mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56409 Reviewed By: nikithamalgifb Differential Revision: D27870769 Pulled By: anjali411 fbshipit-source-id: a1a0e89856529a4739c7612c5b1e3c5ed2569126
5766 lines
277 KiB
Python
5766 lines
277 KiB
Python
from functools import reduce, wraps, partial
|
|
from itertools import product
|
|
from operator import mul
|
|
import collections
|
|
import operator
|
|
import random
|
|
|
|
import torch
|
|
import numpy as np
|
|
from torch._six import inf
|
|
from torch.autograd import Variable
|
|
import collections.abc
|
|
|
|
from typing import List, Sequence, Tuple, Dict, Any, Union
|
|
|
|
from torch.testing import \
|
|
(make_non_contiguous, floating_types, floating_types_and, complex_types,
|
|
floating_and_complex_types, floating_and_complex_types_and,
|
|
all_types_and_complex_and, all_types_and, all_types_and_complex,
|
|
integral_types_and, all_types)
|
|
from .._core import _dispatch_dtypes
|
|
from torch.testing._internal.common_device_type import \
|
|
(skipIf, skipMeta, skipCUDAIfNoMagma, skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfNoCusolver,
|
|
skipCPUIfNoLapack, skipCPUIfNoMkl,
|
|
skipCUDAIfRocm, expectedAlertNondeterministic, precisionOverride,)
|
|
from torch.testing._internal.common_cuda import CUDA11OrLater, SM53OrLater
|
|
from torch.testing._internal.common_utils import \
|
|
(is_iterable_of_tensors,
|
|
random_symmetric_matrix, random_symmetric_psd_matrix,
|
|
make_fullrank_matrices_with_distinct_singular_values,
|
|
random_symmetric_pd_matrix, make_symmetric_matrices,
|
|
make_symmetric_pd_matrices,
|
|
random_fullrank_matrix_distinct_singular_value, set_rng_seed, SEED,
|
|
TEST_WITH_ROCM, IS_WINDOWS, IS_MACOS, make_tensor, TEST_SCIPY,
|
|
torch_to_numpy_dtype_dict, slowTest, TEST_WITH_ASAN, _wrap_warn_once)
|
|
|
|
from distutils.version import LooseVersion
|
|
|
|
if TEST_SCIPY:
|
|
import scipy.special
|
|
|
|
|
|
class DecorateInfo(object):
|
|
"""Describes which test, or type of tests, should be wrapped in the given
|
|
decorators when testing an operator. Any test that matches all provided
|
|
arguments will be decorated. The decorators will only be applied if the
|
|
active_if argument is True."""
|
|
|
|
__slots__ = ['decorators', 'cls_name', 'test_name', 'device_type', 'dtypes', 'active_if']
|
|
|
|
def __init__(self, decorators, cls_name=None, test_name=None, *,
|
|
device_type=None, dtypes=None, active_if=True):
|
|
self.decorators = list(decorators) if isinstance(decorators, collections.abc.Sequence) else [decorators]
|
|
self.cls_name = cls_name
|
|
self.test_name = test_name
|
|
self.device_type = device_type
|
|
self.dtypes = dtypes
|
|
self.active_if = active_if
|
|
|
|
def is_active(self, cls_name, test_name, device_type, dtype):
|
|
return (
|
|
self.active_if and
|
|
(self.cls_name is None or self.cls_name == cls_name) and
|
|
(self.test_name is None or self.test_name == test_name) and
|
|
(self.device_type is None or self.device_type == device_type) and
|
|
(self.dtypes is None or dtype in self.dtypes)
|
|
)
|
|
|
|
|
|
class SkipInfo(DecorateInfo):
|
|
"""Describes which test, or type of tests, should be skipped when testing
|
|
an operator. Any test that matches all provided arguments will be skipped.
|
|
The skip will only be checked if the active_if argument is True."""
|
|
|
|
def __init__(self, cls_name=None, test_name=None, *,
|
|
device_type=None, dtypes=None, active_if=True):
|
|
super().__init__(decorators=skipIf(True, "Skipped!"), cls_name=cls_name,
|
|
test_name=test_name, device_type=device_type, dtypes=dtypes,
|
|
active_if=active_if)
|
|
|
|
class SampleInput(object):
|
|
"""Represents sample inputs to a function."""
|
|
|
|
__slots__ = ['input', 'args', 'kwargs', 'output_process_fn_grad', 'broadcasts_input']
|
|
|
|
def __init__(self, input, *, args=tuple(), kwargs=None, output_process_fn_grad=None, broadcasts_input=False):
|
|
# input is the first input to the op and must be either a Tensor or TensorList (Sequence[Tensor]).
|
|
# This follows the typical pattern where for Tensor inputs op(t, ...) = t.op(...).
|
|
# op with TensorList inputs do not support method or inplace variants.
|
|
assert isinstance(input, torch.Tensor) or is_iterable_of_tensors(input)
|
|
self.input: Union[torch.Tensor, Sequence[torch.Tensor]] = input
|
|
self.args = args
|
|
self.kwargs = kwargs if kwargs is not None else {}
|
|
self.output_process_fn_grad = output_process_fn_grad
|
|
|
|
# Specifies if `self.input` is broadcasted or not,
|
|
# given that the operator supports broadcasting.
|
|
# This field is used to verify the behavior for inplace variant.
|
|
#
|
|
# If a SampleInput is marked with `broadcasts_input=True`,
|
|
# it is verified that we get a `RuntimerError` with this sample,
|
|
# and inplace variant. Also inplace grad{grad} tests are skipped,
|
|
# for such inputs (as they will error out otherwise).
|
|
self.broadcasts_input = broadcasts_input
|
|
|
|
def __repr__(self):
|
|
arguments = [
|
|
'input=Tensor' if isinstance(self.input, torch.Tensor) else f'input=TensorList[{len(self.input)}]',
|
|
f'args={self.args}' if len(self.args) > 0 else None,
|
|
f'kwargs={self.kwargs}' if len(self.kwargs) > 0 else None,
|
|
(f'output_process_fn_grad={self.output_process_fn_grad}'
|
|
if self.output_process_fn_grad is not None else None),
|
|
f'broadcasts_input={self.broadcasts_input}']
|
|
|
|
return f'SampleInput({", ".join(a for a in arguments if a is not None)})'
|
|
|
|
class AliasInfo(object):
|
|
"""Class holds alias information. For example, torch.abs ->
|
|
torch.absolute, torch.Tensor.absolute, torch.Tensor.absolute_
|
|
"""
|
|
|
|
def __init__(self, alias_name):
|
|
self.name = alias_name
|
|
self.op = _getattr_qual(torch, alias_name)
|
|
self.method_variant = getattr(torch.Tensor, alias_name, None)
|
|
self.inplace_variant = getattr(torch.Tensor, alias_name + "_", None)
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.op(*args, **kwargs)
|
|
|
|
|
|
_NOTHING = object() # Unique value to distinguish default from anything else
|
|
|
|
|
|
# Extension of getattr to support qualified names
|
|
# e.g. _getattr_qual(torch, 'linalg.norm') -> torch.linalg.norm
|
|
def _getattr_qual(obj, name, default=_NOTHING):
|
|
try:
|
|
for path in name.split('.'):
|
|
obj = getattr(obj, path)
|
|
return obj
|
|
except AttributeError:
|
|
if default is not _NOTHING:
|
|
return default
|
|
else:
|
|
raise
|
|
|
|
|
|
# Classes and methods for the operator database
|
|
class OpInfo(object):
|
|
"""Operator information and helper functions for acquiring it."""
|
|
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
op=None, # the function variant of the operation, populated as torch.<name> if None
|
|
dtypes=floating_types(), # dtypes this function is expected to work with
|
|
dtypesIfCPU=None, # dtypes this function is expected to work with on CPU
|
|
dtypesIfCUDA=None, # dtypes this function is expected to work with on CUDA
|
|
dtypesIfROCM=None, # dtypes this function is expected to work with on ROCM
|
|
default_test_dtypes=None, # dtypes to test with by default. Gets intersected
|
|
# with the dtypes support on the tested device
|
|
assert_autodiffed=False, # if a op's aten::node is expected to be symbolically autodiffed
|
|
autodiff_nonfusible_nodes=None, # a list of strings with node names that are expected to be in a
|
|
# DifferentiableGraph when autodiffed. Ex: ['aten::add', 'aten::mm'],
|
|
# default is populated to be ['aten::(name of Python operator)']
|
|
autodiff_fusible_nodes=None, # a list of strings with node names that are expected to be in FusionGroups
|
|
# inside of DifferentiableGraphs when this operation is autodiffed.
|
|
# Ex: ['aten::add', 'aten::mm'], defaults to an empty list
|
|
# Note: currently no ops use fusible nodes
|
|
supports_out=True, # whether the op supports the out kwarg
|
|
skips=tuple(), # information about which tests to skip
|
|
decorators=None, # decorators to apply to generated tests
|
|
safe_casts_outputs=False, # whether op allows safe casting when writing to out arguments
|
|
sample_inputs_func=None, # function to generate sample inputs
|
|
aten_name=None, # name of the corresponding aten:: operator
|
|
aliases=None, # iterable of aliases, e.g. ("absolute",) for torch.abs
|
|
variant_test_name='', # additional string to include in the test name
|
|
supports_autograd=True, # support for autograd
|
|
supports_inplace_autograd=None, # whether the operation supports inplace autograd
|
|
# defaults to supports_autograd's value
|
|
supports_complex_autograd=None, # whether the operation supports complex autograd
|
|
# defaults to supports_autograd's value
|
|
supports_sparse=False, # whether the op supports sparse inputs
|
|
gradcheck_wrapper=lambda op, *args, **kwargs: op(*args, **kwargs), # wrapper function for gradcheck
|
|
check_batched_grad=True, # check batched grad when doing gradcheck
|
|
check_batched_gradgrad=True, # check batched grad grad when doing gradgradcheck
|
|
):
|
|
|
|
# Validates the dtypes are generated from the dispatch-related functions
|
|
for dtype_list in (dtypes, dtypesIfCPU, dtypesIfCUDA, dtypesIfROCM):
|
|
assert isinstance(dtype_list, (_dispatch_dtypes, type(None)))
|
|
|
|
self.name = name
|
|
self.aten_name = aten_name if aten_name is not None else name
|
|
self.variant_test_name = variant_test_name
|
|
|
|
self.dtypes = set(dtypes)
|
|
self.dtypesIfCPU = set(dtypesIfCPU) if dtypesIfCPU is not None else self.dtypes
|
|
self.dtypesIfCUDA = set(dtypesIfCUDA) if dtypesIfCUDA is not None else self.dtypes
|
|
self.dtypesIfROCM = set(dtypesIfROCM) if dtypesIfROCM is not None else self.dtypes
|
|
self._default_test_dtypes = set(default_test_dtypes) if default_test_dtypes is not None else None
|
|
|
|
# NOTE: if the op is unspecified it is assumed to be under the torch namespace
|
|
self.op = op if op else _getattr_qual(torch, self.name)
|
|
method_variant = getattr(torch.Tensor, name, None)
|
|
# attributes like real, imag are not callable
|
|
self.method_variant = method_variant if callable(method_variant) else None
|
|
inplace_name = name + "_"
|
|
self.inplace_variant = getattr(torch.Tensor, inplace_name, None)
|
|
self.operator_variant = getattr(operator, name, None)
|
|
|
|
self.supports_out = supports_out
|
|
self.safe_casts_outputs = safe_casts_outputs
|
|
|
|
self.skips = skips
|
|
self.decorators = decorators
|
|
self.sample_inputs_func = sample_inputs_func
|
|
|
|
self.assert_autodiffed = assert_autodiffed
|
|
self.autodiff_fusible_nodes = autodiff_fusible_nodes if autodiff_fusible_nodes else []
|
|
if autodiff_nonfusible_nodes is None:
|
|
self.autodiff_nonfusible_nodes = ['aten::' + self.name]
|
|
else:
|
|
self.autodiff_nonfusible_nodes = autodiff_nonfusible_nodes
|
|
|
|
# autograd support
|
|
self.supports_autograd = supports_autograd
|
|
self.supports_inplace_autograd = supports_inplace_autograd
|
|
if self.supports_inplace_autograd is None:
|
|
self.supports_inplace_autograd = supports_autograd
|
|
self.supports_complex_autograd = supports_complex_autograd
|
|
if self.supports_complex_autograd is None:
|
|
self.supports_complex_autograd = supports_autograd
|
|
|
|
self.gradcheck_wrapper = gradcheck_wrapper
|
|
self.check_batched_grad = check_batched_grad
|
|
self.check_batched_gradgrad = check_batched_gradgrad
|
|
|
|
self.supports_sparse = supports_sparse
|
|
|
|
self.aliases = () # type: ignore
|
|
if aliases is not None:
|
|
self.aliases = tuple(AliasInfo(a) for a in aliases) # type: ignore
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
"""Calls the function variant of the operator."""
