mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120870 Approved by: https://github.com/clee2000
400 lines
14 KiB
Python
400 lines
14 KiB
Python
"""Utilities for manipulating the torch.Graph object and the torchscript."""
|
|
from __future__ import annotations
|
|
|
|
# TODO(justinchuby): Move more of the symbolic helper functions here and expose
|
|
# them to the user.
|
|
|
|
import dataclasses
|
|
import re
|
|
import typing
|
|
from typing import Any, Dict, Iterable, Optional, Sequence, Tuple, Union
|
|
|
|
import torch
|
|
from torch import _C
|
|
from torch._C import _onnx as _C_onnx
|
|
from torch.onnx._globals import GLOBALS
|
|
from torch.onnx._internal import _beartype, registration
|
|
|
|
|
|
_ATTR_PATTERN = re.compile("^(.+)_(([ifstgz])|(ty))$")
|
|
_SKIP_NODE_ATTRIBUTES = {"inplace", "aten"}
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class GraphContext:
|
|
"""Extra context for symbolic functions with all methods from torch.Graph.
|
|
|
|
NOTE: This class is not meant for external consumption. Please do not depend on
|
|
it outside of torch.onnx as the interface may evolve.
|
|
|
|
Attributes:
|
|
graph: The _C.Graph being constructed.
|
|
block: The current _C.Block being constructed.
|
|
opset: The opset version.
|
|
original_node: Current node that is being converted from.
|
|
params_dict: Mapping from graph initializer name to IValue.
|
|
env: Mapping from Torch domain graph Value to ONNX domain graph Value.
|
|
"""
|
|
|
|
graph: _C.Graph
|
|
block: _C.Block
|
|
opset: int
|
|
original_node: _C.Node
|
|
params_dict: Dict[str, "_C.IValue"]
|
|
env: Dict[_C.Value, _C.Value]
|
|
|
|
# Relay methods from _C.Graph for compatibility with symbolic functions that expect
|
|
# a _C.Graph
|
|
def __getattr__(self, name: str) -> Any:
|
|
return getattr(self.graph, name)
|
|
|
|
@_beartype.beartype
|
|
def op(
|
|
self,
|
|
opname: str,
|
|
*raw_args: Union[torch.Tensor, _C.Value],
|
|
outputs: int = 1,
|
|
**kwargs,
|
|
):
|
|
"""Creates an ONNX operator "opname", taking "raw_args" as inputs and "kwargs" as attributes.
|
|
|
|
The set of operators and the inputs/attributes they take
|
|
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
|
|
|
|
Args:
|
|
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
|
|
with a namespace, e.g., `aten::add`.
|
|
raw_args: The inputs to the operator; usually provided
|
|
as arguments to the `symbolic` definition.
|
|
outputs: The number of outputs this operator returns.
|
|
By default an operator is assumed to return a single output.
|
|
If `outputs` is greater than one, this functions returns a tuple
|
|
of output `Value`, representing each output of the ONNX operator
|
|
in order.
|
|
kwargs: The attributes of the ONNX operator, whose keys are named
|
|
according to the following convention: `alpha_f` indicates
|
|
the `alpha` attribute with type `f`. The valid type specifiers are
|
|
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
|
|
specified with type float accepts either a single float, or a
|
|
list of floats (e.g., you would say `dims_i` for a `dims` attribute
|
|
that takes a list of integers).
|
|
|
|
Returns:
|
|
The value representing the single output of this operator (see the `outputs`
|
|
keyword argument for multi-return nodes).
|
|
"""
|
|
# FIXME(justinchuby): Add the return type back once we know how to handle mypy
|
|
return _add_op(self, opname, *raw_args, outputs=outputs, **kwargs)
|
|
|
|
@_beartype.beartype
|
|
def aten_op(self, operator: str, *args, overload_name: str = "", **kwargs):
|
|
"""Generates an ONNX ATen op node.
|
|
|
|
This function is for backward compatibility with the old symbolic functions.
