segments"] = statToDict(stats.oversize_segments);
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_resetAccumulatedMemoryStats(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"invalid argument to reset_accumulated_memory_stats");
const auto device_index = THPUtils_unpackDeviceIndex(arg);
c10::cuda::CUDACachingAllocator::resetAccumulatedStats(device_index);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_resetPeakMemoryStats(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg), "invalid argument to reset_peak_memory_stats");
const auto device_index = THPUtils_unpackDeviceIndex(arg);
c10::cuda::CUDACachingAllocator::resetPeakStats(device_index);
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_hostMemoryStats(PyObject* _unused, PyObject* noargs) {
HANDLE_TH_ERRORS
using at::HostStats;
using c10::CachingAllocator::DurationStat;
using c10::CachingAllocator::Stat;
using c10::CachingAllocator::StatArray;
using c10::CachingAllocator::StatType;
const auto statToDict = [](const Stat& stat) {
py::dict dict;
dict["current"] = stat.current;
dict["peak"] = stat.peak;
dict["allocated"] = stat.allocated;
dict["freed"] = stat.freed;
return dict;
};
const auto durationStatToDict = [](const DurationStat& stat) {
py::dict dict;
dict["total"] = stat.total;
dict["max"] = stat.max;
dict["min"] = stat.min;
dict["count"] = stat.count;
dict["avg"] = stat.count == 0 ? 0 : stat.total / stat.count;
return dict;
};
const HostStats stats = at::getHostAllocator(at::kCUDA)->get_stats();
py::dict result;
result["num_host_alloc"] = stats.num_host_alloc;
result["num_host_free"] = stats.num_host_free;
result["allocation"] = statToDict(stats.allocation);
result["segment"] = statToDict(stats.segment);
result["allocated_bytes"] = statToDict(stats.allocated_bytes);
result["reserved_bytes"] = statToDict(stats.reserved_bytes);
result["host_alloc_time"] = durationStatToDict(stats.host_alloc_time);
result["host_free_time"] = durationStatToDict(stats.host_free_time);
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_resetAccumulatedHostMemoryStats(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
at::getHostAllocator(at::kCUDA)->reset_accumulated_stats();
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
PyObject* THCPModule_resetPeakHostMemoryStats(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
at::getHostAllocator(at::kCUDA)->reset_peak_stats();
END_HANDLE_TH_ERRORS
Py_RETURN_NONE;
}
CapturedTraceback* getFromContext(
const std::shared_ptr<c10::GatheredContext>& x) {
if (CapturedTraceback* sc = dynamic_cast<CapturedTraceback*>(x.get())) {
return sc;
}
TORCH_CHECK(
false,
"attempting to gather stack context from the wrong StackContext type.");
}
PyObject* THCPModule_memorySnapshot(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
c10::cuda::MempoolId_t mempool_id = {0, 0};
if (arg && arg != Py_None) {
TORCH_CHECK(PyTuple_Check(arg), "mempool_id must be a tuple");
Py_ssize_t size = PyTuple_Size(arg);
TORCH_CHECK(size == 2, "mempool_id must be a tuple of 2 integers");
auto id1 = THPObjectPtr(PyTuple_GetItem(arg, 0));
auto id2 = THPObjectPtr(PyTuple_GetItem(arg, 1));
TORCH_CHECK(
THPUtils_checkLong(id1) && THPUtils_checkLong(id2),
"mempool_id elements must be integers");
mempool_id = c10::cuda::MempoolId_t(
static_cast<int64_t>(THPUtils_unpackLong(id1)),
static_cast<int64_t>(THPUtils_unpackLong(id2)));
}
using c10::cuda::CUDACachingAllocator::BlockInfo;
using c10::cuda::CUDACachingAllocator::SegmentInfo;
py::str device_s = "device";
py::str address_s = "address";
py::str total_size_s = "total_size";
py::str allocated_size_s = "allocated_size";
py::str active_size_s = "active_size";
py::str requested_size_s = "requested_size";
py::str stream_s = "stream";
py::str segment_type_s = "segment_type";
py::str segment_pool_id = "segment_pool_id";
py::str large_s = "large";
py::str small_s = "small";
py::str size_s = "size";
py::str state_s = "state";
py::str active_allocated_s = "active_allocated";
py::str active_pending_free_s = "active_pending_free";
py::str inactive_s = "inactive";
py::str addr_s = "addr";
py::str cpp_frames_s = "cpp_frames";
py::str blocks_s = "blocks";
py::str is_expandable_s = "is_expandable";
py::str frames_s = "frames";
py::str time_us_s = "time_us";
py::str compile_context_s = "compile_context";
py::list empty_frames;
std::vector<CapturedTraceback*> to_gather_frames;
std::vector<py::dict> to_gather_dest;
auto add_frame_key = [&](const py::dict& d,
const std::shared_ptr<c10::GatheredContext>& ctx) {
if (ctx) {
auto sc = getFromContext(ctx);
to_gather_frames.emplace_back(sc);
to_gather_dest.emplace_back(d);
} else {
d[frames_s] = empty_frames;
}
};
const auto segmentInfoToDict = [&](const SegmentInfo& segmentInfo) {
py::dict segmentDict;
segmentDict[device_s] = segmentInfo.device;
segmentDict[address_s] = segmentInfo.address;
segmentDict[total_size_s] = segmentInfo.total_size;
segmentDict[allocated_size_s] = segmentInfo.allocated_size;
segmentDict[active_size_s] = segmentInfo.active_size;
segmentDict[requested_size_s] = segmentInfo.requested_size;
// we want the python objects to pickle easily so use an int to
// represent the stream rather than a torch.cuda.stream object
segmentDict[stream_s] = int64_t(segmentInfo.stream);
segmentDict[segment_type_s] = (segmentInfo.is_large ? large_s : small_s);
segmentDict[segment_pool_id] = segmentInfo.owner_private_pool_id;
