mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-23 14:59:34 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/49944 Upgrades type annotations from Python2 to Python3 Test Plan: Sandcastle tests Reviewed By: xush6528 Differential Revision: D25717539 fbshipit-source-id: c621e2712e87eaed08cda48eb0fb224f6b0570c9
136 lines
3.7 KiB
Python
136 lines
3.7 KiB
Python
import torch
|
|
|
|
OUTPUT_DIR = "src/androidTest/assets/"
|
|
|
|
def scriptAndSave(module, fileName):
|
|
print('-' * 80)
|
|
script_module = torch.jit.script(module)
|
|
print(script_module.graph)
|
|
outputFileName = OUTPUT_DIR + fileName
|
|
script_module.save(outputFileName)
|
|
print("Saved to " + outputFileName)
|
|
print('=' * 80)
|
|
|
|
class Test(torch.jit.ScriptModule):
|
|
def __init__(self):
|
|
super(Test, self).__init__()
|
|
|
|
@torch.jit.script_method
|
|
def forward(self, input):
|
|
return None
|
|
|
|
@torch.jit.script_method
|
|
def eqBool(self, input: bool) -> bool:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqInt(self, input: int) -> int:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqFloat(self, input: float) -> float:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqStr(self, input: str) -> str:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqTensor(self, input: Tensor) -> Tensor:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqDictStrKeyIntValue(self, input: Dict[str, int]) -> Dict[str, int]:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqDictIntKeyIntValue(self, input: Dict[int, int]) -> Dict[int, int]:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def eqDictFloatKeyIntValue(self, input: Dict[float, int]) -> Dict[float, int]:
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def listIntSumReturnTuple(self, input: List[int]) -> Tuple[List[int], int]:
|
|
sum = 0
|
|
for x in input:
|
|
sum += x
|
|
return (input, sum)
|
|
|
|
@torch.jit.script_method
|
|
def listBoolConjunction(self, input: List[bool]) -> bool:
|
|
res = True
|
|
for x in input:
|
|
res = res and x
|
|
return res
|
|
|
|
@torch.jit.script_method
|
|
def listBoolDisjunction(self, input: List[bool]) -> bool:
|
|
res = False
|
|
for x in input:
|
|
res = res or x
|
|
return res
|
|
|
|
@torch.jit.script_method
|
|
def tupleIntSumReturnTuple(self, input: Tuple[int, int, int]) -> Tuple[Tuple[int, int, int], int]:
|
|
sum = 0
|
|
for x in input:
|
|
sum += x
|
|
return (input, sum)
|
|
|
|
@torch.jit.script_method
|
|
def optionalIntIsNone(self, input: Optional[int]) -> bool:
|
|
return input is None
|
|
|
|
@torch.jit.script_method
|
|
def intEq0None(self, input: int) -> Optional[int]:
|
|
if input == 0:
|
|
return None
|
|
return input
|
|
|
|
@torch.jit.script_method
|
|
def str3Concat(self, input: str) -> str:
|
|
return input + input + input
|
|
|
|
@torch.jit.script_method
|
|
def newEmptyShapeWithItem(self, input):
|
|
return torch.tensor([int(input.item())])[0]
|
|
|
|
@torch.jit.script_method
|
|
def testAliasWithOffset(self) -> List[Tensor]:
|
|
x = torch.tensor([100, 200])
|
|
a = [x[0], x[1]]
|
|
return a
|
|
|
|
@torch.jit.script_method
|
|
def testNonContiguous(self):
|
|
x = torch.tensor([100, 200, 300])[::2]
|
|
assert not x.is_contiguous()
|
|
assert x[0] == 100
|
|
assert x[1] == 300
|
|
return x
|
|
|
|
@torch.jit.script_method
|
|
def conv2d(self, x: Tensor, w: Tensor, toChannelsLast: bool) -> Tensor:
|
|
r = torch.nn.functional.conv2d(x, w)
|
|
if (toChannelsLast):
|
|
r = r.contiguous(memory_format=torch.channels_last)
|
|
else:
|
|
r = r.contiguous()
|
|
return r
|
|
|
|
@torch.jit.script_method
|
|
def contiguous(self, x: Tensor) -> Tensor:
|
|
return x.contiguous()
|
|
|
|
@torch.jit.script_method
|
|
def contiguousChannelsLast(self, x: Tensor) -> Tensor:
|
|
return x.contiguous(memory_format=torch.channels_last)
|
|
|
|
@torch.jit.script_method
|
|
def contiguousChannelsLast3d(self, x: Tensor) -> Tensor:
|
|
return x.contiguous(memory_format=torch.channels_last_3d)
|
|
|
|
scriptAndSave(Test(), "test.pt")
|