|
|
"""
|
|
return self.op(
|
|
"aten::ATen",
|
|
*args,
|
|
operator_s=operator,
|
|
overload_name_s=overload_name,
|
|
**kwargs,
|
|
)
|
|
|
|
# NOTE: For backward compatibility with the old symbolic functions.
|
|
# We are probably going to remove this only after the fx exporter is established.
|
|
at = aten_op
|
|
|
|
@_beartype.beartype
|
|
def onnxscript_op(
|
|
self,
|
|
onnx_fn,
|
|
*raw_args: Union[torch.Tensor, _C.Value],
|
|
outputs: int = 1,
|
|
**kwargs,
|
|
):
|
|
"""Creates an ONNX operator from onnx-script function, taking "raw_args" as inputs and "kwargs" as attributes.
|
|
|
|
onnx-script repository: https://github.com/microsoft/onnx-script
|
|
|
|
Args:
|
|
onnx_fn: ONNXFunction from onnx-script; An example can be found at
|
|
https://github.com/microsoft/onnx-script#example
|
|
raw_args: The inputs to the operator; usually provided
|
|
as arguments to the `symbolic` definition.
|
|
outputs: The number of outputs this operator returns.
|
|
By default an operator is assumed to return a single output.
|
|
If `outputs` is greater than one, this functions returns a tuple
|
|
of output `Value`, representing each output of the ONNX operator
|
|
in order.
|
|
kwargs: The attributes of the ONNX operator, whose keys are named
|
|
according to the following convention: `alpha_f` indicates
|
|
the `alpha` attribute with type `f`. The valid type specifiers are
|
|
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
|
|
specified with type float accepts either a single float, or a
|
|
list of floats (e.g., you would say `dims_i` for a `dims` attribute
|
|
that takes a list of integers).
|
|
|
|
Returns:
|
|
The value representing the single output of this operator (see the `outputs`
|
|
keyword argument for multi-return nodes).
|
|
"""
|
|
# NOTE(titaiwang): This is using class attributes, and it needs to be updated
|
|
# if onnx-script makes any change on these.
|
|
symbolic_name = f"{onnx_fn.opset.domain}::{onnx_fn.name}"
|
|
opset_version = onnx_fn.opset.version
|
|
|
|
registration.custom_onnx_symbolic(symbolic_name, opset_version)(onnx_fn)
|
|
|
|
return _add_op(self, symbolic_name, *raw_args, outputs=outputs, **kwargs)
|
|
|
|
|
|
@_beartype.beartype
|
|
def add_op_with_blocks(
|
|
graph_context: GraphContext,
|
|
opname: str,
|
|
*inputs: _C.Value,
|
|
outputs: int = 1,
|
|
n_blocks: int = 1,
|
|
**attributes,
|
|
) -> Tuple[Any, Tuple[GraphContext, ...], _C.Node]:
|
|
"""Creates an ONNX operator "opname", taking inputs and attributes.
|
|
|
|
Args:
|
|
graph_context: The context for the current graph.
|
|
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
|
|
with a namespace, e.g., `aten::add`.
|
|
inputs: The inputs to the operator.
|
|
outputs: The number of outputs this operator returns.
|
|
By default an operator is assumed to return a single output.
|
|
If `outputs` is greater than one, this functions returns a tuple
|
|
of output `Value`, representing each output of the ONNX operator
|
|
in order.
|
|
n_blocks: The number of sub-blocks to create in the node.
|
|
attributes: The attributes of the ONNX operator.
|
|
|
|
Returns:
|
|
A tuple of (output_values, new_contexts, node) where:
|
|
output_values: One or more output value of this operator
|
|
(see the `outputs` keyword argument for multi-return nodes).
|
|
new_contexts: A tuple of new graph contexts for each sub-block.
|
|
node: The node representing the operator.