|
|
return self.op(*args, **kwargs)
|
|
|
|
def get_op(self):
|
|
"""Returns the function variant of the operator, torch.<op_name>."""
|
|
return self.op
|
|
|
|
def get_method(self):
|
|
"""Returns the method variant of the operator, torch.Tensor.<op_name>.
|
|
Returns None if the operator has no method variant.
|
|
"""
|
|
return self.method_variant
|
|
|
|
def get_inplace(self):
|
|
"""Returns the inplace variant of the operator, torch.Tensor.<op_name>_.
|
|
Returns None if the operator has no inplace variant.
|
|
"""
|
|
return self.inplace_variant
|
|
|
|
def get_operator_variant(self):
|
|
"""Returns operator variant of the operator, e.g. operator.neg
|
|
Returns None if the operator has no operator variant.
|
|
"""
|
|
return self.operator_variant
|
|
|
|
def sample_inputs(self, device, dtype, requires_grad=False, **kwargs):
|
|
"""Returns an iterable of SampleInputs.
|
|
|
|
These samples should be sufficient to test the function works correctly
|
|
with autograd, TorchScript, etc.
|
|
"""
|
|
|
|
# TODO: Remove the try/except once all operators have sample_inputs_func with
|
|
# **kwargs in their signature.
|
|
try:
|
|
samples = self.sample_inputs_func(self, device, dtype, requires_grad, **kwargs)
|
|
except TypeError:
|
|
samples = self.sample_inputs_func(self, device, dtype, requires_grad)
|
|
return samples
|
|
|
|
# Returns True if the test should be skipped and False otherwise
|
|
def should_skip(self, cls_name, test_name, device_type, dtype):
|
|
return any(si.is_active(cls_name, test_name, device_type, dtype)
|
|
for si in self.skips)
|
|
|
|
def supported_dtypes(self, device_type):
|
|
if device_type == 'cpu':
|
|
return self.dtypesIfCPU
|
|
if device_type == 'cuda':
|
|
return self.dtypesIfCUDA
|
|
else:
|
|
return self.dtypes
|
|
|
|
|
|
def supports_dtype(self, dtype, device_type):
|
|
return dtype in self.supported_dtypes(device_type)
|
|
|
|
def default_test_dtypes(self, device_type):
|
|
"""Returns the default dtypes used to test this operator on the device.
|
|
|
|
Equal to the operator's default_test_dtypes filtered to remove dtypes
|
|
not supported by the device.
|
|
"""
|
|
supported = self.supported_dtypes(device_type)
|
|
return (supported if self._default_test_dtypes is None
|
|
else supported.intersection(self._default_test_dtypes))
|
|
|
|
|
|
L = 20
|
|
M = 10
|
|
S = 5
|
|
|
|
|
|
def sample_inputs_unary(op_info, device, dtype, requires_grad, **kwargs):
|
|
low, high = op_info.domain
|
|
low = low if low is None else low + op_info._domain_eps
|
|
high = high if high is None else high - op_info._domain_eps
|
|
|
|
return (SampleInput(make_tensor((L,), device=device, dtype=dtype,
|
|
low=low, high=high,
|
|
requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), device=device, dtype=dtype,
|
|
low=low, high=high,
|
|
requires_grad=requires_grad)))
|
|
|
|
# Metadata class for unary "universal functions (ufuncs)" that accept a single
|
|
# tensor and have common properties like:
|
|
class UnaryUfuncInfo(OpInfo):
|
|
"""Operator information for 'universal unary functions (unary ufuncs).'
|
|
These are functions of a single tensor with common properties like:
|
|
- they are elementwise functions
|
|
- the input shape is the output shape
|
|
- they typically have method and inplace variants
|
|
- they typically support the out kwarg
|
|
- they typically have NumPy or SciPy references
|
|
See NumPy's universal function documentation
|
|
(https://numpy.org/doc/1.18/reference/ufuncs.html) for more details
|
|
about the concept of ufuncs.
|
|
"""
|
|
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref, # a reference function
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half),
|
|
default_test_dtypes=(
|
|
torch.uint8, torch.long, torch.half, torch.bfloat16,
|
|
torch.float32, torch.cfloat), # dtypes which tests check by default
|
|
domain=(None, None), # the [low, high) domain of the function
|
|
handles_large_floats=True, # whether the op correctly handles large float values (like 1e20)
|
|
handles_extremals=True, # whether the op correctly handles extremal values (like inf)
|
|
handles_complex_extremals=True, # whether the op correct handles complex extremals (like inf -infj)
|
|
supports_complex_to_float=False, # op supports casting from complex input to real output safely eg. angle
|
|
sample_inputs_func=sample_inputs_unary,
|
|
sample_kwargs=lambda device, dtype, input: ({}, {}),
|
|
supports_sparse=False,
|
|
**kwargs):
|
|
super(UnaryUfuncInfo, self).__init__(name,
|
|
dtypes=dtypes,
|
|
dtypesIfCPU=dtypesIfCPU,
|
|
dtypesIfCUDA=dtypesIfCUDA,
|
|
dtypesIfROCM=dtypesIfROCM,
|
|
default_test_dtypes=default_test_dtypes,
|
|
sample_inputs_func=sample_inputs_func,
|
|
supports_sparse=supports_sparse,
|
|
**kwargs)
|
|
self.ref = ref
|
|
self.domain = domain
|
|
self.handles_large_floats = handles_large_floats
|
|
self.handles_extremals = handles_extremals
|
|
self.handles_complex_extremals = handles_complex_extremals
|
|
self.supports_complex_to_float = supports_complex_to_float
|
|
|
|
# test_unary_ufuncs.py generates its own inputs to test the consistency
|
|
# of the operator on sliced tensors, non-contig tensors, etc.
|
|
# `sample_kwargs` is a utility function to provide kwargs
|
|
# along with those inputs if required (eg. clamp).
|
|
# It should return two dictionaries, first holding kwarg for
|
|
# torch operator and second one for reference NumPy operator.
|
|
self.sample_kwargs = sample_kwargs
|
|
|
|
# Epsilon to ensure grad and gradgrad checks don't test values
|
|
# outside a function's domain.
|
|
self._domain_eps = 1e-5
|
|
|
|
def sample_inputs_tensor_split(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput(make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(torch.tensor([1, 2, 3]),),),
|
|
SampleInput(make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(torch.tensor(1),),),
|
|
SampleInput(make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(torch.tensor([1, 2, 3]),),
|
|
kwargs=dict(dim=1)),)
|
|
|
|
def sample_inputs_linalg_det(op_info, device, dtype, requires_grad):
|
|
kw = dict(device=device, dtype=dtype)
|
|
inputs = [
|
|
make_tensor((S, S), **kw),
|
|
make_tensor((1, 1), **kw), # 1x1
|
|
random_symmetric_matrix(S, **kw), # symmetric
|
|
random_symmetric_psd_matrix(S, **kw), # symmetric_psd
|
|
random_symmetric_pd_matrix(S, **kw), # symmetric_pd
|
|
|
|
# dim2_null, rank1 and rank2 are disabled because of
|
|
# https://github.com/pytorch/pytorch/issues/53364
|
|
# we should re-enable them once the issue is solved
|
|
# random_square_matrix_of_rank(S, S - 2, **kw), # dim2_null
|
|
# random_square_matrix_of_rank(S, 1, **kw), # rank1
|
|
# random_square_matrix_of_rank(S, 2, **kw), # rank2
|
|
|
|
random_fullrank_matrix_distinct_singular_value(S, **kw), # distinct_singular_value
|
|
make_tensor((3, 3, S, S), **kw), # batched
|
|
make_tensor((3, 3, 1, 1), **kw), # batched_1x1
|
|
random_symmetric_matrix(S, 3, **kw), # batched_symmetric
|
|
random_symmetric_psd_matrix(S, 3, **kw), # batched_symmetric_psd
|
|
random_symmetric_pd_matrix(S, 3, **kw), # batched_symmetric_pd
|
|
random_fullrank_matrix_distinct_singular_value(S, 3, 3, **kw), # batched_distinct_singular_values
|
|
make_tensor((0, 0), **kw),
|
|
make_tensor((0, S, S), **kw),
|
|
]
|
|
for t in inputs:
|
|
t.requires_grad = requires_grad
|
|
return [SampleInput(t) for t in inputs]
|
|
|
|
def sample_inputs_linalg_matrix_power(op_info, device, dtype, requires_grad):
|
|
# (<matrix_size>, (<batch_sizes, ...>))
|
|
test_sizes = [
|
|
(1, ()),
|
|
(2, (0,)),
|
|
(2, (2,)),
|
|
]
|
|
|
|
inputs = []
|
|
for matrix_size, batch_sizes in test_sizes:
|
|
size = batch_sizes + (matrix_size, matrix_size)
|
|
for n in (0, 3, 5):
|
|
t = make_tensor(size, device, dtype, requires_grad=requires_grad)
|
|
inputs.append(SampleInput(t, args=(n,)))
|
|
for n in [-4, -2, -1]:
|
|
t = random_fullrank_matrix_distinct_singular_value(matrix_size, *batch_sizes, device=device, dtype=dtype)
|
|
t.requires_grad = requires_grad
|
|
inputs.append(SampleInput(t, args=(n,)))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_linalg_multi_dot(op_info, device, dtype, requires_grad):
|
|
# Each test case consists of the sizes in the chain of multiplications
|
|
# e.g. [2, 3, 4, 5] generates matrices (2, 3) @ (3, 4) @ (4, 5)
|
|
test_cases = [
|
|
[1, 2, 1],
|
|
[2, 0, 2],
|
|
[0, 2, 2],
|
|
[2, 2, 2, 2],
|
|
[2, 3, 4, 5],
|
|
[5, 4, 0, 2],
|
|
[2, 4, 3, 5, 3, 2]
|
|
]
|
|
|
|
result = []
|
|
for sizes in test_cases:
|
|
tensors = []
|
|
for size in zip(sizes[:-1], sizes[1:]):
|
|
t = make_tensor(size, device, dtype, requires_grad=requires_grad)
|
|
tensors.append(t)
|
|
result.append(SampleInput(tensors))
|
|
|
|
return result
|
|
|
|
def sample_inputs_linalg_norm(op_info, device, dtype, requires_grad):
|
|
test_sizes = [
|
|
(S,),
|
|
(0,),
|
|
(S, S),
|
|
(0, 0),
|
|
(S, 0),
|
|
(0, S),
|
|
(S, S, S),
|
|
(0, S, S),
|
|
(S, 0, S),
|
|
(0, 0, 0),
|
|
]
|
|
|
|
vector_ords = (None, 0, 0.5, 1, 2, 3.5, inf, -0.5, -1, -2, -3.5, -inf)
|
|
matrix_ords = (None, 'fro', 'nuc', 1, 2, inf, -1, -2, -inf)
|
|
|
|
inputs = []
|
|
|
|
is_dtype_half = dtype in [torch.float16, torch.bfloat16]
|
|
|
|
for test_size in test_sizes:
|
|
is_vector_norm = len(test_size) == 1
