mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: There's some code which uses `six.PY3`, similar to: ```python if six.PY3: print("Python 3+ code") else: print "Python 2 code" ``` Where: ```python PY3 = sys.version_info[0] == 3 ``` When run on Python 4, this will run the Python 2 code! Instead, use `six.PY2` and avoid `six.PY3`. --- Similarly, there's some `sys.version_info[0] == 3` checks, better done as `sys.version_info[0] >= 3`. --- Also, it's better to avoid comparing the `sys.version` string, as it makes assumptions that each version component is exactly one character long, which will break in Python 3.10: ```pycon >>> sys.version '3.8.1 (v3.8.1:1b293b6006, Dec 18 2019, 14:08:53) \n[Clang 6.0 (clang-600.0.57)]' >>> sys.version < "3.3" False >>> fake_v3_10 = '3.10.1 (v3.8.1:1b293b6006, Dec 18 2019, 14:08:53) \n[Clang 6.0 (clang-600.0.57)]' >>> fake_v3_10 < "3.3" True ``` --- Finally, I think the intention here is to skip when the Python version is < 3.6: ```python unittest.skipIf(sys.version_info[0] < 3 and sys.version_info[1] < 6, "dict not ordered") ``` However, it will really skip for Python 0.0-0.5, 1.0-1.5 and 2.0-2.5. It's best to compare to the `sys.version_info` tuple and not `sys.version_info[1]`: ```python unittest.skipIf(sys.version_info < (3, 6), "dict not ordered") ``` --- Found using https://github.com/asottile/flake8-2020: ```console $ pip install -U flake8-2020 $ flake8 --select YTT ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/32389 Reviewed By: zou3519 Differential Revision: D24424662 Pulled By: ezyang fbshipit-source-id: 1266c4dbcc8ae4d2e2e9b1d7357cba854562177c
316 lines
12 KiB
Python
316 lines
12 KiB
Python
from unittest import main, skipIf
|
|
from torch.testing._internal.common_utils import TestCase, IS_WINDOWS
|
|
from tempfile import NamedTemporaryFile
|
|
from torch.package import PackageExporter, PackageImporter
|
|
from pathlib import Path
|
|
from tempfile import TemporaryDirectory
|
|
import torch
|
|
from sys import version_info
|
|
from io import StringIO
|
|
|
|
try:
|
|
from torchvision.models import resnet18
|
|
HAS_TORCHVISION = True
|
|
except ImportError:
|
|
HAS_TORCHVISION = False
|
|
skipIfNoTorchVision = skipIf(not HAS_TORCHVISION, "no torchvision")
|
|
|
|
|
|
|
|
packaging_directory = Path(__file__).parent
|
|
|
|
class PackagingTest(TestCase):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self._temporary_files = []
|
|
|
|
def temp(self):
|
|
t = NamedTemporaryFile()
|
|
name = t.name
|
|
if IS_WINDOWS:
|
|
t.close() # can't read an open file in windows
|
|
else:
|
|
self._temporary_files.append(t)
|
|
return name
|
|
|
|
def tearDown(self):
|
|
for t in self._temporary_files:
|
|
t.close()
|
|
self._temporary_files = []
|
|
|
|
def test_saving_source(self):
|
|
filename = self.temp()
|
|
with PackageExporter(filename, verbose=False) as he:
|
|
he.save_source_file('foo', str(packaging_directory / 'module_a.py'))
|
|
he.save_source_file('foodir', str(packaging_directory / 'package_a'))
|
|
hi = PackageImporter(filename)
|
|
foo = hi.import_module('foo')
|
|
s = hi.import_module('foodir.subpackage')
|
|
self.assertEqual(foo.result, 'module_a')
|
|
self.assertEqual(s.result, 'package_a.subpackage')
|
|
|
|
def test_saving_string(self):
|
|
filename = self.temp()
|
|
with PackageExporter(filename, verbose=False) as he:
|
|
src = """\
|
|
import math
|
|
the_math = math
|
|
"""
|
|
he.save_source_string('my_mod', src)
|
|
hi = PackageImporter(filename)
|
|
m = hi.import_module('math')
|
|
import math
|
|
self.assertIs(m, math)
|
|
my_mod = hi.import_module('my_mod')
|
|
self.assertIs(my_mod.math, math)
|
|
|
|
def test_save_module(self):
|
|
filename = self.temp()
|
|
with PackageExporter(filename, verbose=False) as he:
|
|
import module_a
|
|
import package_a
|
|
he.save_module(module_a.__name__)
|
|
he.save_module(package_a.__name__)
|
|
hi = PackageImporter(filename)
|
|
module_a_i = hi.import_module('module_a')
|
|
self.assertEqual(module_a_i.result, 'module_a')
|
|
self.assertIsNot(module_a, module_a_i)
|
|
package_a_i = hi.import_module('package_a')
|
|
self.assertEqual(package_a_i.result, 'package_a')
|
|
self.assertIsNot(package_a_i, package_a)
|
|
|
|
def test_pickle(self):
|
|
import package_a.subpackage
|
|
obj = package_a.subpackage.PackageASubpackageObject()