|
|
"""
|
|
|
|
output_values = graph_context.op(opname, *inputs, outputs=outputs, **attributes)
|
|
if isinstance(output_values, Sequence):
|
|
node = output_values[0].node()
|
|
else:
|
|
node = output_values.node()
|
|
|
|
new_contexts = []
|
|
for _ in range(n_blocks):
|
|
new_block = node.addBlock()
|
|
# Create shallow copy of the graph context and update the block
|
|
new_context = dataclasses.replace(graph_context, block=new_block)
|
|
new_contexts.append(new_context)
|
|
|
|
return output_values, tuple(new_contexts), node
|
|
|
|
|
|
@_beartype.beartype
|
|
def _add_op(
|
|
graph_context: GraphContext,
|
|
opname: str,
|
|
*args: Union[torch.Tensor, _C.Value],
|
|
outputs: int = 1,
|
|
**kwargs,
|
|
):
|
|
"""Creates an ONNX operator "opname", taking "args" as inputs and attributes "kwargs".
|
|
|
|
The set of operators and the inputs/attributes they take
|
|
is documented at https://github.com/onnx/onnx/blob/master/docs/Operators.md
|
|
|
|
This function is monkey-patched onto Graph.
|
|
|
|
Args:
|
|
graph_context: The Torch Graph or Block.
|
|
opname: The ONNX operator name, e.g., `Abs` or `Add`, or an operator qualified
|
|
with a namespace, e.g., `aten::add`.
|
|
args: The inputs to the operator; usually provided
|
|
as arguments to the `symbolic` definition.
|
|
outputs: The number of outputs this operator returns.
|
|
By default an operator is assumed to return a single output.
|
|
If `outputs` is greater than one, this functions returns a tuple
|
|
of output `Value`, representing each output of the ONNX operator
|
|
in order.
|
|
kwargs: The attributes of the ONNX operator, whose keys are named
|
|
according to the following convention: `alpha_f` indicates
|
|
the `alpha` attribute with type `f`. The valid type specifiers are
|
|
`f` (float), `i` (int), `s` (string) or `t` (Tensor). An attribute
|
|
specified with type float accepts either a single float, or a
|
|
list of floats (e.g., you would say `dims_i` for a `dims` attribute
|
|
that takes a list of integers).
|
|
|
|
Returns:
|
|
(Union[_C.Value, Tuple[_C.Value, ...]])
|
|
The value representing the single output of this operator (see the `outputs`
|
|
keyword argument for multi-return nodes).
|
|
"""
|
|
inputs = [_const_if_tensor(graph_context, arg) for arg in args]
|
|
# Filter out None attributes, this can be convenient client side because
|
|
# now they can pass through None attributes, and have them not show up
|
|
attributes = {k: v for k, v in kwargs.items() if v is not None}
|
|
|
|
if "::" not in opname:
|
|
opname = "onnx::" + opname
|
|
|
|
node = _create_node(
|
|
graph_context.block,
|
|
opname,
|
|
inputs,
|
|
attributes,
|
|
params_dict=graph_context.params_dict,
|
|
opset_version=graph_context.opset,
|
|
n_outputs=outputs,
|
|
shape_inference=GLOBALS.onnx_shape_inference,
|
|
)
|
|
|
|
if outputs == 1:
|
|
return node.output()
|
|
return tuple(node.outputs())
|
|
|
|
|
|
@_beartype.beartype
|
|
def _const_if_tensor(graph_context: GraphContext, arg):
|
|
if arg is None:
|
|
return arg
|
|
if isinstance(arg, _C.Value):
|
|
return arg
|
|
|
|
return _add_op(graph_context, "onnx::Constant", value_z=arg)
|
|
|
|
|
|
def _create_node(
|
|
graph_or_block: Union[_C.Graph, _C.Block],
|
|
domain_op: str,
|
|
inputs: Sequence,
|
|
attributes: dict,
|
|
params_dict: dict,
|
|
opset_version: int,
|
|
n_outputs: int,
|
|
shape_inference: bool = True,
|
|
) -> _C.Node:
|
|
"""Creates an node 'domain_op', taking inputs and attributes."""
