mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129757 Approved by: https://github.com/ezyang
85 lines
2.4 KiB
Python
85 lines
2.4 KiB
Python
# Owner(s): ["module: unknown"]
|
|
|
|
import torch
|
|
from torch.testing._internal.common_utils import run_tests, TemporaryFileName, TestCase
|
|
from torch.utils import ThroughputBenchmark
|
|
|
|
|
|
class TwoLayerNet(torch.jit.ScriptModule):
|
|
def __init__(self, D_in, H, D_out):
|
|
super().__init__()
|
|
self.linear1 = torch.nn.Linear(D_in, H)
|
|
self.linear2 = torch.nn.Linear(2 * H, D_out)
|
|
|
|
@torch.jit.script_method
|
|
def forward(self, x1, x2):
|
|
h1_relu = self.linear1(x1).clamp(min=0)
|
|
h2_relu = self.linear1(x2).clamp(min=0)
|
|
cat = torch.cat((h1_relu, h2_relu), 1)
|
|
y_pred = self.linear2(cat)
|
|
return y_pred
|
|
|
|
|
|
class TwoLayerNetModule(torch.nn.Module):
|
|
def __init__(self, D_in, H, D_out):
|
|
super().__init__()
|
|
self.linear1 = torch.nn.Linear(D_in, H)
|
|
self.linear2 = torch.nn.Linear(2 * H, D_out)
|
|
|
|
def forward(self, x1, x2):
|
|
h1_relu = self.linear1(x1).clamp(min=0)
|
|
h2_relu = self.linear1(x2).clamp(min=0)
|
|
cat = torch.cat((h1_relu, h2_relu), 1)
|
|
y_pred = self.linear2(cat)
|
|
return y_pred
|
|
|
|
|
|
class TestThroughputBenchmark(TestCase):
|
|
def linear_test(self, Module, profiler_output_path=""):
|
|
D_in = 10
|
|
H = 5
|
|
D_out = 15
|
|
B = 8
|
|
NUM_INPUTS = 2
|
|
|
|
module = Module(D_in, H, D_out)
|
|
|
|
inputs = []
|
|
|
|
for i in range(NUM_INPUTS):
|
|
inputs.append([torch.randn(B, D_in), torch.randn(B, D_in)])
|
|
bench = ThroughputBenchmark(module)
|
|
|
|
for input in inputs:
|
|
# can do both args and kwargs here
|
|
bench.add_input(input[0], x2=input[1])
|
|
|
|
for i in range(NUM_INPUTS):
|
|
# or just unpack the list of inputs
|
|
module_result = module(*inputs[i])
|
|
bench_result = bench.run_once(*inputs[i])
|
|
torch.testing.assert_close(bench_result, module_result)
|
|
|
|
stats = bench.benchmark(
|
|
num_calling_threads=4,
|
|
num_warmup_iters=100,
|
|
num_iters=1000,
|
|
profiler_output_path=profiler_output_path,
|
|
)
|
|
|
|
print(stats)
|
|
|
|
def test_script_module(self):
|
|
self.linear_test(TwoLayerNet)
|
|
|
|
def test_module(self):
|
|
self.linear_test(TwoLayerNetModule)
|
|
|
|
def test_profiling(self):
|
|
with TemporaryFileName() as fname:
|
|
self.linear_test(TwoLayerNetModule, profiler_output_path=fname)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|