|
|
is_matrix_norm = len(test_size) == 2
|
|
|
|
for keepdim in [False, True]:
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
kwargs=dict(
|
|
keepdim=keepdim)))
|
|
|
|
if not (is_vector_norm or is_matrix_norm):
|
|
continue
|
|
|
|
ords = vector_ords if is_vector_norm else matrix_ords
|
|
|
|
for ord in ords:
|
|
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(ord,),
|
|
kwargs=dict(
|
|
keepdim=keepdim)))
|
|
|
|
if ord in ['nuc', 'fro']:
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
kwargs=dict(
|
|
ord=ord,
|
|
keepdim=keepdim,
|
|
dim=(0, 1))))
|
|
return inputs
|
|
|
|
def sample_inputs_linalg_vector_norm(op_info, device, dtype, requires_grad, **kwargs):
|
|
size_1D = (S,)
|
|
size_2D = (2, 2)
|
|
|
|
test_cases = [
|
|
# input size, ord, dim args
|
|
(size_1D, None, None),
|
|
(size_1D, None, (0,)),
|
|
(size_1D, 0, None),
|
|
(size_1D, 0, (0,)),
|
|
(size_1D, 0.9, None),
|
|
(size_1D, 0.9, (0,)),
|
|
(size_1D, 1, None),
|
|
(size_1D, 1, (0,)),
|
|
(size_1D, -2.1, None),
|
|
(size_1D, -2.1, (0,)),
|
|
(size_1D, inf, None),
|
|
(size_1D, inf, (0,)),
|
|
(size_1D, -inf, None),
|
|
(size_1D, -inf, (0,)),
|
|
|
|
(size_2D, None, None),
|
|
(size_2D, None, (0,)),
|
|
(size_2D, None, (-1, 0)),
|
|
(size_2D, 0, None),
|
|
(size_2D, 0, (0,)),
|
|
(size_2D, 0, (-1, 0)),
|
|
(size_2D, 0.9, None),
|
|
(size_2D, 0.9, (0,)),
|
|
(size_2D, 0.9, (-1, 0)),
|
|
(size_2D, 1, None),
|
|
(size_2D, 1, (0,)),
|
|
(size_2D, 1, (-1, 0)),
|
|
(size_2D, -2.1, None),
|
|
(size_2D, -2.1, (0,)),
|
|
(size_2D, -2.1, (-1, 0)),
|
|
(size_2D, inf, None),
|
|
(size_2D, inf, (0,)),
|
|
(size_2D, inf, (-1, 0)),
|
|
(size_2D, -inf, None),
|
|
(size_2D, -inf, (0,)),
|
|
(size_2D, -inf, (-1, 0)),
|
|
]
|
|
inputs = []
|
|
|
|
for test_size, ord, dim in test_cases:
|
|
for keepdim in [False, True]:
|
|
inputs.append(SampleInput(
|
|
make_tensor(
|
|
test_size, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(ord,),
|
|
kwargs=dict(
|
|
keepdim=keepdim,
|
|
dim=dim)))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_add(op_info, device, dtype, requires_grad, **kwargs):
|
|
scalar = 3.14 + 3.14j if dtype.is_complex else (3.14 if dtype.is_floating_point else 3)
|
|
scalar = 1 if dtype is torch.bool else scalar
|
|
tests_list = [
|
|
((S, S, S), (S, S, S), False),
|
|
((S, S, S), (S, S), False),
|
|
((), (), False),
|
|
((S, S, S), (), False),
|
|
((S, S, S), scalar, False),
|
|
((), scalar, False)
|
|
]
|
|
tests_with_lhs_broadcasting = [
|
|
((S, S), (S, S, S), True),
|
|
((), (S, S, S), True),
|
|
((S, 1, S), (M, S), True),
|
|
]
|
|
test_cases = tests_list + tests_with_lhs_broadcasting # type: ignore
|
|
samples = []
|
|
for first_shape, shape_or_scalar, broadcasts_input in test_cases:
|
|
arg = shape_or_scalar
|
|
if isinstance(shape_or_scalar, tuple):
|
|
arg = make_tensor(shape_or_scalar, device=device, dtype=dtype,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(make_tensor(first_shape, device=device, dtype=dtype,
|
|
requires_grad=requires_grad),
|
|
args=(arg,),
|
|
broadcasts_input=broadcasts_input))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_mm(op_info, device, dtype, requires_grad, **kwargs):
|
|
args_list = (
|
|
((S, M), (M, S)),
|
|
)
|
|
inputs = tuple(SampleInput(make_tensor(first_shape, device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor(second_shape, device, dtype,
|
|
requires_grad=requires_grad),))
|
|
for first_shape, second_shape in args_list)
|
|
return inputs
|
|
|
|
def sample_inputs_addmm(op_info, device, dtype, requires_grad, **kwargs):
|
|
input = SampleInput(
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=False)))
|
|
if dtype.is_complex:
|
|
another_input = SampleInput(
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=False)),
|
|
kwargs=dict(beta=1 + 2j, alpha=2 + 3j))
|
|
return (input, another_input)
|
|
else:
|
|
return (input, )
|
|
|
|
def sample_inputs_mv(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, M, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_bmm(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((M, S, M, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((M, M, S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_dot_vdot(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_addmv(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (((S,), (S, M), (M,), 1, 1, False),
|
|
((S,), (S, M), (M,), 0.2, 0.6, False),
|
|
)
|
|
|
|
test_cases_with_broadcast = (((1,), (S, M), (M,), 1, 1, True),
|
|
((1,), (S, M), (M,), 0.2, 0.6, True),
|
|
((), (S, M), (M,), 1, 1, True),
|
|
((), (S, M), (M,), 0.2, 0.6, True),
|
|
)
|
|
|
|
cases = test_cases + test_cases_with_broadcast
|
|
sample_inputs = []
|
|
for input_args in cases:
|
|
args = (make_tensor(input_args[0], device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(input_args[1], device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(input_args[2], device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))
|
|
alpha, beta = input_args[3], input_args[4]
|
|
broadcasts_input = input_args[5]
|
|
sample_inputs.append(SampleInput(args[0], args=(args[1], args[2]), kwargs=dict(beta=beta, alpha=alpha),
|
|
broadcasts_input=broadcasts_input))
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_addbmm(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = [((S, M), (S, S, S), (S, S, M), 1, 1),
|
|
((1,), (S, S, S), (S, S, M), 1, 1),
|
|
((S, M), (S, S, S), (S, S, M), 0.6, 0.2),
|
|
((1,), (S, S, S), (S, S, M), 0.6, 0.2),
|
|
((), (S, S, S), (S, S, M), 1, 1),
|
|
((), (S, S, S), (S, S, M), 0.6, 0.2),
|
|
]
|
|
sample_inputs = []
|
|
for input_args in test_cases:
|
|
args = (make_tensor(input_args[0], device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(input_args[1], device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
make_tensor(input_args[2], device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))
|
|
alpha, beta = input_args[3], input_args[4]
|
|
sample_inputs.append(SampleInput(args[0], args=(args[1], args[2]), kwargs=dict(beta=beta, alpha=alpha)))
|
|
if dtype.is_complex:
|
|
sample_inputs.append(SampleInput(args[0], args=(args[1], args[2]),
|
|
kwargs=dict(beta=beta * (1 + 2j), alpha=alpha * (2 + 3j))))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_addcmul_addcdiv(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = [((S, S), (S, S), (S, S)),
|
|
((S, S), (S, 1), (1, S)),
|
|
((1,), (S, S, 1), (1, S)),
|
|
((), (), ()),
|
|
((S, S), (), ()),
|
|
((), (S, S, 1), (1, S)),
|
|
]
|
|
|
|
sample_inputs = []
|
|
for input_args in test_cases:
|
|
args = tuple(make_tensor(arg, device, dtype, requires_grad=requires_grad) if isinstance(arg, tuple) else arg
|
|
for arg in input_args)
|
|
sample_inputs.append(SampleInput(args[0], args=args[1:]))
|
|
|
|
sample_inputs.append(SampleInput(args[0], args=args[1:], kwargs=dict(value=3.14)))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_addr(op_info, device, dtype, requires_grad, **kwargs):
|
|
input1 = SampleInput(
|
|
make_tensor((S, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad)))
|
|
|
|
input2 = SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad)))
|
|
|
|
if dtype.is_complex:
|
|
alpha, beta = 0.1 + 0.3j, 0.4 + 0.6j
|
|
elif dtype.is_floating_point:
|
|
alpha, beta = 0.2, 0.6
|
|
else:
|
|
alpha, beta = 2, 3
|
|
|
|
input3 = SampleInput(
|
|
make_tensor((S, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad)),
|
|
kwargs=dict(beta=beta, alpha=alpha))
|
|
|
|
input4 = SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad)),
|
|
kwargs=dict(beta=beta, alpha=alpha))
|
|
|
|
return (input1, input2, input3, input4)
|
|
|
|
def sample_inputs_xlogy(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, S), device, dtype, low=0, high=None, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
def sample_inputs_logsumexp(self, device, dtype, requires_grad):
|
|
inputs = (
|
|
((), (0,), True),
|
|
((S, S), (1,), True),
|
|
((S, S), (1,), False)
|
|
)
|
|
samples = []
|
|
|
|
for shape, dim, keepdim in inputs:
|
|
t = make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, args=(dim, keepdim)))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_logcumsumexp(self, device, dtype, requires_grad):
|
|
inputs = (
|
|
((S, S, S), 0),
|
|
((S, S, S), 1),
|
|
((), 0),
|
|
)
|
|
samples = []
|
|
|
|
for shape, dim in inputs:
|
|
t = make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
samples.append(SampleInput(t, args=(dim,)))
|
|
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_trace(self, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput((make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad))),)
|
|
|
|
def sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates always invertible input for linear algebra ops using
|
|
random_fullrank_matrix_distinct_singular_value.
|
|
The input is generated as the itertools.product of 'batches' and 'ns'.
|
|
In total this function generates 8 SampleInputs
|
|
'batches' cases include:
|
|
() - single input,
|
|
(0,) - zero batched dimension,
|
|
(2,) - batch of two matrices,
|
|
(1, 1) - 1x1 batch of matrices
|
|
'ns' gives 0x0 and 5x5 matrices.
|
|
Zeros in dimensions are edge cases in the implementation and important to test for in order to avoid unexpected crashes.