|
|
if isinstance(graph_or_block, _C.Graph):
|
|
graph = graph_or_block
|
|
node = graph.create(domain_op, inputs, n_outputs)
|
|
node = graph.insertNode(node)
|
|
elif isinstance(graph_or_block, _C.Block):
|
|
block = graph_or_block
|
|
node = block.addNode(domain_op, inputs)
|
|
|
|
# Block does not have create defined, so we need to add outputs manually
|
|
if n_outputs > 1:
|
|
for _ in range(1, n_outputs):
|
|
node.addOutput()
|
|
|
|
node_outputs = tuple(node.outputs()) # type: ignore[possibly-undefined]
|
|
assert len(node_outputs) == n_outputs
|
|
|
|
aten = domain_op.startswith("aten::")
|
|
|
|
# Add all attributes
|
|
for key, value in sorted(attributes.items()):
|
|
if key in _SKIP_NODE_ATTRIBUTES:
|
|
continue
|
|
_add_attribute(node, key, value, aten=aten)
|
|
if shape_inference:
|
|
_C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version)
|
|
return node
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_onnx_list(value):
|
|
return isinstance(value, Iterable) and not isinstance(
|
|
value, (str, bytes, torch.Tensor)
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _scalar(x: torch.Tensor):
|
|
"""Convert a scalar tensor into a Python value."""
|
|
assert x.numel() == 1
|
|
return x[0]
|
|
|
|
|
|
@_beartype.beartype
|
|
def _is_caffe2_aten_fallback() -> bool:
|
|
return (
|
|
GLOBALS.operator_export_type == _C_onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
|
|
and _C_onnx._CAFFE2_ATEN_FALLBACK
|
|
)
|
|
|
|
|
|
@_beartype.beartype
|
|
def _add_attribute(node: _C.Node, key: str, value: Any, aten: bool):
|
|
r"""Initializes the right attribute based on type of value."""
|
|
m = _ATTR_PATTERN.match(key)
|
|
if m is None:
|
|
raise ValueError(
|
|
f"Invalid attribute specifier '{key}' names "
|
|
"must be suffixed with type, e.g. 'dim_i' or 'dims_i'"
|
|
)
|
|
name, kind = m.group(1), m.group(2)
|
|
if _is_onnx_list(value):
|
|
kind += "s"
|
|
|
|
if aten and _is_caffe2_aten_fallback():
|
|
if isinstance(value, torch.Tensor):
|
|
# Caffe2 proto does not support tensor attribute.
|
|
if value.numel() > 1:
|
|
raise ValueError("Should not pass tensor attribute")
|
|
value = _scalar(value)
|
|
if isinstance(value, float):
|
|
kind = "f"
|
|
else:
|
|
kind = "i"
|
|
return getattr(node, f"{kind}_")(name, value)
|
|
|
|
|
|
# TODO: Expose this to user when migrating symbolic helper functions to here.
|
|
@_beartype.beartype
|
|
def _is_tensor(x: _C.Value) -> bool:
|
|
return x.type().isSubtypeOf(_C.TensorType.get())
|
|
|
|
|
|
@_beartype.beartype
|
|
def get_device_from_value(value: _C.Value) -> Optional[torch.device]:
|
|
if not _is_tensor(value):
|
|
return None
|
|
tensor_type = typing.cast(_C.TensorType, value.type())
|
|
return tensor_type.device()
|
|
|
|
|
|
@_beartype.beartype
|
|
def parse_node_kind(kind: str) -> Tuple[str, str]:
|
|
"""Parse node kind into domain and Op name."""
|
|
if "::" not in kind:
|
|
raise ValueError(f"Node kind: {kind} is invalid. '::' is not in node kind.")
|
|
domain, opname = kind.split("::", 1)
|
|
if "::" in opname:
|
|
raise ValueError(f"Node kind: {kind} is invalid. '::' should only apear once.")
|
|
return domain, opname
|
|
|
|
|
|
@_beartype.beartype
|
|
def is_aten(domain: str) -> bool:
|
|
"""Check if the domain is official."""
|
|
return domain == "aten"
|
|
|
|
|
|
@_beartype.beartype
|
|
def is_prim(domain: str) -> bool:
|
|
"""Check if the domain is official."""
|
|
return domain == "prim"
|
|
|
|
|
|
@_beartype.beartype
|
|
def is_onnx(domain: str) -> bool:
|
|
"""Check if the domain is official."""
|
|
return domain == "onnx"
|