segmentDict[is_expandable_s] = segmentInfo.is_expandable;
add_frame_key(segmentDict, segmentInfo.context_when_allocated);
auto address = segmentInfo.address;
py::list blocks;
for (const auto& blockInfo : segmentInfo.blocks) {
py::dict blockDict;
blockDict[address_s] = address;
blockDict[size_s] = blockInfo.size;
blockDict[requested_size_s] = blockInfo.requested_size;
blockDict[state_s] =
(blockInfo.allocated
? active_allocated_s
: (blockInfo.active ? active_pending_free_s : inactive_s));
add_frame_key(blockDict, blockInfo.context_when_allocated);
blocks.append(blockDict);
address += blockInfo.size;
}
segmentDict[blocks_s] = blocks;
return segmentDict;
};
auto snapshot = c10::cuda::CUDACachingAllocator::snapshot(mempool_id);
py::list segments;
for (const auto& segmentInfo : snapshot.segments) {
segments.append(segmentInfoToDict(segmentInfo));
}
py::list traces;
py::str action_s = "action";
py::str alloc_s = "alloc";
py::str free_requested_s = "free_requested";
py::str free_completed_s = "free_completed";
py::str segment_alloc_s = "segment_alloc";
py::str segment_free_s = "segment_free";
py::str segment_map_s = "segment_map";
py::str segment_unmap_s = "segment_unmap";
py::str snapshot_s = "snapshot";
py::str oom_s = "oom";
py::str device_free_s = "device_free";
using namespace c10::cuda::CUDACachingAllocator;
auto action_to_str = [&](TraceEntry::Action action) {
switch (action) {
case TraceEntry::ALLOC:
return alloc_s;
case TraceEntry::FREE_REQUESTED:
return free_requested_s;
case TraceEntry::FREE_COMPLETED:
return free_completed_s;
case TraceEntry::SEGMENT_ALLOC:
return segment_alloc_s;
case TraceEntry::SEGMENT_FREE:
return segment_free_s;
case TraceEntry::OOM:
return oom_s;
case TraceEntry::SNAPSHOT:
return snapshot_s;
case TraceEntry::SEGMENT_UNMAP:
return segment_unmap_s;
case TraceEntry::SEGMENT_MAP:
return segment_map_s;
}
throw std::runtime_error("unreachable");
};
for (const auto& traceInfo : snapshot.device_traces) {
py::list trace;
for (const auto& te : traceInfo) {
py::dict trace_entry;
if (te.context_) {
// without further compression frames can get really large on dump
auto sc = getFromContext(te.context_);
to_gather_frames.emplace_back(sc);
to_gather_dest.emplace_back(trace_entry);
}
trace_entry[action_s] = action_to_str(te.action_);
trace_entry[TraceEntry::OOM == te.action_ ? device_free_s : addr_s] =
te.addr_;
trace_entry[size_s] = te.size_;
trace_entry[stream_s] = int64_t(te.stream_);
trace_entry[time_us_s] = te.time_.t_;
trace_entry[compile_context_s] = te.compile_context_;
trace.append(trace_entry);
}
traces.append(trace);
}
py::list external_annotations;
for (const auto& ae : snapshot.external_annotations) {
py::dict annotation_entry;
for (const auto& md : ae.metadata_) {
annotation_entry[(py::str)md.first] = md.second;
}
annotation_entry[device_s] = ae.device_;
annotation_entry[time_us_s] = ae.time_.t_;
external_annotations.append(annotation_entry);
}
py::dict allocator_settings;
py::str last_allocator_settings_s = "PYTORCH_CUDA_ALLOC_CONF";
py::str max_split_size_s = "max_split_size";
py::str garbage_collection_threshold_s = "garbage_collection_threshold";
py::str expandable_segments_s = "expandable_segments";
py::str pinned_num_register_threads_s = "pinned_num_register_threads";
py::str release_lock_on_malloc_s = "release_lock_on_cudamalloc";
py::str pinned_use_host_register_s = "pinned_use_cuda_host_register";
py::str roundup_power2_divisions_s = "roundup_power2_divisions";
py::str graph_capture_record_stream_reuse_s =
"graph_capture_record_stream_reuse";
allocator_settings[last_allocator_settings_s] =
snapshot.config_metadata.last_allocator_settings;
allocator_settings[max_split_size_s] =
int64_t(snapshot.config_metadata.max_split_size);
allocator_settings[garbage_collection_threshold_s] =
snapshot.config_metadata.garbage_collection_threshold;
allocator_settings[expandable_segments_s] =
snapshot.config_metadata.expandable_segments;
allocator_settings[pinned_num_register_threads_s] =
int64_t(snapshot.config_metadata.pinned_num_register_threads);
allocator_settings[release_lock_on_malloc_s] =
snapshot.config_metadata.release_lock_on_malloc;
allocator_settings[pinned_use_host_register_s] =
snapshot.config_metadata.pinned_use_host_register;
allocator_settings[graph_capture_record_stream_reuse_s] =
snapshot.config_metadata.graph_capture_record_stream_reuse;
unsigned int roundup_key = 1;
py::dict roundup_settings;
for (const auto& v : snapshot.config_metadata.roundup_power2_divisions) {
py::str roundup_key_s = std::to_string(roundup_key);
roundup_settings[roundup_key_s] = int64_t(v);
roundup_key *= 2;
}
allocator_settings[roundup_power2_divisions_s] = roundup_settings;
py::dict result;
result["segments"] = segments;
result["device_traces"] = traces;
result["allocator_settings"] = allocator_settings;
result["external_annotations"] = external_annotations;
auto frames = py_symbolize(to_gather_frames);
for (auto i : c10::irange(frames.size())) {
to_gather_dest.at(i)[frames_s] = frames.at(i);
}
return result.release().ptr();
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_attachOutOfMemoryObserver(
PyObject* _unused,
PyObject* observer) {
HANDLE_TH_ERRORS
Py_XINCREF(observer);
auto obs = [observer](
int64_t device,
int64_t alloc,
int64_t device_allocated,
int64_t device_free) {
py::gil_scoped_acquire g;
PyObject* result = PyObject_CallFunction(
observer, "LLLL", device, alloc, device_allocated, device_free);