|
|
"""
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
ns = [5, 0]
|
|
out = []
|
|
for batch, n in product(batches, ns):
|
|
a = random_fullrank_matrix_distinct_singular_value(n, *batch, dtype=dtype, device=device)
|
|
a.requires_grad = requires_grad
|
|
out.append(SampleInput(a))
|
|
return out
|
|
|
|
def np_sinc_with_fp16_as_fp32(x):
|
|
# Wraps numpy's sinc function so that fp16 values are promoted to fp32
|
|
# before sinc is invoked. Context: numpy's sinc returns NaN when evaluated
|
|
# at 0 for fp16.
|
|
if x.dtype == np.float16:
|
|
return np.sinc(x.astype(np.float32))
|
|
else:
|
|
return np.sinc(x)
|
|
|
|
def sample_inputs_broadcast_to(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((S, 1, 1), (S, S, S)),
|
|
((S, 1, S), (S, S, S)),
|
|
((S, 1), (S, S, S)),
|
|
((1,), (S, S, S)),
|
|
((1, S), (1, 1, S)),
|
|
((), ()),
|
|
((), (1, 3, 2)),
|
|
)
|
|
|
|
return tuple(
|
|
SampleInput(
|
|
make_tensor(size, device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(shape,)) for size, shape in test_cases)
|
|
|
|
def sample_inputs_comparison_ops(self, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((S, S, S), (S, S, S), False),
|
|
((S, S, S), (), False),
|
|
((S, S, S), (1,), False),
|
|
((S,), (1,), False),
|
|
((), (), False),
|
|
)
|
|
test_cases_lhs_broadcasting = (
|
|
((S, 1, S), (S, S, S), True),
|
|
((1,), (S, S, S), True),
|
|
((1, S), (1, 1, S), True),
|
|
((), (0,), True),
|
|
((), (S, S, S), True),
|
|
)
|
|
cases = test_cases + test_cases_lhs_broadcasting
|
|
sample_inputs = list(SampleInput(make_tensor(first_shape, device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor(second_shape, device, dtype,
|
|
requires_grad=requires_grad),),
|
|
broadcasts_input=broadcasts_input)
|
|
for first_shape, second_shape, broadcasts_input in cases)
|
|
equal_tensors_non_bool = (
|
|
([[[-8, 6], [9, 0]], [[0, 5], [5, 7]]]),
|
|
([[[6, 5]], [[1, -5]]]),
|
|
([[2], [-1]]),
|
|
([0, -6]),
|
|
([3],),
|
|
)
|
|
equal_tensors_bool = (
|
|
([[[1, 0], [0, 0]], [[0, 1], [1, 0]]]),
|
|
([[[1, 1]], [[1, 0]]]),
|
|
([[1], [0]]),
|
|
([0, 1]),
|
|
([1],),
|
|
)
|
|
more_cases = equal_tensors_bool if dtype is torch.bool else equal_tensors_non_bool
|
|
more_inputs = list(SampleInput(torch.tensor(elements, device=device, dtype=dtype,
|
|
requires_grad=requires_grad),
|
|
args=(torch.tensor(elements, device=device, dtype=dtype,
|
|
requires_grad=requires_grad),))
|
|
for elements in more_cases)
|
|
sample_inputs = [*sample_inputs, *more_inputs]
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_div(self, device, dtype, requires_grad, rounding_mode=None, **kwargs):
|
|
a = make_tensor((S, S, S), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
is_integral = not dtype.is_floating_point and not dtype.is_complex
|
|
b = make_tensor((S, S, S), device, dtype, low=1 if is_integral else 0.1, high=None,
|
|
requires_grad=requires_grad)
|
|
|
|
kwargs = None # type: ignore
|
|
if rounding_mode is not None:
|
|
kwargs = dict(rounding_mode=rounding_mode) # type: ignore
|
|
|
|
return (
|
|
SampleInput(a, args=(b,), kwargs=kwargs),
|
|
SampleInput(a, args=(2,)),
|
|
)
|
|
|
|
def sample_inputs_stack(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = [
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
]
|
|
|
|
return (SampleInput(tensors, args=(0,)),)
|
|
|
|
def sample_inputs_hstack_dstack_vstack(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = [
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
]
|
|
|
|
return (SampleInput(tensors),)
|
|
|
|
def sample_inputs_hypot(op_info, device, dtype, requires_grad):
|
|
input = make_tensor((S, S), device, dtype, requires_grad=requires_grad)
|
|
args = make_tensor((S, S), device, dtype, requires_grad=requires_grad)
|
|
|
|
return (
|
|
SampleInput(input, args=(args,)),
|
|
)
|
|
|
|
def sample_inputs_gather(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((M, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, gather_variable((S, S), 1, M, True, device=device))),
|
|
SampleInput(
|
|
make_tensor((M, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(1, gather_variable((M, S // 2), 0, S, True, device=device))),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor([0], dtype=torch.int64, device=device))),
|
|
SampleInput(
|
|
make_tensor((S,), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor(0, dtype=torch.int64, device=device))),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor(0, dtype=torch.int64, device=device))),
|
|
)
|
|
|
|
|
|
def sample_inputs_take_along_dim(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (SampleInput(make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S), 1, S, True, device=device), 0)),
|
|
|
|
# `indices` broadcast
|
|
SampleInput(make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((1, S // 2), 0, S, True, device=device), 1)),
|
|
|
|
# `self` broadcast
|
|
SampleInput(make_tensor((1, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S // 2), 0, S, True, device=device), 1)),
|
|
|
|
# without `dim` arg
|
|
SampleInput(make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S // 2), 0, S, True, device=device), )),
|
|
SampleInput(make_tensor((S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(gather_variable((S, S // 2), 0, S, True, device=device),)),
|
|
)
|
|
|
|
def sample_inputs_amax_amin(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((S, S, S), ()),
|
|
((S, S, S), (1,)),
|
|
((S, S, S), ((1, 2,),)),
|
|
((S, S, S), (1, True,)),
|
|
((), (0,)),
|
|
((), ()),
|
|
((), (0, True,)),
|
|
)
|
|
return tuple(SampleInput((make_tensor(size, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)),
|
|
args=args)
|
|
for size, args in test_cases)
|
|
|
|
def sample_inputs_argmax_argmin(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((2, 2, 2), ()),
|
|
((2, 2, 2), (0,)),
|
|
((2, 2, 2), (1,)),
|
|
((2, 2, 2), (2,)),
|
|
((2, 2, 2), (2, True,)),
|
|
((2, 2, 2), (None,)),
|
|
((), (0,)),
|
|
((), ()),
|
|
((), (None, True,)),
|
|
((1,), ()),
|
|
((1,), (0,)),
|
|
((1,), (0, True)),
|
|
((2,), ()),
|
|
((2,), (0,)),
|
|
((2,), (0, True)),
|
|
((2, 2, 3), ()),
|
|
((2, 2, 3), (0,)),
|
|
((2, 2, 3), (1,)),
|
|
((2, 2, 3), (None, True)),
|
|
)
|
|
return tuple(SampleInput((make_tensor(size, device, dtype,
|
|
requires_grad=requires_grad)),
|
|
args=args)
|
|
for size, args in test_cases)
|
|
|
|
def sample_inputs_diff(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((1,), 0, None, None),
|
|
((S,), 0, None, None),
|
|
((S, 1), 0, None, None),
|
|
((S, 1), 1, None, None),
|
|
((S, S), 0, None, None),
|
|
((S, S), 1, None, None),
|
|
((S, S), 0, (1, S), (2, S)),
|
|
((S, S), 0, None, (2, S)),
|
|
((S, S, S), 1, None, None),
|
|
((S, S, S), 1, (S, 1, S), (S, 1, S)),)
|
|
|
|
sample_inputs = []
|
|
for size, dim, size_prepend, size_append in test_cases:
|
|
args = (make_tensor(size, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad), 1, dim,
|
|
make_tensor(size_prepend, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad) if size_prepend else None,
|
|
make_tensor(size_append, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad) if size_append else None)
|
|
sample_inputs.append(SampleInput(args[0], args=(args[1], args[2])))
|
|
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_index_select(op_info, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, index_variable(2, S, device=device))),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor([0], dtype=torch.int64, device=device))),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(0, torch.tensor(0, dtype=torch.int64, device=device))),
|
|
)
|
|
|
|
def sample_inputs_getitem(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_args = [
|
|
(dont_convert([1, 2]),),
|
|
(slice(0, 3),),
|
|
(dont_convert([slice(0, 3), 1]),),
|
|
(dont_convert([[0, 2, 3], [1, 3, 3], [0, 0, 2]]),),
|
|
(dont_convert([[0, 0, 3], [1, 1, 3], [0, 0, 2]]),),
|
|
(dont_convert([slice(None), slice(None), [0, 3]]),),
|
|
(dont_convert([slice(None), [0, 3], slice(None)]),),
|
|
(dont_convert([[0, 3], slice(None), slice(None)]),),
|
|
(dont_convert([[0, 3], [1, 2], slice(None)]),),
|
|
(dont_convert([[0, 3], ]),),
|
|
(dont_convert([[0, 3], slice(None)]),),
|
|
(dont_convert([[0, 3], Ellipsis]),),
|
|
(dont_convert([[0, 2, 3], [1, 3, 3], torch.LongTensor([0, 0, 2])]),),
|
|
(index_variable(2, S, device=device),),
|
|
(mask_not_all_zeros((S,)),),
|
|
]
|
|
|
|
return tuple(SampleInput(
|
|
make_tensor((S, S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=args)
|
|
for args in test_args)
|
|
|
|
def sample_inputs_index_put(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
for accumulate in [False, True]:
|
|
# Test with indices arg
|
|
inputs.append(SampleInput(
|
|
make_tensor((S, S,), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
(index_variable(2, S, device=device), ),
|
|
make_tensor((2, S), device, dtype, low=None, high=None)),
|
|
kwargs=dict(accumulate=accumulate)))
|
|
|
|
# Test with mask arg
|
|
mask = torch.zeros(S, dtype=torch.bool) if accumulate else mask_not_all_zeros((S,))
|
|
inputs.append(SampleInput(
|
|
make_tensor((S, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(
|
|
(mask, ),
|
|
make_tensor((S,), device, dtype, low=None, high=None),),
|
|
kwargs=dict(accumulate=accumulate)))
|
|
|
|
return inputs
|
|
|
|
# Missing to test the nondeterminism of the operation
|
|
# https://github.com/pytorch/pytorch/issues/53352
|
|
def sample_inputs_index_add(op_info, device, dtype, requires_grad, **kwargs):
|
|
# These testa are pretty much the same as those from index_copy.
|
|
# Perhaps merge?
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
t = make_arg((S, S))
|
|
s = make_arg((S, S))
|
|
# non-contiguous target
|
|
t_nonctg = t.transpose(0, 1)
|
|
# non-contiguous source
|
|
s_nonctg = s.transpose(0, 1)
|
|
|
|
idx = make_arg((S,), dtype=torch.int64, low=0, high=S)
|
|
idx_nonctg = make_arg((S,), dtype=torch.int64, low=0, high=S, noncontiguous=True)
|
|
samples = [SampleInput(tensor, args=(1, idx, source))
|
|
for tensor, idx, source in product([t, t_nonctg], [idx, idx_nonctg], [s, s_nonctg])]
|
|
samples.extend(SampleInput(tensor, args=(1, idx, source), kwargs=dict(alpha=a))
|
|
for tensor, idx, source, a in product([t, t_nonctg], [idx, idx_nonctg], [s, s_nonctg], [-1, 0, 2]))
|
|
|
|
# Add scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
ts = (make_arg(size) for size in scalar_sizes)
|
|
idxs = (make_arg(size, dtype=torch.int64, low=0, high=1) for size in scalar_sizes)
|
|
ss = (make_arg(size) for size in scalar_sizes)
|
|
|
|
samples.extend(SampleInput(t, args=(0, idx, s)) for t, idx, s in product(ts, idxs, ss))
|
|
samples.extend(SampleInput(t, args=(0, idx, s), kwargs=dict(alpha=a)) for t, idx, s, a in product(ts, idxs, ss, [-1, 0, 2]))
|
|
return samples
|
|
|
|
def sample_inputs_sort(op_info, device, dtype, requires_grad, **kwargs):
|
|
def apply_grad(t):
|
|
if dtype in floating_types_and(torch.float16, torch.bfloat16):
|
|
t.requires_grad_(requires_grad)
|
|
|
|
def small_3d_unique(dtype, device):
|
|
res = torch.randperm(S * S * S, dtype=torch.int64, device=device).view(S, S, S)
|
|
res = res.to(dtype)
|
|
apply_grad(res)
|
|
return res
|
|
|
|
samples = []
