mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/19984 Add qint8 for QTensor, with underlying type of int8_t Reviewed By: jianyuh Differential Revision: D15150715 fbshipit-source-id: 57580f599d46f9323af5ce462dbbc464b25e40d7
27 lines
791 B
Python
27 lines
791 B
Python
import torch
|
|
import torch.nn.quantized.functional as F
|
|
|
|
import numpy as np
|
|
from common_utils import TestCase, run_tests
|
|
|
|
def _quantize(x, scale, zero_point, qmin=0, qmax=255):
|
|
"""Quantizes a numpy array."""
|
|
qx = np.round(x / scale + zero_point)
|
|
qx = np.clip(qx, qmin, qmax).astype(np.uint8)
|
|
return qx
|
|
|
|
class FunctionalAPITest(TestCase):
|
|
def test_functional_api(self):
|
|
X = torch.arange(-5, 5, dtype=torch.float)
|
|
scale = 2.0
|
|
zero_point = 1
|
|
Y = X.numpy().copy()
|
|
Y[Y < 0] = 0
|
|
qY = _quantize(Y, scale, zero_point)
|
|
qX = X.quantize_linear(scale=scale, zero_point=zero_point, dtype=torch.quint8)
|
|
qY_hat = F.relu(qX)
|
|
np.testing.assert_equal(qY, qY_hat.int_repr())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|