if (!result) {
throw py::error_already_set();
}
Py_XDECREF(result);
};
at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
c10::cuda::CUDACachingAllocator::attachOutOfMemoryObserver(std::move(obs));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaSetSyncDebugMode(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_WARN_ONCE(
"Synchronization debug mode is a prototype feature and does not yet detect all "
"synchronizing operations");
TORCH_CHECK(
THPUtils_checkLong(arg), "invalid argument to set_sync_debug_mode");
int64_t debug_mode = THPUtils_unpackLong(arg);
TORCH_CHECK(
debug_mode >= 0 && debug_mode <= 2,
"invalid value of debug_mode, expected one of 0,1,2");
c10::cuda::SyncDebugMode l = c10::cuda::SyncDebugMode::L_DISABLED;
switch (debug_mode) {
case 0:
l = c10::cuda::SyncDebugMode::L_DISABLED;
break;
case 1:
l = c10::cuda::SyncDebugMode::L_WARN;
break;
case 2:
l = c10::cuda::SyncDebugMode::L_ERROR;
break;
default:
break; // can't happen
}
c10::cuda::warning_state().set_sync_debug_mode(l);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cudaGetSyncDebugMode(PyObject* self, PyObject* noargs) {
HANDLE_TH_ERRORS
auto debug_mode = c10::cuda::warning_state().get_sync_debug_mode();
switch (debug_mode) {
case c10::cuda::SyncDebugMode::L_DISABLED:
return THPUtils_packInt32(0);
case c10::cuda::SyncDebugMode::L_WARN:
return THPUtils_packInt32(1);
case c10::cuda::SyncDebugMode::L_ERROR:
return THPUtils_packInt32(2);
default:
return THPUtils_packInt32(-1); // can't happen
}
END_HANDLE_TH_ERRORS
}
////////////////////////////////////////////////////////////////////////////////
// Cuda module initialization
////////////////////////////////////////////////////////////////////////////////
static void registerCudaDeviceProperties(PyObject* module) {
// Add _cudaDevicePropertires class to torch._C
auto m = py::handle(module).cast<py::module>();
// CUuuid is defined in either cuda.h or driver_types.h
// hipified to hipUUID which is defined in hip_runtime_api.h
py::class_<CUuuid>(m, "_CUuuid")
.def_property_readonly(
"bytes",
[](const CUuuid& uuid) {
return std::vector<uint8_t>(uuid.bytes, uuid.bytes + 16);
})
.def("__str__", [](const CUuuid& uuid) {
return uuid_to_string(uuid.bytes);
});
py::class_<cudaDeviceProp>(m, "_CudaDeviceProperties")
.def_readonly("name", &cudaDeviceProp::name)
.def_readonly("major", &cudaDeviceProp::major)
.def_readonly("minor", &cudaDeviceProp::minor)
.def_readonly("is_multi_gpu_board", &cudaDeviceProp::isMultiGpuBoard)
.def_readonly("is_integrated", &cudaDeviceProp::integrated)
.def_readonly(
"multi_processor_count", &cudaDeviceProp::multiProcessorCount)
.def_readonly("total_memory", &cudaDeviceProp::totalGlobalMem)
.def_readonly(
"max_threads_per_multi_processor",
&cudaDeviceProp::maxThreadsPerMultiProcessor)
.def_readonly("warp_size", &cudaDeviceProp::warpSize)
#ifndef USE_ROCM
// NVIDIA-only properties
.def_readonly(
"shared_memory_per_block", &cudaDeviceProp::sharedMemPerBlock)
.def_readonly(
"shared_memory_per_block_optin",
&cudaDeviceProp::sharedMemPerBlockOptin)
.def_readonly(
"shared_memory_per_multiprocessor",
&cudaDeviceProp::sharedMemPerMultiprocessor)
#endif
#if (defined(USE_ROCM) && ROCM_VERSION >= 60100) || !USE_ROCM
.def_readonly(
"regs_per_multiprocessor", &cudaDeviceProp::regsPerMultiprocessor)
#endif
// HIP-only property; reuse name attribute for CUDA builds
.def_readonly(
"gcnArchName",
#if USE_ROCM
&cudaDeviceProp::gcnArchName
#else
&cudaDeviceProp::name
#endif // USE_ROCM
)
.def_readonly("uuid", &cudaDeviceProp::uuid)
.def_readonly("pci_bus_id", &cudaDeviceProp::pciBusID)
.def_readonly("pci_device_id", &cudaDeviceProp::pciDeviceID)
.def_readonly("pci_domain_id", &cudaDeviceProp::pciDomainID)
.def_readonly("L2_cache_size", &cudaDeviceProp::l2CacheSize)
.def("__repr__", [](const cudaDeviceProp& prop) {
std::ostringstream stream;
stream << "_CudaDeviceProperties(name='" << prop.name
<< "', major=" << prop.major << ", minor=" << prop.minor
#if USE_ROCM
<< ", gcnArchName='" << prop.gcnArchName << "'"
#endif // USE_ROCM
<< ", total_memory=" << prop.totalGlobalMem / (1024ull * 1024)
<< "MB, multi_processor_count=" << prop.multiProcessorCount
<< ", uuid=" << uuid_to_string(prop.uuid.bytes)
<< ", pci_bus_id=" << prop.pciBusID
<< ", pci_device_id=" << prop.pciDeviceID
<< ", pci_domain_id=" << prop.pciDomainID
<< ", L2_cache_size=" << prop.l2CacheSize / (1024ull * 1024)
<< "MB)";
return stream.str();
});
m.def(
"_cuda_record_memory_history_legacy",
static_cast<void (*)(bool, bool, int64_t, bool, bool, bool, bool, bool)>(
torch::cuda::_record_memory_history));
m.def(
"_cuda_record_memory_history",
static_cast<void (*)(
std::optional<std::string>,
std::optional<std::string>,
const std::string&,
size_t,
bool,
bool,
bool)>(torch::cuda::_record_memory_history));
m.def("_cuda_isHistoryEnabled", []() {
return c10::cuda::CUDACachingAllocator::isHistoryEnabled();
});
m.def("_cuda_get_conv_benchmark_empty_cache", []() {
return at::native::_cudnn_get_conv_benchmark_empty_cache();
});
m.def("_cudnn_set_conv_benchmark_empty_cache", [](bool enable) {
return at::native::_cudnn_set_conv_benchmark_empty_cache(enable);
});
}
// We choose to ignore certain blocks that are currently allocated
// when we set the pool to its checkpoint. For those blocks, we need
// to swap out the deleter function of their corresponding blocks
// so that a deallocation is not triggered when they die.