|
|
|
|
# Test cases for small 3d tensors.
|
|
# Imitates legacy tests from test/test_torch.py
|
|
t = small_3d_unique(dtype, device)
|
|
dims = range(-3, 3)
|
|
flag = [True, False]
|
|
for dim, descending, stable in product(dims, flag, flag):
|
|
# default schema without stable sort
|
|
samples.append(SampleInput(t, args=(dim, descending)))
|
|
# schema with stable sort, no CUDA support yet
|
|
if torch.device(device).type == 'cpu':
|
|
samples.append(
|
|
SampleInput(t, kwargs=dict(dim=dim, descending=descending, stable=stable))
|
|
)
|
|
|
|
# Test cases for scalar tensor
|
|
scalar = torch.tensor(1, dtype=dtype, device=device)
|
|
apply_grad(scalar)
|
|
samples.append(SampleInput(scalar))
|
|
samples.append(SampleInput(scalar, args=(0,)))
|
|
samples.append(SampleInput(scalar, args=(0, True)))
|
|
# no CUDA support for stable sort yet
|
|
if not device.startswith('cuda'):
|
|
samples.append(SampleInput(scalar, kwargs=dict(stable=True)))
|
|
samples.append(SampleInput(scalar, kwargs=dict(dim=0, stable=True)))
|
|
samples.append(SampleInput(scalar, kwargs=dict(dim=0, descending=True, stable=True)))
|
|
|
|
return samples
|
|
|
|
def sample_inputs_index_fill(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = []
|
|
t = make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
fill_val = torch.tensor(-1 + 1j if t.is_complex() else -1)
|
|
# non-contiguous input
|
|
t01 = t.transpose(0, 1)
|
|
t02 = t.transpose(0, 2)
|
|
t12 = t.transpose(1, 2)
|
|
idx = index_variable(1, S, device=device)
|
|
# non-contiguous index
|
|
idx_nonctg = torch.empty_strided((S,), (2,), device=device, dtype=torch.int64)
|
|
idx_nonctg.copy_(idx)
|
|
for d in range(t.dim()):
|
|
for tensor in [t, t01, t02, t12]:
|
|
samples.append(SampleInput(tensor, args=(d, idx, fill_val)))
|
|
samples.append(SampleInput(tensor, args=(d, -idx - 1, fill_val)))
|
|
samples.append(SampleInput(tensor, args=(d, idx_nonctg, fill_val)))
|
|
return samples
|
|
|
|
def sample_inputs_max_min_binary(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
args_for_binary_op = (
|
|
((S, S, S), (S, S, S),),
|
|
((S, S, S), (S,),),
|
|
((S,), (S, S, S),),
|
|
((S, 1, S), (S, S),),
|
|
((S, S), (S, S),),
|
|
((), (),),
|
|
((S, S, S), (),),
|
|
((), (S, S, S),),
|
|
)
|
|
inputs = list((SampleInput(make_tensor(input_tensor, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor(other_tensor, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),),))
|
|
for input_tensor, other_tensor in args_for_binary_op)
|
|
return inputs
|
|
|
|
def sample_inputs_max_min_reduction_with_dim(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
args_for_reduction_with_dim = (
|
|
((S, S, S), (1,),),
|
|
((S, S, S), (1, True, ),),
|
|
((), (0,),),
|
|
((), (0, True,),),
|
|
)
|
|
inputs = list((SampleInput(make_tensor(input_tensor, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=args,))
|
|
for input_tensor, args in args_for_reduction_with_dim)
|
|
return inputs
|
|
|
|
def sample_inputs_max_min_reduction_no_dim(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
inputs.append(SampleInput(make_tensor((S, S, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),))
|
|
inputs.append(SampleInput(make_tensor((), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),))
|
|
return inputs
|
|
|
|
# Generates input tensors for testing reduction ops
|
|
def _generate_reduction_inputs(device, dtype, requires_grad):
|
|
yield make_tensor((), device, dtype, requires_grad=requires_grad)
|
|
yield make_tensor((2,), device, dtype, requires_grad=requires_grad)
|
|
yield make_tensor((2, 3), device, dtype, requires_grad=requires_grad, noncontiguous=True)
|
|
yield make_tensor((3, 2, 1, 2, 2), device, dtype, requires_grad=requires_grad)
|
|
|
|
# Generates a subset of possible dim and keepdim kwargs for a tensor
|
|
# with ndim dims appropriate for testing. If supports_multiple_dims
|
|
# is True (default) then dim kwarg can be a list of dims.
|
|
def _generate_reduction_kwargs(ndim, supports_multiple_dims=True):
|
|
for keepdim in [True, False]:
|
|
# Always test reducing inner and outer most dimensions
|
|
yield {'dim': 0, 'keepdim': keepdim}
|
|
yield {'dim': -1, 'keepdim': keepdim}
|
|
|
|
# Also reduce middle dimension
|
|
if ndim > 2:
|
|
yield {'dim': ndim // 2, 'keepdim': keepdim}
|
|
|
|
if supports_multiple_dims:
|
|
# Always test reducing all dims
|
|
yield {'dim': tuple(range(ndim)), 'keepdim': keepdim}
|
|
|
|
# Test reducing both first and last dimensions
|
|
if ndim > 1:
|
|
yield {'dim': (0, ndim - 1), 'keepdim': keepdim}
|
|
|
|
# Test reducing every other dimension starting with the second
|
|
if ndim > 3:
|
|
yield {'dim': tuple(range(1, ndim, 2)), 'keepdim': keepdim}
|
|
|
|
# Wraps sample_inputs_reduction function to provide the additional supports_multiple_dims args
|
|
def sample_inputs_reduction_wrapper(supports_multiple_dims):
|
|
# Generates sample inputs for reduction ops that contain the input tensor
|
|
# and dim and keepdim kwargs. If a reduction op needs to test additional
|
|
# args/kwargs then create a separate sample_inputs function
|
|
def fn(op_info, device, dtype, requires_grad):
|
|
inputs = []
|
|
|
|
for t in _generate_reduction_inputs(device, dtype, requires_grad):
|
|
# Add case without dim and keepdim kwargs
|
|
inputs.append(SampleInput(t))
|
|
for kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims):
|
|
inputs.append(SampleInput(t, kwargs=kwargs))
|
|
|
|
return inputs
|
|
|
|
return fn
|
|
|
|
def sample_inputs_reduction_quantile(op_info, device, dtype, requires_grad):
|
|
test_quantiles = (0.5, make_tensor((2,), device, dtype, low=0, high=1))
|
|
test_interpolations = ['linear', 'midpoint']
|
|
|
|
inputs = []
|
|
for quantiles in test_quantiles:
|
|
for t in _generate_reduction_inputs(device, dtype, requires_grad):
|
|
# Add case without dim and keepdim kwargs
|
|
inputs.append(SampleInput(t, args=(quantiles,)))
|
|
for kwargs in _generate_reduction_kwargs(t.ndim, supports_multiple_dims=False):
|
|
# Interpolation kwarg for now is only supported when providing both dim and keepdim
|
|
for interpolation in test_interpolations:
|
|
kwargs['interpolation'] = interpolation
|
|
inputs.append(SampleInput(t, args=(quantiles,), kwargs=kwargs))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_topk(op_info, device, dtype, requires_grad, **kwargs):
|
|
def get_tensor_input(size):
|
|
return make_tensor(size, device, dtype, requires_grad=requires_grad)
|
|
|
|
inputs = []
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3,)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, 1)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, -2)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, 1, True)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, -2, True)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, 1, True, True)))
|
|
inputs.append(SampleInput(get_tensor_input((S, M, S)), args=(3, -2, True, True)))
|
|
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1,)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, 0)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, -1)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, 0, True)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, -1, True)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, 0, True, True)))
|
|
inputs.append(SampleInput(get_tensor_input(()), args=(1, -1, True, True)))
|
|
|
|
return inputs
|
|
|
|
def sample_inputs_outer(op_info, device, dtype, requires_grad, **kwargs):
|
|
inputs = []
|
|
arg_a = make_tensor((S,), device, dtype, requires_grad=requires_grad)
|
|
arg_b = make_tensor((M,), device, dtype, requires_grad=requires_grad)
|
|
inputs.append(SampleInput(arg_a, args=(arg_b,)))
|
|
return inputs
|
|
|
|
def sample_inputs_dist(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
sizes = ((S, S, S), (S,), (S, 1, S), (), (S, S))
|
|
ps = (2, 4)
|
|
|
|
def generate_samples():
|
|
for size_x, size_y, p in product(sizes, sizes, ps):
|
|
yield SampleInput(make_arg(size_x), args=(make_arg(size_y), p))
|
|
|
|
return list(generate_samples())
|
|
|
|
# Missing to test the nondeterminism of the operation
|
|
# https://github.com/pytorch/pytorch/issues/53352
|
|
def sample_inputs_index_copy(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_arg(shape, low=None, high=None, dtype=dtype):
|
|
return make_tensor(shape, device=device, dtype=dtype,
|
|
low=low, high=high,
|
|
requires_grad=requires_grad)
|
|
|
|
t = make_arg((S, S))
|
|
s = make_arg((S, S))
|
|
# non-contiguous input
|
|
t01 = t.transpose(0, 1)
|
|
# non-contiguous input
|
|
s01 = s.transpose(0, 1)
|
|
|
|
# idx is a permutation of 0...S-1 for this function to be deterministic
|
|
idx = torch.randperm(S, device=device, dtype=torch.int64)
|
|
# non-contiguous index
|
|
idx_nonctg = torch.repeat_interleave(idx, 2, dim=-1)[::2]
|
|
# index_copy_ does not support negative indices
|
|
# idx_neg = -idx - 1
|
|
samples = [SampleInput(tensor, args=(1, idx, source))
|
|
for tensor, idx, source in product([t, t01], [idx, idx_nonctg], [s, s01])]
|
|
|
|
# Add scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
ts = (make_arg(size) for size in scalar_sizes)
|
|
idxs = (make_arg(size, dtype=torch.int64, low=0, high=1) for size in scalar_sizes)
|
|
ss = (make_arg(size) for size in scalar_sizes)
|
|
|
|
samples.extend(SampleInput(t, args=(0, idx, s)) for t, idx, s in product(ts, idxs, ss))
|
|
return samples
|
|
|
|
def sample_inputs_mode(op_info, device, dtype, requires_grad):
|
|
inputs = []
|
|
args = (
|
|
((S, S, S), (),),
|
|
((S, S, S), (1, ),),
|
|
((S, S, S), (1, True, ),),
|
|
((), (),),
|
|
((), (0,),),
|
|
((), (0, True,),),
|
|
)
|
|
inputs = list((SampleInput(make_tensor(input_tensor, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=args,))
|
|
for input_tensor, args in args)
|
|
return inputs
|
|
|
|
# Missing to test the nondeterminism of the operation
|
|
# https://github.com/pytorch/pytorch/issues/53352
|
|
def sample_inputs_put(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
make_idx = partial(make_tensor, low=0, dtype=torch.int64, device=device, requires_grad=False)
|
|
|
|
S = 3
|
|
|
|
def gen_inputs():
|
|
# Generic inputs
|
|
tgt_gen = (make_arg((S, S), noncontiguous=not ctg) for ctg in (True, False))
|
|
src_gen = (make_arg((S,), noncontiguous=not ctg) for ctg in (True, False))
|
|
idx = torch.randperm(S * S, device=device, dtype=torch.int64)[:S]
|
|
idx_nonctg = torch.repeat_interleave(idx, 2, dim=-1)[::2]
|
|
idx_neg = -idx - 1
|
|
idx_list = [idx, idx_nonctg, idx_neg]
|
|
for tgt, idx, src, acc in product(tgt_gen, idx_list, src_gen, (True, False)):
|
|
yield SampleInput(input=tgt, args=(idx, src, acc))
|
|
|
|
# Scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
tgt_gen = (make_arg(size) for size in scalar_sizes)
|
|
idx_gen = (make_idx(size, high=1) for size in scalar_sizes)
|
|
src_gen = (make_arg(size) for size in scalar_sizes)
|
|
for tgt, idx, src, acc in product(tgt_gen, idx_gen, src_gen, (True, False)):
|
|
yield SampleInput(input=tgt, args=(idx, src, acc))
|
|
|
|
# Empty cases
|
|
tgt_sizes = [(0,), (), (1,), (3, 2)]
|
|
tgt_gen = (make_arg(size) for size in tgt_sizes)
|
|
idx = make_idx((0,), high=1)
|
|
src = make_arg((0,))
|
|
for tgt, acc in product(tgt, (True, False)):
|
|
yield SampleInput(input=tgt, args=(idx, src, acc))
|
|
|
|
return list(gen_inputs())
|
|
|
|
def sample_inputs_take(op_info, device, dtype, requires_grad):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
make_idx = partial(make_tensor, low=0, dtype=torch.int64, device=device, requires_grad=False)
|
|
|
|
S = 3
|
|
|
|
def gen_inputs():
|
|
# Generic inputs: take S elements out of S * S
|
|
src_gen = (make_arg((S, S), noncontiguous=not ctg) for ctg in (True, False))
|
|
idx = make_idx((S,), high=S * S)
|
|
idx_nonctg = make_idx((S,), high=S * S, noncontiguous=True)
|
|
idx_neg = -idx - 1
|
|
idx_list = [idx, idx_nonctg, idx_neg]
|
|
for src, idx in product(src_gen, idx_list):
|
|
yield SampleInput(input=src, args=(idx,))
|
|
|
|
# Scalar cases
|
|
scalar_sizes = [(), (1,)]
|
|
src_gen = (make_arg(size) for size in scalar_sizes)
|
|
idx_gen = (make_idx(size, high=1) for size in scalar_sizes)
|
|
for src, idx in product(src_gen, idx_gen):
|
|
yield SampleInput(input=src, args=(idx,))
|
|
|
|
# Empty cases
|
|
src_sizes = [(0,), (), (1,), (3, 2)]
|
|
src_gen = (make_arg(size) for size in src_sizes)
|
|
idx = make_idx((0,), high=1)
|
|
for src in src_gen:
|
|
yield SampleInput(input=src, args=(idx,))
|
|
|
|
return list(gen_inputs())
|
|
|
|
def sample_movedim_moveaxis(op_info, device, dtype, requires_grad):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((4, 3, 2, 1), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=((0, 1, 2, 3), (3, 2, 1, 0))),
|
|
SampleInput(
|
|
make_tensor((4, 3, 2, 1), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=((0, -1, -2, -3), (-3, -2, -1, -0)))
|
|
)
|
|
|
|
|
|
def sample_repeat_tile(op_info, device, dtype, requires_grad, **kwargs):
|
|
rep_dims = ((), (0, ), (1, ), (0, 2), (1, 1), (2, 3), (2, 3, 2), (0, 2, 3), (2, 1, 1, 1),)
|
|
shapes = ((), (0,), (2,), (3, 0), (3, 2), (3, 0, 1))
|
|
|
|
if requires_grad:
