Files
pytorch/tools/amd_build/build_amd.py
Xiaodong Wang 0a94bb432e [ROCm] CK Flash Attention Backend (#143695)
Replace https://github.com/pytorch/pytorch/pull/138947 for re-import.

Replaces https://github.com/ROCm/pytorch/pull/1592

This PR contains the initial implementation of SDPA with composable_kernel backend. The CK path can be forced by simply calling torch.backends.cuda.preferred_rocm_fa_library("ck"). Similarly, you can force the incumbent aotriton implementation by passing in "aotriton" or "default". As you'd expect, not setting this option will result in aotriton to be used as the backend. In the case of CK, if pytorch deems flash attention usable, then it will use the CK path in all the same places aotriton would have been used. This PR makes no changes to the heuristics which select which attention scheme to use (i.e. flash attention vs memory efficient attention vs math etc etc). It only gets called when flash attention is both enabled (via USE_FLASH_ATTENTION) and is selected at runtime by the existing heuristics.

Files located in pytorch/aten/src/ATen/native/transformers/hip/flash_attn/ck/mha* have been pulled from https://github.com/Dao-AILab/flash-attention courtesy of @tridao's hard work who is the co-author

NOTE: In order to use this backend, the user MUST set USE_CK_FLASH_ATTENTION=1 in their environment when they build PyTorch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143695
Approved by: https://github.com/malfet

Co-authored-by: Andy Lugo <Andy.LugoReyes@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
2025-01-03 22:01:36 +00:00