void removeStorageDeleterFns(
const std::vector<c10::StorageImpl*>& stale_live_storages,
std::unordered_set<void*> definitely_stale_pointers) {
for (c10::StorageImpl* stale_storage : stale_live_storages) {
auto ptr = stale_storage->data_ptr().get();
auto allocated_pointer = definitely_stale_pointers.find(ptr);
TORCH_CHECK(allocated_pointer != definitely_stale_pointers.end());
auto t = c10::cuda::CUDACachingAllocator::get();
bool succeeded = stale_storage->mutable_data_ptr().compare_exchange_deleter(
t->raw_deleter(), &c10::detail::deleteNothing);
TORCH_CHECK(
succeeded,
"Unexpected deleter function on storage, could not swap function");
}
}
void addStorageDeleterFns(
std::vector<c10::StorageImpl*>& storages_to_add_deleters_to,
c10::cuda::CUDACachingAllocator::CheckpointDelta& delta) {
std::unordered_map<void*, c10::StorageImpl*> storages;
for (auto& storage : storages_to_add_deleters_to) {
storages[storage->data_ptr().get()] = storage;
}
for (auto& data_ptr : delta.dataptrs_allocd) {
auto storage_pair = storages.find(data_ptr.get());
if (storage_pair != storages.end()) {
auto ctx = storage_pair->second->data_ptr().get_context();
TORCH_CHECK(ctx == nullptr, " Not expecting deleter function");
storage_pair->second->set_data_ptr_noswap(std::move(data_ptr));
} else {
data_ptr.release_context();
}
}
}
static void registerCudaPluggableAllocator(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<
c10::cuda::CUDACachingAllocator::CUDAAllocator,
std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>>(
m, "_cuda_CUDAAllocator");
m.def("_cuda_getAllocator", []() {
return py::cast(torch::cuda::CUDAPluggableAllocator::getCurrentAllocator());
});
m.def(
"_cuda_changeCurrentAllocator",
[](const std::shared_ptr<c10::cuda::CUDACachingAllocator::CUDAAllocator>&
allocator) {
torch::cuda::CUDAPluggableAllocator::changeCurrentAllocator(allocator);
});
py::class_<
torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator,
c10::cuda::CUDACachingAllocator::CUDAAllocator,
std::shared_ptr<
torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator>>(
m, "_CUDAPluggableAllocator")
.def(
"set_init_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(int);
std::function<FuncType> func =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<FuncType*>(func_ptr);
self.set_init_fn(func);
})
.def(
"set_reset_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void();
std::function<FuncType> func =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<FuncType*>(func_ptr);
self.set_reset_fn(func);
})
.def(
"set_memory_fraction_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(double, int);
std::function<FuncType> func =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<FuncType*>(func_ptr);
self.set_memory_fraction_fn(func);
})
.def(
"set_base_alloc_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void*(void*, size_t*);
std::function<FuncType> func =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<FuncType*>(func_ptr);
self.set_base_alloc_fn(func);
})
.def(
"set_record_stream_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(void*, cudaStream_t);
std::function<FuncType> func =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<FuncType*>(func_ptr);
self.set_record_stream_fn(func);
})
.def(
"set_begin_allocate_to_pool",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(
int, c10::cuda::MempoolId_t, std::function<bool(cudaStream_t)>);
std::function<FuncType> func =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<FuncType*>(func_ptr);
self.set_begin_allocate_to_pool(func);
})
.def(
"set_end_allocate_to_pool_fn",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(int, c10::cuda::MempoolId_t);
std::function<FuncType> func =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<FuncType*>(func_ptr);
self.set_end_allocate_to_pool_fn(func);
})
.def(
"set_release_pool",
[](torch::cuda::CUDAPluggableAllocator::CUDAPluggableAllocator& self,
uint64_t func_ptr) {
using FuncType = void(int, c10::cuda::MempoolId_t);
std::function<FuncType> func =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<FuncType*>(func_ptr);
self.set_release_pool(func);
});
m.def("_cuda_customAllocator", [](uint64_t malloc_ptr, uint64_t free_ptr) {
using namespace torch::cuda::CUDAPluggableAllocator;
std::function<MallocFuncType> malloc_fn =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<MallocFuncType*>(malloc_ptr);
std::function<FreeFuncType> free_fn =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<FreeFuncType*>(free_ptr);
return createCustomAllocator(malloc_fn, free_fn);
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<
c10::cuda::CUDACachingAllocator::AllocatorState,
std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState>>(
m, "_cuda_CUDAAllocator_AllocatorState");
m.def(
"_cuda_getCheckpointState",
[](c10::DeviceIndex device, c10::cuda::MempoolId_t id) {
return c10::cuda::CUDACachingAllocator::getCheckpointState(device, id);
});
m.def("_free_And_Remove_DeleterFn", [](size_t storage_impl_ptr) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
c10::StorageImpl* storage_impl = (c10::StorageImpl*)storage_impl_ptr;
auto alloc = c10::cuda::CUDACachingAllocator::get();
auto data_ptr = storage_impl->data_ptr().get();
bool succeeded = storage_impl->mutable_data_ptr().compare_exchange_deleter(
alloc->raw_deleter(), c10::detail::deleteNothing);
TORCH_CHECK(succeeded, "Expected standard deleter");
c10::cuda::CUDACachingAllocator::raw_delete(data_ptr);
});
m.def(
"_set_storage_access_error_msg", [](const at::Tensor& t, std::string s) {
t.unsafeGetTensorImpl()
->release_storage_and_set_meta_custom_data_ptr_error_msg_(s);
});
m.def(
"_set_storage_data_ptr_access_error_msg",
[](size_t storage_impl_ptr, std::string s) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
c10::StorageImpl* storage_impl = (c10::StorageImpl*)storage_impl_ptr;
storage_impl->release_data_and_set_meta_custom_data_ptr_error_msg_(s);
});
m.def("_has_Standard_Deleter", [](size_t storage_impl_ptr) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
c10::StorageImpl* storage_impl = (c10::StorageImpl*)storage_impl_ptr;
auto alloc = c10::cuda::CUDACachingAllocator::get();
return (storage_impl->data_ptr().get_deleter() == alloc->raw_deleter());