|
|
# Tests for variant_consistency_jit, grad, gradgrad
|
|
# are slower. Use smaller bags of `rep_dims` and `shapes`
|
|
# in this case.
|
|
rep_dims = ((), (0, ), (0, 2), (1, 1), (2, 3), (1, 3, 2), (3, 1, 1)) # type: ignore
|
|
shapes = ((), (0,), (2,), (3, 2)) # type: ignore
|
|
|
|
tensors = [make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad) for shape in shapes]
|
|
|
|
samples = []
|
|
for rep_dim, tensor in product(rep_dims, tensors):
|
|
for t in (tensor, tensor.T):
|
|
if op_info.name == 'repeat' and len(rep_dim) >= t.dim():
|
|
# `torch.repeat` errors for `len(rep_dims) < t.dim()`,
|
|
# so we filter such combinations.
|
|
samples.append(SampleInput(t, args=(rep_dim,),))
|
|
elif op_info.name == 'tile':
|
|
samples.append(SampleInput(t, args=(rep_dim,),))
|
|
|
|
return samples
|
|
|
|
# TODO: reconcile with torch.linalg.det and torch.linalg.slogdet
|
|
# Creates matrices with a positive nonzero determinant
|
|
def sample_inputs_logdet(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_nonzero_det(A, *, sign=1, min_singular_value=0.1, **kwargs):
|
|
u, s, v = A.svd()
|
|
s.clamp_(min=min_singular_value)
|
|
A = torch.matmul(u, torch.matmul(torch.diag_embed(s), v.transpose(-2, -1)))
|
|
det = A.det()
|
|
if sign is not None:
|
|
if A.dim() == 2:
|
|
det = det.item()
|
|
if (det < 0) ^ (sign < 0):
|
|
A[0, :].neg_()
|
|
else:
|
|
cond = ((det < 0) ^ (sign < 0)).nonzero()
|
|
if cond.size(0) > 0:
|
|
for i in range(cond.size(0)):
|
|
A[list(cond[i])][0, :].neg_()
|
|
return A
|
|
|
|
samples = []
|
|
|
|
# cases constructed using make_tensor()
|
|
tensor_shapes = (
|
|
(S, S),
|
|
(1, 1),
|
|
(3, 3, S, S),
|
|
(3, 3, 1, 1)
|
|
)
|
|
|
|
for shape in tensor_shapes:
|
|
t = make_tensor(shape, device=device, dtype=dtype)
|
|
d = make_nonzero_det(t).requires_grad_(requires_grad)
|
|
samples.append(SampleInput(d))
|
|
|
|
# cases constructed using:
|
|
# 1) make_symmetric_matrices
|
|
# 2) make_symmetric_pd_matrices
|
|
# 3) make_fullrank_matrices_with_distinct_singular_values
|
|
symmetric_shapes = (
|
|
(S, S),
|
|
(3, S, S),
|
|
)
|
|
|
|
|
|
def _helper(constructor, *shape, **kwargs):
|
|
t = constructor(*shape, device=device, dtype=dtype)
|
|
d = make_nonzero_det(t, **kwargs).requires_grad_(requires_grad)
|
|
samples.append(SampleInput(d))
|
|
|
|
for shape in symmetric_shapes:
|
|
_helper(make_symmetric_matrices, *shape)
|
|
_helper(make_symmetric_pd_matrices, *shape)
|
|
_helper(make_fullrank_matrices_with_distinct_singular_values, *shape, min_singular_value=0)
|
|
|
|
return tuple(samples)
|
|
|
|
def np_unary_ufunc_integer_promotion_wrapper(fn):
|
|
# Wrapper that passes PyTorch's default scalar
|
|
# type as an argument to the wrapped NumPy
|
|
# unary ufunc when given an integer input.
|
|
# This mimicks PyTorch's integer->floating point
|
|
# type promotion.
|
|
#
|
|
# This is necessary when NumPy promotes
|
|
# integer types to double, since PyTorch promotes
|
|
# integer types to the default scalar type.
|
|
|
|
# Helper to determine if promotion is needed
|
|
def is_integral(dtype):
|
|
return dtype in [np.bool_, bool, np.uint8, np.int8, np.int16, np.int32, np.int64]
|
|
|
|
# NOTE: Promotion in PyTorch is from integer types to the default dtype
|
|
np_dtype = torch_to_numpy_dtype_dict[torch.get_default_dtype()]
|
|
|
|
@wraps(fn)
|
|
def wrapped_fn(x):
|
|
if is_integral(x.dtype):
|
|
return fn(x, dtype=np_dtype)
|
|
return fn(x)
|
|
|
|
return wrapped_fn
|
|
|
|
|
|
# Metadata class for Fast Fourier Transforms in torch.fft.
|
|
class SpectralFuncInfo(OpInfo):
|
|
"""Operator information for torch.fft transforms. """
|
|
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref=None, # Reference implementation (probably in np.fft namespace)
|
|
dtypes=floating_and_complex_types(),
|
|
ndimensional: bool, # Whether dim argument can be a tuple
|
|
decorators=None,
|
|
**kwargs):
|
|
decorators = list(decorators) if decorators is not None else []
|
|
decorators += [
|
|
skipCPUIfNoMkl,
|
|
skipCUDAIfRocm,
|
|
# gradgrad is quite slow
|
|
DecorateInfo(slowTest, 'TestGradients', 'test_fn_gradgrad'),
|
|
]
|
|
|
|
super().__init__(name=name,
|
|
dtypes=dtypes,
|
|
decorators=decorators,
|
|
**kwargs)
|
|
self.ref = ref if ref is not None else _getattr_qual(np, name)
|
|
self.ndimensional = ndimensional
|
|
|
|
|
|
def sample_inputs(self, device, dtype, requires_grad=False, **kwargs):
|
|
nd_tensor = make_tensor((S, S + 1, S + 2), device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
tensor = make_tensor((31,), device, dtype, low=None, high=None,
|
|
requires_grad=requires_grad)
|
|
|
|
if self.ndimensional:
|
|
return [
|
|
SampleInput(nd_tensor, kwargs=dict(s=(3, 10), dim=(1, 2), norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(s=(8,))),
|
|
SampleInput(tensor),
|
|
|
|
*(SampleInput(nd_tensor, kwargs=dict(dim=dim))
|
|
for dim in [-1, -2, -3, (0, -1)]),
|
|
]
|
|
else:
|
|
return [
|
|
SampleInput(nd_tensor, kwargs=dict(n=10, dim=1, norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(norm='ortho')),
|
|
SampleInput(nd_tensor, kwargs=dict(n=7)),
|
|
SampleInput(tensor),
|
|
|
|
*(SampleInput(nd_tensor, kwargs=dict(dim=dim))
|
|
for dim in [-1, -2, -3]),
|
|
]
|
|
|
|
|
|
class ShapeFuncInfo(OpInfo):
|
|
"""Early version of a specialized OpInfo for Shape manipulating operations like tile and roll"""
|
|
def __init__(self,
|
|
name, # the string name of the function
|
|
*,
|
|
ref, # a reference function
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=None,
|
|
dtypesIfCUDA=None,
|
|
dtypesIfROCM=None,
|
|
sample_inputs_func=None,
|
|
**kwargs):
|
|
super(ShapeFuncInfo, self).__init__(name,
|
|
dtypes=dtypes,
|
|
dtypesIfCPU=dtypesIfCPU,
|
|
dtypesIfCUDA=dtypesIfCUDA,
|
|
dtypesIfROCM=dtypesIfROCM,
|
|
sample_inputs_func=sample_inputs_func,
|
|
**kwargs)
|
|
self.ref = ref
|
|
|
|
def sample_inputs_foreach(self, device, dtype, N):
|
|
tensors = [make_tensor((N, N), device, dtype) for _ in range(N)]
|
|
return tensors
|
|
|
|
|
|
def get_foreach_method_names(name):
|
|
# get torch inplace reference function
|
|
method_name = "_foreach_" + name
|
|
method_name_inplace = "_foreach_" + name + "_"
|
|
|
|
method = getattr(torch, method_name, None)
|
|
method_inplace = getattr(torch, method_name_inplace, None)
|
|
|
|
ref = getattr(torch.Tensor, name, None)
|
|
|
|
return method, method_inplace, ref
|
|
|
|
class ForeachUnaryFuncInfo(OpInfo):
|
|
"""Early version of a specialized OpInfo for foreach unary functions"""
|
|
def __init__(self,
|
|
name,
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCPU=all_types_and_complex(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half),
|
|
safe_casts_outputs=True,
|
|
sample_inputs_func=sample_inputs_foreach,
|
|
**kwargs):
|
|
super(ForeachUnaryFuncInfo, self).__init__("_foreach_" + name,
|
|
dtypes=dtypes,
|
|
dtypesIfCPU=dtypesIfCPU,
|
|
dtypesIfCUDA=dtypesIfCUDA,
|
|
dtypesIfROCM=dtypesIfROCM,
|
|
safe_casts_outputs=safe_casts_outputs,
|
|
sample_inputs_func=sample_inputs_func,
|
|
**kwargs)
|
|
|
|
foreach_method, foreach_method_inplace, torch_ref_method = get_foreach_method_names(name)
|
|
self.method_variant = foreach_method
|
|
self.inplace_variant = foreach_method_inplace
|
|
self.ref = torch_ref_method
|
|
|
|
|
|
def sample_inputs_linalg_cholesky_inverse(op_info, device, dtype, requires_grad=False):
|
|
# Generate Cholesky factors of positive-definite (non-singular) Hermitian (symmetric) matrices
|
|
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
|
|
inputs = (
|
|
torch.zeros(0, 0, dtype=dtype, device=device), # 0x0 matrix
|
|
torch.zeros(0, 2, 2, dtype=dtype, device=device), # zero batch of matrices
|
|
random_hermitian_pd_matrix(S, dtype=dtype, device=device), # single matrix
|
|
random_hermitian_pd_matrix(S, 2, dtype=dtype, device=device), # batch of matrices
|
|
)
|
|
test_cases = (torch.linalg.cholesky(a) for a in inputs)
|
|
out = []
|
|
for a in test_cases:
|
|
a.requires_grad = requires_grad
|
|
out.append(SampleInput(a))
|
|
out.append(SampleInput(a, kwargs=dict(upper=True)))
|
|
return out
|
|
|
|
def sample_inputs_linalg_lstsq(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
from torch.testing._internal.common_utils import random_well_conditioned_matrix
|
|
out = []
|
|
for batch in ((), (3,), (3, 3)):
|
|
shape = batch + (3, 3)
|
|
# NOTE: inputs are not marked with `requires_grad` since
|
|
# linalg_lstsq is not differentiable
|
|
a = random_well_conditioned_matrix(*shape, dtype=dtype, device=device)
|
|
b = make_tensor(shape, device, dtype, low=None, high=None)
|
|
out.append(SampleInput(a, args=(b,)))
|
|
return out
|
|
|
|
def sample_inputs_householder_product(op_info, device, dtype, requires_grad, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.householder_product (torch.orgqr).