|
|
obj2 = package_a.PackageAObject(obj)
|
|
|
|
filename = self.temp()
|
|
with PackageExporter(filename, verbose=False) as he:
|
|
he.save_pickle('obj', 'obj.pkl', obj2)
|
|
hi = PackageImporter(filename)
|
|
|
|
# check we got dependencies
|
|
sp = hi.import_module('package_a.subpackage')
|
|
# check we didn't get other stuff
|
|
with self.assertRaises(ImportError):
|
|
hi.import_module('module_a')
|
|
|
|
obj_loaded = hi.load_pickle('obj', 'obj.pkl')
|
|
self.assertIsNot(obj2, obj_loaded)
|
|
self.assertIsInstance(obj_loaded.obj, sp.PackageASubpackageObject)
|
|
self.assertIsNot(package_a.subpackage.PackageASubpackageObject, sp.PackageASubpackageObject)
|
|
|
|
def test_resources(self):
|
|
filename = self.temp()
|
|
with PackageExporter(filename, verbose=False) as he:
|
|
he.save_text('main', 'main', "my string")
|
|
he.save_binary('main', 'main_binary', "my string".encode('utf-8'))
|
|
src = """\
|
|
import resources
|
|
t = resources.load_text('main', 'main')
|
|
b = resources.load_binary('main', 'main_binary')
|
|
"""
|
|
he.save_source_string('main', src, is_package=True)
|
|
hi = PackageImporter(filename)
|
|
m = hi.import_module('main')
|
|
self.assertEqual(m.t, "my string")
|
|
self.assertEqual(m.b, "my string".encode('utf-8'))
|
|
|
|
def test_extern(self):
|
|
filename = self.temp()
|
|
with PackageExporter(filename, verbose=False) as he:
|
|
he.extern_modules(['package_a.subpackage', 'module_a'])
|
|
he.save_module('package_a')
|
|
hi = PackageImporter(filename)
|
|
import package_a.subpackage
|
|
import module_a
|
|
|
|
module_a_im = hi.import_module('module_a')
|
|
hi.import_module('package_a.subpackage')
|
|
package_a_im = hi.import_module('package_a')
|
|
|
|
self.assertIs(module_a, module_a_im)
|
|
self.assertIsNot(package_a, package_a_im)
|
|
self.assertIs(package_a.subpackage, package_a_im.subpackage)
|
|
|
|
@skipIf(version_info < (3, 7), 'mock uses __getattr__ a 3.7 feature')
|
|
def test_mock(self):
|
|
filename = self.temp()
|
|
with PackageExporter(filename, verbose=False) as he:
|
|
he.mock_modules(['package_a.subpackage', 'module_a'])
|
|
he.save_module('package_a')
|
|
hi = PackageImporter(filename)
|
|
import package_a.subpackage
|
|
_ = package_a.subpackage
|
|
import module_a
|
|
_ = module_a
|
|
|
|
m = hi.import_module('package_a.subpackage')
|
|
r = m.result
|
|
with self.assertRaisesRegex(NotImplementedError, 'was mocked out'):
|
|
r()
|
|
|
|
@skipIf(version_info < (3, 7), 'mock uses __getattr__ a 3.7 feature')
|
|
def test_custom_requires(self):
|
|
filename = self.temp()
|
|
|
|
class Custom(PackageExporter):
|
|
def require_module(self, name, dependencies):
|
|
if name == 'module_a':
|
|
self.mock_module('module_a')
|
|
elif name == 'package_a':
|
|
self.save_source_string('package_a', 'import module_a\nresult = 5\n')
|
|
else:
|
|
raise NotImplementedError('wat')
|
|
|
|
with Custom(filename, verbose=False) as he:
|
|
he.save_source_string('main', 'import package_a\n')
|
|
|
|
hi = PackageImporter(filename)
|
|
hi.import_module('module_a').should_be_mocked
|
|
bar = hi.import_module('package_a')
|
|
self.assertEqual(bar.result, 5)
|
|
|
|
@skipIfNoTorchVision
|
|
def test_resnet(self):
|
|
resnet = resnet18()
|
|
|
|
f1 = self.temp()
|
|
|
|
# create a package that will save it along with its code
|
|
with PackageExporter(f1, verbose=False) as e:
|
|
# put the pickled resnet in the package, by default
|
|
# this will also save all the code files references by
|
|
# the objects in the pickle
|
|
e.save_pickle('model', 'model.pkl', resnet)
|
|
|
|
# check th debug graph has something reasonable:
|
|
buf = StringIO()
|
|
debug_graph = e._write_dep_graph(failing_module='torch')
|
|
self.assertIn('torchvision.models.resnet', debug_graph)
|
|
|
|
# we can now load the saved model
|
|
i = PackageImporter(f1)
|
|
r2 = i.load_pickle('model', 'model.pkl')
|
|
|
|
# test that it works
|
|
input = torch.rand(1, 3, 224, 224)
|
|
ref = resnet(input)
|
|
self.assertTrue(torch.allclose(r2(input), ref))
|
|
|
|
# functions exist also to get at the private modules in each package
|
|
torchvision = i.import_module('torchvision')
|
|
|
|
f2 = self.temp()
|
|
# if we are doing transfer learning we might want to re-save
|
|
# things that were loaded from a package
|
|
with PackageExporter(f2, verbose=False) as e:
