Files
pytorch/.github/scripts/generate_binary_build_matrix.py
Andrey Talman 066c9ff08f Deprecating python 3.6 (#70325)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/70457

Pull Request resolved: https://github.com/pytorch/pytorch/pull/70325

Reviewed By: seemethere

Differential Revision: D33339496

Pulled By: atalman

fbshipit-source-id: 7509cab4f7469dae234bcf3f79e0aabb54577b8a
2021-12-28 18:44:59 -08:00

167 lines
4.6 KiB
Python

#!/usr/bin/env python3
"""Generates a matrix to be utilized through github actions
Will output a condensed version of the matrix if on a pull request that only
includes the latest version of python we support built on three different
architectures:
* CPU
* Latest CUDA
* Latest ROCM
"""
import argparse
import json
from typing import Dict, List
CUDA_ARCHES = [
"10.2",
"11.1"
]
ROCM_ARCHES = [
"3.10",
"4.0"
]
def arch_type(arch_version: str) -> str:
if arch_version in CUDA_ARCHES:
return "cuda"
elif arch_version in ROCM_ARCHES:
return "rocm"
else: # arch_version should always be "cpu" in this case
return "cpu"
WHEEL_CONTAINER_IMAGES = {
**{
# TODO: Re-do manylinux CUDA image tagging scheme to be similar to
# ROCM so we don't have to do this replacement
gpu_arch: f"pytorch/manylinux-cuda{gpu_arch.replace('.', '')}"
for gpu_arch in CUDA_ARCHES
},
**{
gpu_arch: f"pytorch/manylinux-rocm:{gpu_arch}"
for gpu_arch in ROCM_ARCHES
},
"cpu": "pytorch/manylinux-cpu"
}
CONDA_CONTAINER_IMAGES = {
**{
gpu_arch: f"pytorch/conda-builder:cuda{gpu_arch}"
for gpu_arch in CUDA_ARCHES
},
"cpu": "pytorch/conda-builder:cpu"
}
LIBTORCH_CONTAINER_IMAGES = {
**{
# TODO: Re-do manylinux CUDA image tagging scheme to be similar to
# ROCM so we don't have to do this replacement
(gpu_arch, "pre-cxx11"): f"pytorch/manylinux-cuda{gpu_arch.replace('.', '')}"
for gpu_arch in CUDA_ARCHES
},
**{
(gpu_arch, "cxx11-abi"): f"pytorch/libtorch-cxx11-builder:cuda{gpu_arch}"
for gpu_arch in CUDA_ARCHES
},
("cpu", "pre-cxx11"): "pytorch/manylinux-cpu",
("cpu", "cxx11-abi"): "pytorch/libtorch-cxx11-builder:cpu",
}
FULL_PYTHON_VERSIONS = [
"3.7",
"3.8",
"3.9",
]
def is_pull_request() -> bool:
return False
# return os.environ.get("GITHUB_HEAD_REF")
def snip_if(is_pr: bool, versions: List[str]) -> List[str]:
"""
Return the full list of versions, or just the latest if on a PR.
"""
return [versions[-1]] if is_pr else versions
def generate_conda_matrix(is_pr: bool) -> List[Dict[str, str]]:
return [
{
"python_version": python_version,
"gpu_arch_type": arch_type(arch_version),
"gpu_arch_version": arch_version,
"container_image": CONDA_CONTAINER_IMAGES[arch_version],
}
for python_version in snip_if(is_pr, FULL_PYTHON_VERSIONS)
# We don't currently build conda packages for rocm
for arch_version in ["cpu"] + snip_if(is_pr, CUDA_ARCHES)
]
def generate_libtorch_matrix(is_pr: bool) -> List[Dict[str, str]]:
libtorch_variants = [
"shared-with-deps",
"shared-without-deps",
"static-with-deps",
"static-without-deps",
]
return [
{
"gpu_arch_type": arch_type(arch_version),
"gpu_arch_version": arch_version,
"libtorch_variant": libtorch_variant,
"devtoolset": abi_version,
"container_image": LIBTORCH_CONTAINER_IMAGES[(arch_version, abi_version)],
}
# We don't currently build libtorch for rocm
for arch_version in ["cpu"] + snip_if(is_pr, CUDA_ARCHES)
for libtorch_variant in libtorch_variants
# one of the values in the following list must be exactly
# "cxx11-abi", but the precise value of the other one doesn't
# matter
for abi_version in ["cxx11-abi", "pre-cxx11"]
]
def generate_wheels_matrix(is_pr: bool) -> List[Dict[str, str]]:
arches = ["cpu"]
arches += snip_if(is_pr, CUDA_ARCHES)
arches += snip_if(is_pr, ROCM_ARCHES)
return [
{
"python_version": python_version,
"gpu_arch_type": arch_type(arch_version),
"gpu_arch_version": arch_version,
"container_image": WHEEL_CONTAINER_IMAGES[arch_version],
}
for python_version in snip_if(is_pr, FULL_PYTHON_VERSIONS)
for arch_version in arches
]
def from_includes(includes: List[Dict[str, str]]) -> str:
return json.dumps({"include": includes})
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument('mode', choices=['conda', 'libtorch', 'wheels'])
args = parser.parse_args()
is_pr = is_pull_request()
print(from_includes({
'conda': generate_conda_matrix,
'libtorch': generate_libtorch_matrix,
'wheels': generate_wheels_matrix,
}[args.mode](is_pr)))
if __name__ == "__main__":
main()