});
m.def(
"_tensors_data_ptrs_at_indices_equal",
[](py::list& tensors, py::list& data_ptrs, py::list& indices) {
for (auto index : indices) {
auto t = tensors[index].cast<at::Tensor>();
auto data_ptr = data_ptrs[index].cast<int64_t>();
if (reinterpret_cast<int64_t>(t.data_ptr()) != data_ptr) {
return false;
}
}
return true;
});
m.def(
"_construct_CUDA_Tensor_From_Storage_And_Metadata",
[](py::dict& metadata, c10::Storage s) {
auto dtype_arg = metadata["dtype"].ptr();
auto meta = scalarTypeToTypeMeta(toScalarType(dtype_arg));
constexpr c10::DispatchKeySet cuda_dks(c10::DispatchKey::CUDA);
at::Tensor tensor = at::detail::make_tensor_base<c10::TensorImpl>(
std::move(s), cuda_dks, meta);
tensor.unsafeGetTensorImpl()->set_sizes_and_strides(
metadata["size"].cast<std::vector<int64_t>>(),
metadata["stride"].cast<std::vector<int64_t>>());
tensor.unsafeGetTensorImpl()->set_storage_offset(
metadata["storage_offset"].cast<int64_t>());
return tensor;
});
m.def(
"_cuda_beginAllocateCurrentStreamToPool",
[](c10::DeviceIndex device, at::cuda::MempoolId_t mempool_id) {
auto stream = at::cuda::getCurrentCUDAStream(device);
TORCH_CHECK(stream, "Expected stream capture to be under way");
c10::cuda::CUDACachingAllocator::beginAllocateToPool(
device, mempool_id, [stream](cudaStream_t target) {
return target == stream;
});
});
m.def(
"_cuda_beginAllocateToPool",
[](c10::DeviceIndex device, at::cuda::MempoolId_t mempool_id) {
c10::cuda::CUDACachingAllocator::beginAllocateToPool(
device, mempool_id, [](cudaStream_t) { return true; });
});
m.def(
"_cuda_beginAllocateCurrentThreadToPool",
[](c10::DeviceIndex device, at::cuda::MempoolId_t mempool_id) {
auto tid = std::this_thread::get_id();
c10::cuda::CUDACachingAllocator::beginAllocateToPool(
device, mempool_id, [=](cudaStream_t) {
auto current_tid = std::this_thread::get_id();
return current_tid == tid;
});
});
m.def(
"_cuda_endAllocateToPool",
[](c10::DeviceIndex device, at::cuda::MempoolId_t mempool_id) {
c10::cuda::CUDACachingAllocator::endAllocateToPool(device, mempool_id);
});
m.def(
"_cuda_releasePool",
[](c10::DeviceIndex device, at::cuda::MempoolId_t mempool_id) {
c10::cuda::CUDACachingAllocator::releasePool(device, mempool_id);
});
m.def(
"_cuda_checkPoolLiveAllocations",
[](c10::DeviceIndex device,
at::cuda::MempoolId_t mempool_id,
const py::set& expected_live_allocations) {
std::unordered_set<void*> allocations;
allocations.reserve(expected_live_allocations.size());
for (auto& elem : expected_live_allocations) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
allocations.insert(reinterpret_cast<void*>(py::cast<size_t>(elem)));
}
return c10::cuda::CUDACachingAllocator::checkPoolLiveAllocations(
device, mempool_id, allocations);
});
m.def(
"_cuda_setCheckpointPoolState",
[](c10::DeviceIndex device,
std::shared_ptr<c10::cuda::CUDACachingAllocator::AllocatorState> pps,
const std::vector<size_t>& stale_storages_ptr,
const std::vector<size_t>& storages_to_add_deleters_to_ptr = {}) {
std::unordered_set<c10::StorageImpl*> ptr_set;
// iterate on std::vector for determinism
std::vector<c10::StorageImpl*> ptrs;
for (size_t ptr_int : stale_storages_ptr) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
c10::StorageImpl* ptr = (c10::StorageImpl*)ptr_int;
if (!ptr_set.count(ptr)) {
ptrs.push_back(ptr);
ptr_set.insert(ptr);
}
}
auto delta = c10::cuda::CUDACachingAllocator::setCheckpointPoolState(
device, std::move(pps));
auto& freed_pointers = delta.ptrs_freed;
std::unordered_set<void*> allocd_set;
for (auto& data_ptr : delta.dataptrs_allocd) {
allocd_set.insert(data_ptr.get());
}
std::unordered_set<void*> freed_pointer_set;
size_t definite_freed_count = 0;
for (void* ptr : freed_pointers) {
if (!allocd_set.count(ptr)) {
definite_freed_count += 1;
}
freed_pointer_set.insert((ptr));
}
// that block has already been freed,
// so even those this will error, so too will the allocator
// when the corresponding tensor dies because there is no
// live tensor corresponding to it
TORCH_CHECK(
ptr_set.size() >= definite_freed_count,
"Any stale tensors which are being manually freed"
" must be passed to set checkpoint");
removeStorageDeleterFns(ptrs, freed_pointer_set);
std::vector<c10::StorageImpl*> storages_to_add_deleters_to;
storages_to_add_deleters_to.reserve(
storages_to_add_deleters_to_ptr.size());
for (size_t ptr_int : storages_to_add_deleters_to_ptr) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
storages_to_add_deleters_to.push_back((c10::StorageImpl*)ptr_int);
}
addStorageDeleterFns(storages_to_add_deleters_to, delta);
});
}
static void bindGetDeviceProperties(PyObject* module) {
// Add method to torch.cuda
auto m = py::handle(module).cast<py::module>();
m.def(
"_get_device_properties",
[](c10::DeviceIndex device) -> cudaDeviceProp* {
return at::cuda::getDeviceProperties(device);
},
py::return_value_policy::reference);
}
// Callback for python part. Used for additional initialization of python
// classes
static PyObject* THCPModule_initExtension(PyObject* self, PyObject* noargs) {
#if C10_ASAN_ENABLED
TORCH_WARN(
"torch.cuda: your pytorch binary has address sanitizer (asan) built in, "
"asan is currently not compatible with torch.cuda module, "
"you might get unexpected behavior (eg. out of memory, crash, etc.), "
"please rebuild pytorch without asan if you need to use this module");
#endif
HANDLE_TH_ERRORS
TORCH_INTERNAL_ASSERT(!torch::utils::is_device_in_bad_fork(at::kCUDA));
torch::utils::register_fork_handler_for_device_init(at::kCUDA);
at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
auto m = THPObjectPtr(PyImport_ImportModule("torch.cuda"));
if (!m)
throw python_error();
auto set_module_attr = [&](const char* name, PyObject* v) {
// PyObject_SetAttrString doesn't steal reference. So no need to incref.
if (PyObject_SetAttrString(m, name, v) < 0) {
throw python_error();
}
};
auto num_gpus = c10::cuda::device_count();
auto default_cuda_generators = PyTuple_New(static_cast<Py_ssize_t>(num_gpus));
for (const auto i : c10::irange(num_gpus)) {
auto cast_gen = THPGenerator_initDefaultGenerator(
at::cuda::detail::getDefaultCUDAGenerator(i));
// This reference is meant to be given away, so no need to incref here.