217 lines
7.2 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import os
import sys
from pathlib import Path
# NOTE: `tools/amd_build/build_amd.py` could be a symlink.
# The behavior of `symlink / '..'` is different from `symlink.parent`.
# Use `pardir` three times rather than using `path.parents[2]`.
REPO_ROOT = (
Path(__file__).absolute() / os.path.pardir / os.path.pardir / os.path.pardir
).resolve()
sys.path.append(str(REPO_ROOT / "torch" / "utils"))
from hipify import hipify_python # type: ignore[import]
parser = argparse.ArgumentParser(
description="Top-level script for HIPifying, filling in most common parameters"
)
parser.add_argument(
"--out-of-place-only",
action="store_true",
help="Whether to only run hipify out-of-place on source files",
)
parser.add_argument(
"--project-directory",
type=str,
default="",
help="The root of the project.",
required=False,
)
parser.add_argument(
"--output-directory",
type=str,
default="",
help="The directory to store the hipified project",
required=False,
)
parser.add_argument(
"--extra-include-dir",
type=str,
default=[],
nargs="+",
help="The list of extra directories in caffe2 to hipify",
required=False,
)
args = parser.parse_args()
# NOTE: `tools/amd_build/build_amd.py` could be a symlink.
amd_build_dir = os.path.dirname(os.path.realpath(__file__))
proj_dir = os.path.dirname(os.path.dirname(amd_build_dir))
if args.project_directory:
proj_dir = args.project_directory
out_dir = proj_dir
if args.output_directory:
out_dir = args.output_directory
includes = [
"caffe2/operators/*",
"caffe2/sgd/*",
"caffe2/image/*",
"caffe2/transforms/*",
"caffe2/video/*",
"caffe2/distributed/*",
"caffe2/queue/*",
"caffe2/contrib/aten/*",
"binaries/*",
"caffe2/**/*_test*",
"caffe2/core/*",
"caffe2/db/*",
"caffe2/utils/*",
"caffe2/contrib/gloo/*",
"caffe2/contrib/nccl/*",
"c10/cuda/*",
"c10/cuda/test/CMakeLists.txt",
"modules/*",
"third_party/nvfuser/*",
# PyTorch paths
# Keep this synchronized with is_pytorch_file in hipify_python.py
"aten/src/ATen/cuda/*",
"aten/src/ATen/native/cuda/*",
"aten/src/ATen/native/cudnn/*",
"aten/src/ATen/native/quantized/cudnn/*",
"aten/src/ATen/native/nested/cuda/*",
"aten/src/ATen/native/sparse/cuda/*",
"aten/src/ATen/native/quantized/cuda/*",
"aten/src/ATen/native/transformers/cuda/attention_backward.cu",
"aten/src/ATen/native/transformers/cuda/attention.cu",
"aten/src/ATen/native/transformers/cuda/sdp_utils.cpp",
"aten/src/ATen/native/transformers/cuda/sdp_utils.h",
"aten/src/ATen/native/transformers/cuda/mem_eff_attention/debug_utils.h",
"aten/src/ATen/native/transformers/cuda/mem_eff_attention/gemm_kernel_utils.h",
"aten/src/ATen/native/transformers/cuda/mem_eff_attention/pytorch_utils.h",
"aten/src/THC/*",
"aten/src/ATen/test/*",
# CMakeLists.txt isn't processed by default, but there are a few
# we do want to handle, so explicitly specify them
"aten/src/THC/CMakeLists.txt",
"torch/*",
"tools/autograd/templates/python_variable_methods.cpp",
]
includes = [os.path.join(proj_dir, include) for include in includes]
for new_dir in args.extra_include_dir:
abs_new_dir = os.path.join(proj_dir, new_dir)
if os.path.exists(abs_new_dir):
abs_new_dir = os.path.join(abs_new_dir, "**/*")
includes.append(abs_new_dir)
ignores = [
"caffe2/operators/depthwise_3x3_conv_op_cudnn.cu",
"caffe2/operators/pool_op_cudnn.cu",
"*/hip/*",
# These files are compatible with both cuda and hip
"aten/src/ATen/core/*",
# Correct path to generate HIPConfig.h:
# CUDAConfig.h.in -> (amd_build) HIPConfig.h.in -> (cmake) HIPConfig.h
"aten/src/ATen/cuda/CUDAConfig.h",
"third_party/nvfuser/csrc/codegen.cpp",
"third_party/nvfuser/runtime/block_reduction.cu",
"third_party/nvfuser/runtime/block_sync_atomic.cu",
"third_party/nvfuser/runtime/block_sync_default_rocm.cu",
"third_party/nvfuser/runtime/broadcast.cu",
"third_party/nvfuser/runtime/grid_reduction.cu",
"third_party/nvfuser/runtime/helpers.cu",
"torch/csrc/jit/codegen/fuser/cuda/resource_strings.h",
"torch/csrc/jit/tensorexpr/ir_printer.cpp",
# generated files we shouldn't frob
"torch/lib/tmp_install/*",
"torch/include/*",
]
ignores = [os.path.join(proj_dir, ignore) for ignore in ignores]
# Check if the compiler is hip-clang.
def is_hip_clang() -> bool:
try:
hip_path = os.getenv("HIP_PATH", "/opt/rocm/hip")
with open(hip_path + "/lib/.hipInfo") as f:
return "HIP_COMPILER=clang" in f.read()
except OSError:
return False
# TODO Remove once the following submodules are updated
hip_platform_files = [
"third_party/fbgemm/fbgemm_gpu/CMakeLists.txt",
"third_party/fbgemm/fbgemm_gpu/cmake/Hip.cmake",
"third_party/fbgemm/fbgemm_gpu/codegen/embedding_backward_dense_host.cpp",
"third_party/fbgemm/fbgemm_gpu/codegen/embedding_backward_split_host_template.cpp",
"third_party/fbgemm/fbgemm_gpu/codegen/embedding_backward_split_template.cu",
"third_party/fbgemm/fbgemm_gpu/codegen/embedding_forward_quantized_split_lookup.cu",
"third_party/fbgemm/fbgemm_gpu/include/fbgemm_gpu/utils/cuda_prelude.cuh",
"third_party/fbgemm/fbgemm_gpu/include/fbgemm_gpu/utils/stochastic_rounding.cuh",
"third_party/fbgemm/fbgemm_gpu/include/fbgemm_gpu/utils/vec4.cuh",
"third_party/fbgemm/fbgemm_gpu/include/fbgemm_gpu/utils/weight_row.cuh",
"third_party/fbgemm/fbgemm_gpu/include/fbgemm_gpu/sparse_ops.cuh",
"third_party/fbgemm/fbgemm_gpu/src/jagged_tensor_ops.cu",
"third_party/fbgemm/fbgemm_gpu/src/quantize_ops.cu",
"third_party/fbgemm/fbgemm_gpu/src/sparse_ops.cu",
"third_party/fbgemm/fbgemm_gpu/src/split_embeddings_cache_cuda.cu",
"third_party/fbgemm/fbgemm_gpu/src/topology_utils.cpp",
"third_party/fbgemm/src/EmbeddingSpMDM.cc",
"third_party/gloo/cmake/Dependencies.cmake",
"third_party/gloo/gloo/cuda.cu",
"third_party/kineto/libkineto/CMakeLists.txt",
"third_party/nvfuser/CMakeLists.txt",
"third_party/tensorpipe/cmake/Hip.cmake",
]
def remove_hcc(line: str) -> str:
line = line.replace("HIP_PLATFORM_HCC", "HIP_PLATFORM_AMD")
line = line.replace("HIP_HCC_FLAGS", "HIP_CLANG_FLAGS")
return line
for hip_platform_file in hip_platform_files:
do_write = False
if os.path.exists(hip_platform_file):
with open(hip_platform_file) as sources:
lines = sources.readlines()
newlines = [remove_hcc(line) for line in lines]
if lines == newlines:
print(f"{hip_platform_file} skipped")
else:
with open(hip_platform_file, "w") as sources:
for line in newlines:
sources.write(line)
print(f"{hip_platform_file} updated")
hipify_python.hipify(
project_directory=proj_dir,
output_directory=out_dir,
includes=includes,
ignores=ignores,
extra_files=[
"torch/_inductor/codegen/cpp_wrapper_cpu.py",
"torch/_inductor/codegen/cpp_wrapper_gpu.py",
"torch/_inductor/codegen/wrapper.py",
],
out_of_place_only=args.out_of_place_only,
hip_clang_launch=is_hip_clang(),
)