|
|
# We need to tell the exporter about any modules that
|
|
# came from imported packages so that it can resolve
|
|
# class names like torchvision.models.resnet.ResNet
|
|
# to their source code.
|
|
|
|
e.importers.insert(0, i.import_module)
|
|
|
|
# e.importers is a list of module importing functions
|
|
# that by default contains importlib.import_module.
|
|
# it is searched in order until the first success and
|
|
# that module is taken to be what torchvision.models.resnet
|
|
# should be in this code package. In the case of name collisions,
|
|
# such as trying to save a ResNet from two different packages,
|
|
# we take the first thing found in the path, so only ResNet objects from
|
|
# one importer will work. This avoids a bunch of name mangling in
|
|
# the source code. If you need to actually mix ResNet objects,
|
|
# we suggest reconstructing the model objects using code from a single package
|
|
# using functions like save_state_dict and load_state_dict to transfer state
|
|
# to the correct code objects.
|
|
e.save_pickle('model', 'model.pkl', r2)
|
|
|
|
i2 = PackageImporter(f2)
|
|
r3 = i2.load_pickle('model', 'model.pkl')
|
|
self.assertTrue(torch.allclose(r3(input), ref))
|
|
|
|
# test we can load from a directory
|
|
import zipfile
|
|
zf = zipfile.ZipFile(f1, 'r')
|
|
|
|
with TemporaryDirectory() as td:
|
|
zf.extractall(path=td)
|
|
iz = PackageImporter(str(Path(td) / Path(f1).name))
|
|
r4 = iz.load_pickle('model', 'model.pkl')
|
|
self.assertTrue(torch.allclose(r4(input), ref))
|
|
|
|
@skipIfNoTorchVision
|
|
def test_model_save(self):
|
|
|
|
# This example shows how you might package a model
|
|
# so that the creator of the model has flexibility about
|
|
# how they want to save it but the 'server' can always
|
|
# use the same API to load the package.
|
|
|
|
# The convension is for each model to provide a
|
|
# 'model' package with a 'load' function that actual
|
|
# reads the model out of the archive.
|
|
|
|
# How the load function is implemented is up to the
|
|
# the packager.
|
|
|
|
# get our normal torchvision resnet
|
|
resnet = resnet18()
|
|
|
|
|
|
f1 = self.temp()
|
|
# Option 1: save by pickling the whole model
|
|
# + single-line, similar to torch.jit.save
|
|
# - more difficult to edit the code after the model is created
|
|
with PackageExporter(f1, verbose=False) as e:
|
|
e.save_pickle('model', 'pickled', resnet)
|
|
# note that this source is the same for all models in this approach
|
|
# so it can be made part of an API that just takes the model and
|
|
# packages it with this source.
|
|
src = """\
|
|
import resources # gives you access to the importer from within the package
|
|
|
|
# server knows to call model.load() to get the model,
|
|
# maybe in the future it passes options as arguments by convension
|
|
def load():
|
|
return resources.load_pickle('model', 'pickled')
|
|
"""
|
|
e.save_source_string('model', src, is_package=True)
|
|
|
|
f2 = self.temp()
|
|
# Option 2: save with state dict
|
|
# - more code to write to save/load the model
|
|
# + but this code can be edited later to adjust adapt the model later
|
|
with PackageExporter(f2, verbose=False) as e:
|
|
e.save_pickle('model', 'state_dict', resnet.state_dict())
|
|
src = """\
|
|
import resources # gives you access to the importer from within the package
|
|
from torchvision.models.resnet import resnet18
|
|
def load():
|
|
# if you want, you can later edit how resnet is constructed here
|
|
# to edit the model in the package, while still loading the original
|
|
# state dict weights
|
|
r = resnet18()
|
|
state_dict = resources.load_pickle('model', 'state_dict')
|
|
r.load_state_dict(state_dict)
|
|
return r
|
|
"""
|
|
e.save_source_string('model', src, is_package=True)
|
|
|
|
|
|
|
|
# regardless of how we chose to package, we can now use the model in a server in the same way
|
|
input = torch.rand(1, 3, 224, 224)
|
|
results = []
|
|
for m in [f1, f2]:
|
|
importer = PackageImporter(m)
|
|
the_model = importer.import_module('model').load()
|
|
r = the_model(input)
|
|
results.append(r)
|
|
|
|
self.assertTrue(torch.allclose(*results))
|
|
|
|
if __name__ == '__main__':
|
|
main()
|