PyTuple_SetItem(default_cuda_generators, i, cast_gen);
}
set_module_attr("default_generators", default_cuda_generators);
bindGetDeviceProperties(m);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_getCurrentBlasHandle_wrap(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS
cublasHandle_t handle = at::cuda::getCurrentCUDABlasHandle();
return PyLong_FromVoidPtr(handle);
END_HANDLE_TH_ERRORS
}
static PyObject* THCPModule_clearBlasWorkspaces_wrap(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS
at::cuda::clearCublasWorkspaces();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_rocm_is_backward_pass(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
#if USE_ROCM
if (at::ROCmBackwardPassGuard::is_backward_pass()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
#else
Py_RETURN_FALSE;
#endif
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_enable(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkBool(arg),
"cuda_tunableop_enable expects a bool, but got ",
THPUtils_typename(arg));
at::cuda::tunable::getTuningContext()->EnableTunableOp(
THPUtils_unpackBool(arg));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_is_enabled(
PyObject* _unused,
PyObject* noarg) {
HANDLE_TH_ERRORS
if (at::cuda::tunable::getTuningContext()->IsTunableOpEnabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_tuning_enable(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkBool(arg),
"cuda_tunableop_tuning_enable expects a bool, but got ",
THPUtils_typename(arg));
at::cuda::tunable::getTuningContext()->EnableTuning(THPUtils_unpackBool(arg));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_tuning_is_enabled(
PyObject* _unused,
PyObject* noarg) {
HANDLE_TH_ERRORS
if (at::cuda::tunable::getTuningContext()->IsTuningEnabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_record_untuned_enable(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkBool(arg),
"cuda_record_untuned_enable expects a bool, but got ",
THPUtils_typename(arg));
at::cuda::tunable::getTuningContext()->EnableRecordUntuned(
THPUtils_unpackBool(arg));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_record_untuned_is_enabled(
PyObject* _unused,
PyObject* noarg) {
HANDLE_TH_ERRORS
if (at::cuda::tunable::getTuningContext()->IsRecordUntunedEnabled()) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_write_file_on_exit(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkBool(arg),
"cuda_tunableop_write_file_on_exit expects a bool, but got ",
THPUtils_typename(arg));
at::cuda::tunable::getTuningContext()->WriteFileOnExit(
THPUtils_unpackBool(arg));
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_set_max_tuning_duration(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"cuda_tunableop_set_max_tuning_duration expects an int, but got ",
THPUtils_typename(arg));
auto duration = static_cast<int>(THPUtils_unpackLong(arg));
at::cuda::tunable::getTuningContext()->SetMaxTuningDurationMs(duration);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_get_max_tuning_duration(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packInt32(
at::cuda::tunable::getTuningContext()->GetMaxTuningDurationMs());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_set_max_tuning_iterations(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"cuda_tunableop_set_max_tuning_iterations expects an int, but got ",
THPUtils_typename(arg));
auto iterations = static_cast<int>(THPUtils_unpackLong(arg));
at::cuda::tunable::getTuningContext()->SetMaxTuningIterations(iterations);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_get_max_tuning_iterations(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packInt32(
at::cuda::tunable::getTuningContext()->GetMaxTuningIterations());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_set_filename(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
PyObject* obj_str = nullptr;
PyObject* obj_ord = nullptr;
if (!PyArg_ParseTuple(args, "O|O", &obj_str, &obj_ord)) {
}
TORCH_CHECK(
THPUtils_checkString(obj_str),
"cuda_tunableop_set_filename expects a string, but got ",
THPUtils_typename(obj_str));
auto filename = THPUtils_unpackString(obj_str);
bool dev = false;
if (obj_ord) {
TORCH_CHECK(
THPUtils_checkBool(obj_ord),
"cuda_tunableop_set_filename expects a bool, but got ",
THPUtils_typename(obj_ord));
dev = THPUtils_unpackBool(obj_ord);
}
at::cuda::tunable::getTuningContext()->SetFilename(filename, dev);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_get_filename(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packString(
at::cuda::tunable::getTuningContext()->GetFilename());
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_write_file(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
PyObject* str = nullptr;
bool success = false;
if (!PyArg_ParseTuple(args, "|O", &str)) {
}
if (str) {
TORCH_CHECK(
THPUtils_checkString(str),
"cuda_tunableop_write_file expects a string, but got ",
THPUtils_typename(str));
auto filename = THPUtils_unpackString(str);
success = at::cuda::tunable::getTuningContext()->WriteFile(filename);
} else {
success = at::cuda::tunable::getTuningContext()->WriteFile();
}
if (success) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_read_file(
PyObject* _unused,
PyObject* args) {
HANDLE_TH_ERRORS
PyObject* str = nullptr;
bool success = false;
if (!PyArg_ParseTuple(args, "|O", &str)) {
}
if (str) {
TORCH_CHECK(
THPUtils_checkString(str),
"cuda_tunableop_read_file expects a string, but got ",
THPUtils_typename(str));
auto filename = THPUtils_unpackString(str);
success = at::cuda::tunable::getTuningContext()->ReadFile(filename);
} else {
success = at::cuda::tunable::getTuningContext()->ReadFile();
}
if (success) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_get_results(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
auto results =
at::cuda::tunable::getTuningContext()->GetTuningResultsManager().Dump();
size_t result_size = 0;
for (const auto& [op_sig, kernelmap] : results) {
result_size += kernelmap.size();
}
THPObjectPtr outer_tuple(PyTuple_New(static_cast<Py_ssize_t>(result_size)));
if (!outer_tuple)
throw python_error();
size_t result_index = 0;
for (const auto& [op_sig, kernelmap] : results) {
for (const auto& [param_sig, result] : kernelmap) {
THPObjectPtr inner_tuple(PyTuple_New(4));
if (!inner_tuple)
throw python_error();
PyObject* obj_op_sig = THPUtils_packString(op_sig);
if (!obj_op_sig)
throw python_error();
PyObject* obj_param_sig = THPUtils_packString(param_sig);
if (!obj_param_sig)
throw python_error();
PyObject* obj_result_key = THPUtils_packString(result.GetKey());
if (!obj_result_key)
throw python_error();
PyObject* obj_result_time = PyFloat_FromDouble(result.GetTime());
if (!obj_result_time)
throw python_error();
PyTuple_SET_ITEM(inner_tuple.get(), 0, obj_op_sig);
PyTuple_SET_ITEM(inner_tuple.get(), 1, obj_param_sig);
PyTuple_SET_ITEM(inner_tuple.get(), 2, obj_result_key);
PyTuple_SET_ITEM(inner_tuple.get(), 3, obj_result_time);
PyTuple_SET_ITEM(
outer_tuple.get(), result_index++, inner_tuple.release());
}
}
return outer_tuple.release();
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_get_validators(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
auto validators = at::cuda::tunable::getTuningContext()
->GetTuningResultsValidator()
.GetAllValidators();
THPObjectPtr outer_tuple(
PyTuple_New(static_cast<Py_ssize_t>(validators.size())));
if (!outer_tuple)
throw python_error();
size_t validator_index = 0;
for (const auto& [key, val] : validators) {
THPObjectPtr inner_tuple(PyTuple_New(2));
if (!inner_tuple)
throw python_error();
PyObject* obj_key = THPUtils_packString(key);
if (!obj_key)
throw python_error();
PyObject* obj_val = THPUtils_packString(val);
if (!obj_val)
throw python_error();
PyTuple_SET_ITEM(inner_tuple.get(), 0, obj_key);
PyTuple_SET_ITEM(inner_tuple.get(), 1, obj_val);
PyTuple_SET_ITEM(
outer_tuple.get(), validator_index++, inner_tuple.release());
}
return outer_tuple.release();
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_set_rotating_buffer_size(
PyObject* _unused,
PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"cuda_tunableop_set_rotating_buffer_size expects an int, but got ",
THPUtils_typename(arg));
auto buffer_size = static_cast<int>(THPUtils_unpackLong(arg));
at::cuda::tunable::getTuningContext()->SetRotatingBufferSize(buffer_size);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_cuda_tunableop_get_rotating_buffer_size(
PyObject* _unused,
PyObject* noargs) {
HANDLE_TH_ERRORS
return THPUtils_packInt32(
at::cuda::tunable::getTuningContext()->GetRotatingBufferSize());
END_HANDLE_TH_ERRORS
}
static PyObject* THCPModule_isCurrentStreamCapturing_wrap(
PyObject* self,
PyObject* noargs) {
HANDLE_TH_ERRORS
// If there's no cuda context, at::cuda::currentStreamCaptureStatus returns
// CaptureStatus::None without initializing a context.