|
|
The first argument should be a square matrix or batch of square matrices, the second argument is a vector or batch of vectors.
|
|
Empty, square, rectangular, batched square and batched rectangular input is generated.
|
|
"""
|
|
# Each column of the matrix is getting multiplied many times leading to very large values for
|
|
# the Jacobian matrix entries and making the finite-difference result of grad check less accurate.
|
|
# That's why gradcheck with the default range [-9, 9] fails and [-2, 2] is used here.
|
|
samples = (
|
|
SampleInput(make_tensor((S, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((S,), device, dtype, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((S + 1, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((S,), device, dtype, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((2, 1, S, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((2, 1, S,), device, dtype, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((2, 1, S + 1, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((2, 1, S,), device, dtype, low=-2, high=2, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((0, 0), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(make_tensor((0,), device, dtype, low=None, high=None, requires_grad=requires_grad),)),
|
|
|
|
SampleInput(make_tensor((S, S), device, dtype, low=-2, high=2, requires_grad=requires_grad),
|
|
args=(make_tensor((0,), device, dtype, low=None, high=None, requires_grad=requires_grad),)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_linalg_cholesky(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates always positive-definite input for torch.linalg.cholesky using
|
|
random_hermitian_pd_matrix.
|
|
The input is generated as the itertools.product of 'batches' and 'ns'.
|
|
In total this function generates 8 SampleInputs
|
|
'batches' cases include:
|
|
() - single input,
|
|
(0,) - zero batched dimension,
|
|
(2,) - batch of two matrices,
|
|
(1, 1) - 1x1 batch of matrices
|
|
'ns' gives 0x0 and 5x5 matrices.
|
|
Zeros in dimensions are edge cases in the implementation and important to test for in order to avoid unexpected crashes.
|
|
"""
|
|
from torch.testing._internal.common_utils import random_hermitian_pd_matrix
|
|
|
|
batches = [(), (0, ), (2, ), (1, 1)]
|
|
ns = [5, 0]
|
|
out = []
|
|
for batch, n in product(batches, ns):
|
|
a = random_hermitian_pd_matrix(n, *batch, dtype=dtype, device=device)
|
|
a.requires_grad = requires_grad
|
|
out.append(SampleInput(a))
|
|
return out
|
|
|
|
def sample_inputs_symeig(op_info, device, dtype, requires_grad=False):
|
|
out = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
|
|
for o in out:
|
|
o.kwargs = {"upper": bool(np.random.choice([True, False])),
|
|
"eigenvectors": True}
|
|
# A gauge-invariant function
|
|
o.output_process_fn_grad = lambda output: (output[0], abs(output[1]))
|
|
return out
|
|
|
|
|
|
def sample_inputs_linalg_eigh(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.eigh with UPLO="U" or "L" keyword argument.
|
|
"""
|
|
def out_fn(output):
|
|
return output[0], abs(output[1])
|
|
|
|
samples = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
for sample in samples:
|
|
sample.kwargs = {"UPLO": np.random.choice(["L", "U"])}
|
|
sample.output_process_fn_grad = out_fn
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_linalg_slogdet(op_info, device, dtype, requires_grad=False):
|
|
def out_fn(output):
|
|
return output[1]
|
|
|
|
samples = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad)
|
|
for sample in samples:
|
|
sample.output_process_fn_grad = out_fn
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_linalg_pinv_hermitian(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.pinv with hermitian=True keyword argument.
|
|
"""
|
|
out = sample_inputs_linalg_invertible(op_info, device, dtype, requires_grad, **kwargs)
|
|
for o in out:
|
|
o.kwargs = {"hermitian": True}
|
|
return out
|
|
|
|
def sample_inputs_linalg_solve(op_info, device, dtype, requires_grad=False, vector_rhs_allowed=True, **kwargs):
|
|
"""
|
|
This function generates always solvable input for torch.linalg.solve
|
|
Using random_fullrank_matrix_distinct_singular_value gives a non-singular (=invertible, =solvable) matrices 'a'.
|
|
The first input to torch.linalg.solve is generated as the itertools.product of 'batches' and 'ns'.
|
|
The second input is generated as the product of 'batches', 'ns' and 'nrhs'.
|
|
In total this function generates 18 SampleInputs
|
|
'batches' cases include:
|
|
() - single input,
|
|
(0,) - zero batched dimension,
|
|
(2,) - batch of two matrices.
|
|
'ns' gives 0x0 and 5x5 matrices.
|
|
and 'nrhs' controls the number of vectors to solve for:
|
|
() - using 1 as the number of vectors implicitly
|
|
(1,) - same as () but explicit
|
|
(3,) - solve for 3 vectors.
|
|
Zeros in dimensions are edge cases in the implementation and important to test for in order to avoid unexpected crashes.
|
|
'vector_rhs_allowed' controls whether to include nrhs = () to the list of SampleInputs.
|
|
torch.solve / triangular_solve / cholesky_solve (opposed to torch.linalg.solve) do not allow
|
|
1D tensors (vectors) as the right-hand-side.
|
|
Once torch.solve / triangular_solve / cholesky_solve and its testing are removed,
|
|
'vector_rhs_allowed' may be removed here as well.
|
|
"""
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
batches = [(), (0, ), (2, )]
|
|
ns = [5, 0]
|
|
if vector_rhs_allowed:
|
|
nrhs = [(), (1,), (3,)]
|
|
else:
|
|
nrhs = [(1,), (3,)]
|
|
out = []
|
|
for n, batch, rhs in product(ns, batches, nrhs):
|
|
a = random_fullrank_matrix_distinct_singular_value(n, *batch, dtype=dtype, device=device)
|
|
a.requires_grad = requires_grad
|
|
b = torch.randn(*batch, n, *rhs, dtype=dtype, device=device)
|
|
b.requires_grad = requires_grad
|
|
out.append(SampleInput(a, args=(b,)))
|
|
return out
|
|
|
|
|
|
def sample_inputs_legacy_solve(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates always solvable input for legacy solve functions
|
|
(the ones that are not in torch.linalg module).
|
|
The difference from sample_inputs_linalg_solve is that here the right-hand-side of A x = b equation
|
|
should have b.ndim >= 2, vectors are not allowed.
|
|
Also the arguments order is swapped.
|
|
"""
|
|
out = sample_inputs_linalg_solve(
|
|
op_info, device, dtype, requires_grad=requires_grad, vector_rhs_allowed=False
|
|
)
|
|
|
|
# Reverses tensor order
|
|
for sample in out:
|
|
sample.input, sample.args = sample.args[0], (sample.input,)
|
|
|
|
return out
|
|
|
|
|
|
def sample_inputs_lu(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
# not needed once OpInfo tests support Iterables
|
|
def generate_samples():
|
|
batch_shapes = ((), (3,), (3, 3))
|
|
for batch_shape, get_infos in product(batch_shapes, (True, False)):
|
|
shape = batch_shape + (S, S)
|
|
input = make_tensor(shape, device, dtype, requires_grad=requires_grad, low=None, high=None)
|
|
yield SampleInput(input, args=(True, get_infos))
|
|
|
|
return list(generate_samples())
|
|
|
|
|
|
def sample_inputs_std_var(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensor_nd = make_tensor((S, S, S), device=device, dtype=dtype,
|
|
low=None, high=None, requires_grad=requires_grad)
|
|
tensor_1d = make_tensor((S,), device=device, dtype=dtype,
|
|
low=None, high=None, requires_grad=requires_grad)
|
|
|
|
return [
|
|
SampleInput(tensor_nd),
|
|
SampleInput(tensor_nd, kwargs=dict(dim=1)),
|
|
SampleInput(tensor_nd, kwargs=dict(dim=1, unbiased=True, keepdim=True)),
|
|
SampleInput(tensor_1d, kwargs=dict(dim=0, unbiased=True, keepdim=True)),
|
|
SampleInput(tensor_1d, kwargs=dict(dim=0, unbiased=False, keepdim=False)),
|
|
]
|
|
|
|
|
|
def _sample_inputs_svd(op_info, device, dtype, requires_grad=False, is_linalg_svd=False):
|
|
"""
|
|
This function generates input for torch.svd with distinct singular values so that autograd is always stable.
|
|
Matrices of different size:
|
|
square matrix - S x S size
|
|
tall marix - S x (S-2)
|
|
wide matrix - (S-2) x S
|
|
and batched variants of above are generated.
|
|
Each SampleInput has a function 'output_process_fn_grad' attached to it that is applied on the output of torch.svd
|
|
It is needed for autograd checks, because backward of svd doesn't work for an arbitrary loss function.
