mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Fixes https://github.com/pytorch/pytorch/issues/47123 Follows https://github.com/pyro-ppl/pyro/pull/2701 This turns on `Distribution` validation by default. The motivation is to favor beginners by providing helpful error messages. Advanced users focused on speed can disable validation by calling ```py torch.distributions.Distribution.set_default_validate_args(False) ``` or by disabling individual distribution validation via `MyDistribution(..., validate_args=False)`. In practice I have found many beginners forget or do not know about validation. Therefore I have [enabled it by default](https://github.com/pyro-ppl/pyro/pull/2701) in Pyro. I believe PyTorch could also benefit from this change. Indeed validation caught a number of bugs in `.icdf()` methods, in tests, and in PPL benchmarks, all of which have been fixed in this PR. ## Release concerns - This may slightly slow down some models. Concerned users may disable validation. - This may cause new `ValueErrors` in models that rely on unsupported behavior, e.g. `Categorical.log_prob()` applied to continuous-valued tensors (only {0,1}-valued tensors are supported). We should clearly note this change in release notes. Pull Request resolved: https://github.com/pytorch/pytorch/pull/48743 Reviewed By: heitorschueroff Differential Revision: D25304247 Pulled By: neerajprad fbshipit-source-id: 8d50f28441321ae691f848c55f71aa80cb356b41
101 lines
4.0 KiB
Python
101 lines
4.0 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
from torch.distributions import constraints
|
|
from torch.distributions.distribution import Distribution
|
|
from torch.distributions.utils import broadcast_all, probs_to_logits, lazy_property, logits_to_probs
|
|
|
|
|
|
class NegativeBinomial(Distribution):
|
|
r"""
|
|
Creates a Negative Binomial distribution, i.e. distribution
|
|
of the number of successful independent and identical Bernoulli trials
|
|
before :attr:`total_count` failures are achieved. The probability
|
|
of failure of each Bernoulli trial is :attr:`probs`.
|
|
|
|
Args:
|
|
total_count (float or Tensor): non-negative number of negative Bernoulli
|
|
trials to stop, although the distribution is still valid for real
|
|
valued count
|
|
probs (Tensor): Event probabilities of failure in the half open interval [0, 1)
|
|
logits (Tensor): Event log-odds for probabilities of failure
|
|
"""
|
|
arg_constraints = {'total_count': constraints.greater_than_eq(0),
|
|
'probs': constraints.half_open_interval(0., 1.),
|
|
'logits': constraints.real}
|
|
support = constraints.nonnegative_integer
|
|
|
|
def __init__(self, total_count, probs=None, logits=None, validate_args=None):
|
|
if (probs is None) == (logits is None):
|
|
raise ValueError("Either `probs` or `logits` must be specified, but not both.")
|
|
if probs is not None:
|
|
self.total_count, self.probs, = broadcast_all(total_count, probs)
|
|
self.total_count = self.total_count.type_as(self.probs)
|
|
else:
|
|
self.total_count, self.logits, = broadcast_all(total_count, logits)
|
|
self.total_count = self.total_count.type_as(self.logits)
|
|
|
|
self._param = self.probs if probs is not None else self.logits
|
|
batch_shape = self._param.size()
|
|
super(NegativeBinomial, self).__init__(batch_shape, validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(NegativeBinomial, _instance)
|
|
batch_shape = torch.Size(batch_shape)
|
|
new.total_count = self.total_count.expand(batch_shape)
|
|
if 'probs' in self.__dict__:
|
|
new.probs = self.probs.expand(batch_shape)
|
|
new._param = new.probs
|
|
if 'logits' in self.__dict__:
|
|
new.logits = self.logits.expand(batch_shape)
|
|
new._param = new.logits
|
|
super(NegativeBinomial, new).__init__(batch_shape, validate_args=False)
|
|
new._validate_args = self._validate_args
|
|
return new
|
|
|
|
def _new(self, *args, **kwargs):
|
|
return self._param.new(*args, **kwargs)
|
|
|
|
@property
|
|
def mean(self):
|
|
return self.total_count * torch.exp(self.logits)
|
|
|
|
@property
|
|
def variance(self):
|
|
return self.mean / torch.sigmoid(-self.logits)
|
|
|
|
@lazy_property
|
|
def logits(self):
|
|
return probs_to_logits(self.probs, is_binary=True)
|
|
|
|
@lazy_property
|
|
def probs(self):
|
|
return logits_to_probs(self.logits, is_binary=True)
|
|
|
|
@property
|
|
def param_shape(self):
|
|
return self._param.size()
|
|
|
|
@lazy_property
|
|
def _gamma(self):
|
|
# Note we avoid validating because self.total_count can be zero.
|
|
return torch.distributions.Gamma(concentration=self.total_count,
|
|
rate=torch.exp(-self.logits),
|
|
validate_args=False)
|
|
|
|
def sample(self, sample_shape=torch.Size()):
|
|
with torch.no_grad():
|
|
rate = self._gamma.sample(sample_shape=sample_shape)
|
|
return torch.poisson(rate)
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
|
|
log_unnormalized_prob = (self.total_count * F.logsigmoid(-self.logits) +
|
|
value * F.logsigmoid(self.logits))
|
|
|
|
log_normalization = (-torch.lgamma(self.total_count + value) + torch.lgamma(1. + value) +
|
|
torch.lgamma(self.total_count))
|
|
|
|
return log_unnormalized_prob - log_normalization
|