if (at::cuda::currentStreamCaptureStatus() == at::cuda::CaptureStatus::None) {
Py_RETURN_FALSE;
} else {
Py_RETURN_TRUE;
}
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_setBenchmarkLimitCuDNN(PyObject* _unused, PyObject* arg) {
HANDLE_TH_ERRORS
TORCH_CHECK(
THPUtils_checkLong(arg),
"set_benchmark_limit_cudnn expects an int, "
"but got ",
THPUtils_typename(arg));
#if defined(USE_ROCM)
TORCH_WARN_ONCE(
"cuDNN Benchmark limit is not supported in MIOpen and will have no effect.");
#endif
auto benchmark_limit = static_cast<int>(THPUtils_unpackLong(arg));
at::globalContext().setBenchmarkLimitCuDNN(benchmark_limit);
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS
}
PyObject* THCPModule_benchmarkLimitCuDNN(PyObject* _unused, PyObject* noargs) {
return THPUtils_packInt32(at::globalContext().benchmarkLimitCuDNN());
}
static void initCudaMethodBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
m.def(
"_cuda_getStreamFromExternal",
[](uintptr_t data_ptr, c10::DeviceIndex device_index) {
cudaStream_t ext_stream =
// NOLINTNEXTLINE(performance-no-int-to-ptr)
reinterpret_cast<cudaStream_t>(reinterpret_cast<void*>(data_ptr));
at::cuda::CUDAStream stream =
c10::cuda::getStreamFromExternal(ext_stream, device_index);
return std::make_tuple(
stream.id(), stream.device_index(), stream.device_type());
});
}
// NOLINTNEXTLINE(*-c-arrays*, *-global-variables)
static struct PyMethodDef _THCPModule_methods[] = {
{"_cuda_init", THCPModule_initExtension, METH_NOARGS, nullptr},
{"_cuda_setDevice", THCPModule_setDevice_wrap, METH_O, nullptr},
{"_cuda_exchangeDevice", THCPModule_exchangeDevice, METH_O, nullptr},
{"_cuda_maybeExchangeDevice",
THCPModule_maybeExchangeDevice,
METH_O,
nullptr},
{"_cuda_getDevice", THCPModule_getDevice_wrap, METH_NOARGS, nullptr},
{"_cuda_getDeviceCount",
THCPModule_getDeviceCount_wrap,
METH_NOARGS,
nullptr},
{"_cuda_canDeviceAccessPeer",
THCPModule_canDeviceAccessPeer_wrap,
METH_VARARGS,
nullptr},
{"_cuda_getArchFlags", THCPModule_getArchFlags, METH_NOARGS, nullptr},
{"_cuda_isInBadFork", THCPModule_isInBadFork, METH_NOARGS, nullptr},
{"_cuda_getCurrentStream",
THCPModule_getCurrentStream_wrap,
METH_O,
nullptr},
{"_cuda_getCurrentRawStream",
THCPModule_getCurrentStream_raw,
METH_O,
nullptr},
{"_cuda_getDefaultStream",
THCPModule_getDefaultStream_wrap,
METH_O,
nullptr},
{"_cuda_getCurrentBlasHandle",
THCPModule_getCurrentBlasHandle_wrap,
METH_NOARGS,
nullptr},
{"_cuda_clearCublasWorkspaces",
THCPModule_clearBlasWorkspaces_wrap,
METH_NOARGS,
nullptr},
{"_cuda_isCurrentStreamCapturing",
THCPModule_isCurrentStreamCapturing_wrap,
METH_NOARGS,
nullptr},
{"_cuda_setStream",
castPyCFunctionWithKeywords(THCPModule_setStream_wrap),
METH_VARARGS | METH_KEYWORDS,
nullptr},
{"_cuda_getCompiledVersion",
THCPModule_getCompiledVersion,
METH_NOARGS,
nullptr},
{"_cuda_hasPrimaryContext", THCPModule_hasPrimaryContext, METH_O, nullptr},
{"_cuda_getMemoryFraction",
THCPModule_getMemoryFraction,
METH_VARARGS,
nullptr},
{"_cuda_setMemoryFraction",
THCPModule_setMemoryFraction,
METH_VARARGS,
nullptr},
{"_cuda_emptyCache", THCPModule_emptyCache, METH_NOARGS, nullptr},
{"_cuda_memoryStats", THCPModule_memoryStats, METH_O, nullptr},
{"_cuda_resetAccumulatedMemoryStats",
THCPModule_resetAccumulatedMemoryStats,
METH_O,
nullptr},
{"_cuda_resetPeakMemoryStats",
THCPModule_resetPeakMemoryStats,
METH_O,
nullptr},
{"_cuda_memorySnapshot", THCPModule_memorySnapshot, METH_O, nullptr},
{"_cuda_attach_out_of_memory_observer",
THCPModule_attachOutOfMemoryObserver,
METH_O,
nullptr},
{"_cuda_hostMemoryStats", THCPModule_hostMemoryStats, METH_NOARGS, nullptr},
{"_cuda_resetAccumulatedHostMemoryStats",
THCPModule_resetAccumulatedHostMemoryStats,
METH_NOARGS,
nullptr},
{"_cuda_resetPeakHostMemoryStats",
THCPModule_resetPeakHostMemoryStats,
METH_NOARGS,
nullptr},
{"_cuda_cudaHostAllocator",
THCPModule_cudaHostAllocator,
METH_NOARGS,
nullptr},
{"_host_emptyCache", THCPModule_hostEmptyCache, METH_NOARGS, nullptr},
{"_cuda_cudaCachingAllocator_raw_alloc",
THCPModule_cudaCachingAllocator_raw_alloc,
METH_VARARGS,
nullptr},
{"_cuda_cudaCachingAllocator_raw_delete",
THCPModule_cudaCachingAllocator_raw_delete,
METH_O,
nullptr},
{"_cuda_cudaCachingAllocator_enable",
THCPModule_cudaCachingAllocator_enable,
METH_O,
nullptr},
{"_cuda_cudaCachingAllocator_set_allocator_settings",
THCPModule_cudaCachingAllocator_set_allocator_settings,
METH_O,
nullptr},
{"_cuda_getAllocatorBackend",
THCPModule_getAllocatorBackend,
METH_NOARGS,
nullptr},
{"_cuda_synchronize", THCPModule_cudaSynchronize, METH_NOARGS, nullptr},
{"_cuda_ipc_collect", THCPModule_cudaIPCCollect, METH_NOARGS, nullptr},
{"_cuda_sleep", THCPModule_cudaSleep, METH_O, nullptr},
{"_cuda_lock_mutex", THCPModule_cudaLockMutex, METH_NOARGS, nullptr},
{"_cuda_unlock_mutex", THCPModule_cudaUnlockMutex, METH_NOARGS, nullptr},
{"_cuda_set_sync_debug_mode",
THCPModule_cudaSetSyncDebugMode,
METH_O,
nullptr},
{"_cuda_get_sync_debug_mode",
THCPModule_cudaGetSyncDebugMode,
METH_NOARGS,
nullptr},
{"_cuda_jiterator_compile_and_launch_kernel",
THCPModule_cudaJiteratorCompileAndLaunchKernel,
METH_VARARGS,
nullptr},
{"_cuda_get_cudnn_benchmark_limit",
THCPModule_benchmarkLimitCuDNN,
METH_NOARGS,
nullptr},
{"_cuda_set_cudnn_benchmark_limit",
THCPModule_setBenchmarkLimitCuDNN,
METH_O,
nullptr},
#ifdef USE_NCCL
{"_nccl_version", THCPModule_nccl_version, METH_NOARGS, nullptr},
{"_nccl_version_suffix",
THCPModule_nccl_version_suffix,
METH_NOARGS,
nullptr},
{"_nccl_unique_id", THCPModule_nccl_unique_id, METH_NOARGS, nullptr},
{"_nccl_init_rank", THCPModule_nccl_init_rank, METH_VARARGS, nullptr},
{"_nccl_reduce", THCPModule_nccl_reduce, METH_VARARGS, nullptr},
{"_nccl_all_reduce", THCPModule_nccl_all_reduce, METH_VARARGS, nullptr},
{"_nccl_broadcast", THCPModule_nccl_broadcast, METH_VARARGS, nullptr},
{"_nccl_all_gather", THCPModule_nccl_all_gather, METH_VARARGS, nullptr},
{"_nccl_reduce_scatter",
THCPModule_nccl_reduce_scatter,
METH_VARARGS,
nullptr},
#endif
{"_rocm_is_backward_pass",
THCPModule_rocm_is_backward_pass,
METH_NOARGS,
nullptr},
{"_cuda_tunableop_enable",
THCPModule_cuda_tunableop_enable,
METH_O,
nullptr},
{"_cuda_tunableop_is_enabled",
THCPModule_cuda_tunableop_is_enabled,
METH_NOARGS,
nullptr},
{"_cuda_tunableop_tuning_enable",
THCPModule_cuda_tunableop_tuning_enable,
METH_O,
nullptr},
{"_cuda_tunableop_tuning_is_enabled",
THCPModule_cuda_tunableop_tuning_is_enabled,
METH_NOARGS,
nullptr},
{"_cuda_record_untuned_enable",
THCPModule_cuda_record_untuned_enable,
METH_O,
nullptr},
{"_cuda_record_untuned_is_enabled",
THCPModule_cuda_record_untuned_is_enabled,
METH_NOARGS,
nullptr},
{"_cuda_tunableop_write_file_on_exit",
THCPModule_cuda_tunableop_write_file_on_exit,
METH_O,
nullptr},
{"_cuda_tunableop_set_max_tuning_duration",
THCPModule_cuda_tunableop_set_max_tuning_duration,
METH_O,
nullptr},
{"_cuda_tunableop_get_max_tuning_duration",
THCPModule_cuda_tunableop_get_max_tuning_duration,
METH_NOARGS,
nullptr},
{"_cuda_tunableop_set_max_tuning_iterations",
THCPModule_cuda_tunableop_set_max_tuning_iterations,
METH_O,
nullptr},
{"_cuda_tunableop_get_max_tuning_iterations",
THCPModule_cuda_tunableop_get_max_tuning_iterations,
METH_NOARGS,
nullptr},
{"_cuda_tunableop_set_filename",
THCPModule_cuda_tunableop_set_filename,
METH_VARARGS,
nullptr},
{"_cuda_tunableop_get_filename",
THCPModule_cuda_tunableop_get_filename,
METH_NOARGS,
nullptr},
{"_cuda_tunableop_write_file",
THCPModule_cuda_tunableop_write_file,
METH_VARARGS,
nullptr},
{"_cuda_tunableop_read_file",
THCPModule_cuda_tunableop_read_file,
METH_VARARGS,
nullptr},
{"_cuda_tunableop_get_results",
THCPModule_cuda_tunableop_get_results,
METH_NOARGS,
nullptr},
{"_cuda_tunableop_get_validators",
THCPModule_cuda_tunableop_get_validators,
METH_NOARGS,
nullptr},
{"_cuda_tunableop_set_rotating_buffer_size",
THCPModule_cuda_tunableop_set_rotating_buffer_size,
METH_O,
nullptr},
{"_cuda_tunableop_get_rotating_buffer_size",
THCPModule_cuda_tunableop_get_rotating_buffer_size,
METH_NOARGS,
nullptr},
{nullptr}};
PyMethodDef* THCPModule_methods() {
return _THCPModule_methods;
}
namespace torch::cuda {
namespace shared {
void initCudartBindings(PyObject* module);
void initNvtxBindings(PyObject* module);
#if defined(USE_CUDNN) || defined(USE_ROCM)
void initCudnnBindings(PyObject* module);
#endif
#if defined(USE_CUSPARSELT)
void initCusparseltBindings(PyObject* module);
#endif
} // namespace shared
void initModule(PyObject* module) {
python::initCommMethods(module);
// As weird as it seems, this file is also compiled for ROCm,
// so this condition might not always be true...
shared::initCudartBindings(module);
shared::initNvtxBindings(module);
#if defined(USE_CUDNN) || defined(USE_ROCM)
shared::initCudnnBindings(module);
#endif
#if defined(USE_CUSPARSELT)
shared::initCusparseltBindings(module);
#endif
shared::initGdsBindings(module);
registerCudaDeviceProperties(module);
registerCudaPluggableAllocator(module);
initCudaMethodBindings(module);
}
} // namespace torch::cuda