|
|
"""
|
|
from torch.testing._internal.common_utils import random_fullrank_matrix_distinct_singular_value
|
|
|
|
# svd and linalg.svd returns V and V.conj().T, respectively. So we need to slice
|
|
# along different dimensions when needed (this is used by
|
|
# test_cases2:wide_all and wide_all_batched below)
|
|
if is_linalg_svd:
|
|
def slice_V(v):
|
|
return v[..., :(S - 2), :]
|
|
|
|
def uv_loss(usv):
|
|
u00 = usv[0][0, 0]
|
|
v00_conj = usv[2][0, 0]
|
|
return u00 * v00_conj
|
|
else:
|
|
def slice_V(v):
|
|
return v[..., :, :(S - 2)]
|
|
|
|
def uv_loss(usv):
|
|
u00 = usv[0][0, 0]
|
|
v00_conj = usv[2][0, 0].conj()
|
|
return u00 * v00_conj
|
|
|
|
test_cases1 = ( # some=True (default)
|
|
# loss functions for complex-valued svd have to be "gauge invariant",
|
|
# i.e. loss functions shouldn't change when sigh of the singular vectors change.
|
|
# the simplest choice to satisfy this requirement is to apply 'abs'.
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device),
|
|
lambda usv: usv[1]), # 'check_grad_s'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device),
|
|
lambda usv: abs(usv[0])), # 'check_grad_u'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device),
|
|
lambda usv: abs(usv[2])), # 'check_grad_v'
|
|
# this test is important as it checks the additional term that is non-zero only for complex-valued inputs
|
|
# and when the loss function depends both on 'u' and 'v'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device),
|
|
uv_loss), # 'check_grad_uv'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device)[:(S - 2)],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2][..., :, :(S - 2)]))), # 'wide'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device)[:, :(S - 2)],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2]))), # 'tall'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device),
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2]))), # 'batched'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device)[..., :(S - 2), :],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2]))), # 'wide_batched'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device)[..., :, :(S - 2)],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(usv[2]))), # 'tall_batched'
|
|
)
|
|
test_cases2 = ( # some=False
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device)[:(S - 2)],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(slice_V(usv[2])))), # 'wide_all'
|
|
(random_fullrank_matrix_distinct_singular_value(S, dtype=dtype).to(device)[:, :(S - 2)],
|
|
lambda usv: (abs(usv[0][:, :(S - 2)]), usv[1], abs(usv[2]))), # 'tall_all'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device)[..., :(S - 2), :],
|
|
lambda usv: (abs(usv[0]), usv[1], abs(slice_V(usv[2])))), # 'wide_all_batched'
|
|
(random_fullrank_matrix_distinct_singular_value(S, 2, dtype=dtype).to(device)[..., :, :(S - 2)],
|
|
lambda usv: (abs(usv[0][..., :, :(S - 2)]), usv[1], abs(usv[2]))), # 'tall_all_batched'
|
|
)
|
|
|
|
out = []
|
|
for a, out_fn in test_cases1:
|
|
a.requires_grad = requires_grad
|
|
if is_linalg_svd:
|
|
kwargs = {'full_matrices': False}
|
|
else:
|
|
kwargs = {'some': True}
|
|
out.append(SampleInput(a, kwargs=kwargs, output_process_fn_grad=out_fn))
|
|
|
|
for a, out_fn in test_cases2:
|
|
a.requires_grad = requires_grad
|
|
if is_linalg_svd:
|
|
kwargs = {'full_matrices': True}
|
|
else:
|
|
kwargs = {'some': False}
|
|
out.append(SampleInput(a, kwargs=kwargs, output_process_fn_grad=out_fn))
|
|
|
|
return out
|
|
|
|
# Based on erstwhile method_tests tests & some tensor_op_tests for pow
|
|
def sample_inputs_pow(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = []
|
|
|
|
if dtype in [torch.float16, torch.bfloat16, torch.float32, torch.float64]:
|
|
test_cases = (
|
|
((2, 2), 0, 5, 1e-3, requires_grad, (2, 2), 0, 1, 0.1, requires_grad, False),
|
|
((2, 2), 0, 5, 1e-3, requires_grad, (1,), 0, 1, 0.1, requires_grad, False),
|
|
((), 1e-3, 1e-3 + 1, 0, True, (), 0.1, 1.1, 0, False, False),
|
|
((2, 2), 0, 5, 1e-3, requires_grad, (), 0.1, 1.1, 1, False, False),
|
|
)
|
|
tests_require_resizing = (
|
|
((1,), 0, 5, 1e-3, requires_grad, (2, 2), 0, 1, 0.1, requires_grad, True),
|
|
((2, 1, 2), 0, 5, 1e-3, requires_grad, (1, 2, 1), 0, 1, 0.1, requires_grad, True),
|
|
((), 1e-3, 1e-3 + 1, 0, True, (1, S, 1), 0, 1, 0.1, requires_grad, True),
|
|
)
|
|
cases = test_cases + tests_require_resizing
|
|
samples = list(SampleInput(make_tensor(shape_b, low=low_b, high=high_b,
|
|
requires_grad=b_grad, device=device,
|
|
dtype=dtype) + additive_b,
|
|
args=(make_tensor(shape_e, low=low_e, high=high_e,
|
|
requires_grad=e_grad, device=device,
|
|
dtype=dtype) + additive_e,),
|
|
broadcasts_input=broadcasts_input)
|
|
for shape_b, low_b, high_b, additive_b, b_grad, shape_e, low_e,
|
|
high_e, additive_e, e_grad, broadcasts_input in cases)
|
|
tensor_scalar_inputs = (
|
|
((2, 2), 0, 5, 1e-3, requires_grad, (3.14,)),
|
|
((), 1e-3, 1e-3 + 1, 0, True, (3.14,))
|
|
)
|
|
more_samples = list(SampleInput(make_tensor(shape, dtype=dtype, device=device,
|
|
high=high, low=low,
|
|
requires_grad=b_grad) + additive,
|
|
args=exp)
|
|
for shape, low, high, additive, b_grad, exp in tensor_scalar_inputs)
|
|
samples = [*samples, *more_samples]
|
|
elif dtype in [torch.complex64, torch.complex128]:
|
|
args_tuple = (
|
|
((2, 2), 0, 5, requires_grad, (3.14,)),
|
|
((), 0, 1, True, (3.14,)),
|
|
((), 0, 1, True, (3.14j,))
|
|
)
|
|
samples = list(SampleInput(make_tensor(shape, dtype=dtype, device=device,
|
|
high=high, low=low,
|
|
requires_grad=b_grad) + 1e-3 * (1 + 1j),
|
|
args=arg)
|
|
for shape, low, high, b_grad, arg in args_tuple)
|
|
elif dtype == torch.bool:
|
|
arg_tuple = (0, 1, 1., 2.3)
|
|
samples = list(SampleInput(make_tensor((2, 2), device=device, dtype=dtype,
|
|
requires_grad=requires_grad),
|
|
args=(arg,))
|
|
for arg in arg_tuple)
|
|
dtypes_list = [torch.float64, torch.float32, torch.int64, torch.int32]
|
|
more_samples = list(SampleInput(make_tensor((2, 2), device, dtype=torch.bool,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor((2, 2), device, dtype=dtype,
|
|
requires_grad=requires_grad),))
|
|
for dtype in dtypes_list)
|
|
samples = [*samples, *more_samples]
|
|
samples.append(SampleInput(make_tensor((2, 2, 2), device, dtype=torch.bool,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor((2, 1), device, dtype=torch.float64,
|
|
requires_grad=requires_grad),)))
|
|
else:
|
|
exp_tuple = (1, 2, 3)
|
|
samples = list(SampleInput(make_tensor((2, 2), device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(arg,))
|
|
for arg in exp_tuple)
|
|
samples.append(SampleInput(make_tensor((2, 2), device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor((2, 2), device, dtype,
|
|
requires_grad=requires_grad),)))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_svd(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
return _sample_inputs_svd(op_info, device, dtype, requires_grad, is_linalg_svd=False)
|
|
|
|
def sample_inputs_linalg_svd(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
return _sample_inputs_svd(op_info, device, dtype, requires_grad, is_linalg_svd=True)
|
|
|
|
def sample_inputs_eig(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
eigvecs = make_tensor((S, S), device=device, dtype=dtype,
|
|
low=None, high=None)
|
|
eigvals = make_tensor((S,), device=device, dtype=dtype,
|
|
low=None, high=None)
|
|
# we produce only diagonazible inputs which do not have
|
|
# complex eigenvalues for real inputs, as there is no
|
|
# backward implementation for real inputs with complex
|
|
# eigenvalues yet.
|
|
input = (eigvecs * eigvals.unsqueeze(-2)) @ eigvecs.inverse()
|
|
input.requires_grad_(requires_grad)
|
|
|
|
def process_output(eigpair):
|
|
eigvals, eigvecs = eigpair
|
|
if dtype.is_complex:
|
|
# eig produces eigenvectors which are normalized to 1 norm.
|
|
# Note that if v is an eigenvector, so is v * e^{i \phi},
|
|
# and |v| = |v * e^{i \phi}| = 1.
|
|
# This, however, makes the eigenvector backward computation process
|
|
# rather unstable unless the objective function is gauge-invariant,
|
|
# that is if f(z) == f(|z|), for example.
|
|
# Hence for complex inputs we ignore the phases and return only
|
|
# the absolute values.
|
|
return eigvals, eigvecs.abs()
|
|
else:
|
|
return eigvals, eigvecs
|
|
|
|
return [
|
|
SampleInput(
|
|
input,
|
|
kwargs=dict(eigenvectors=True),
|
|
output_process_fn_grad=process_output
|
|
),
|
|
]
|
|
|
|
def sample_inputs_linalg_qr(op_info, device, dtype, requires_grad=False, **kwargs):
|
|
"""
|
|
This function generates input for torch.linalg.qr
|
|
The input is generated as the itertools.product of 'batches' and 'ns'.
|
|
"""
|
|
# TODO: add 0 to 'ns' and (0, ) to 'batches'
|
|
# Currently tests fail most probably because of
|
|
# https://github.com/pytorch/pytorch/issues/50576
|
|
batches = [(), (2, ), (1, 1)]
|
|
ns = [2, 5]
|
|
out = []
|
|
for batch, (m, n) in product(batches, product(ns, ns)):
|
|
a = torch.randn(*batch, m, n, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
out.append(SampleInput(a))
|
|
return out
|
|
|
|
def sample_inputs_flip(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = (
|
|
make_tensor((S, M, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((S, 0, M), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
)
|
|
|
|
dims = ((0, 1, 2), (0,), (0, 2), (-1,), ())
|
|
|
|
samples = [SampleInput(tensor, kwargs={'dims': dim}) for tensor, dim in product(tensors, dims)]
|
|
|
|
return samples
|
|
|
|
def sample_inputs_fliplr_flipud(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = (
|
|
make_tensor((S, M, S), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((S, 0, M), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
)
|
|
return [SampleInput(tensor) for tensor in tensors]
|
|
|
|
# TODO: clamp shares tensors among its sample inputs --- we should prohibit this!
|
|
def sample_inputs_clamp(op_info, device, dtype, requires_grad, **kwargs):
|
|
tensors = (
|
|
make_tensor((2, 3, 2), device=device, dtype=dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((2, 0, 3), device=device, dtype=dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
if dtype is torch.uint8:
|
|
min_max_vals = ((2, 5), (3, 7))
|
|
else:
|
|
min_max_vals = ((0, 1), (-1, 1))
|
|
output = [SampleInput(tensor, args=vals) for tensor, vals in product(tensors, min_max_vals)]
|
|
output += [SampleInput(tensors[0], args=(0.5, None)), SampleInput(tensors[0], args=(None, 0.5))]
|
|
empty_tensor = make_tensor((), device=device, dtype=dtype, low=None, high=None, requires_grad=requires_grad)
|
|
output += [SampleInput(empty_tensor, args=(0.0, 1.0)), ]
|
|
return output
|
|
|
|
def sample_kwargs_clamp(device, dtype, input):
|
|
if dtype is torch.uint8:
|
|
min_val, max_val = (random.randint(1, 3), random.randint(4, 8))
|
|
elif dtype.is_floating_point:
|
|
min_val, max_val = (random.uniform(-8, 0), random.uniform(1, 8)) # type: ignore
|
|
else:
|
|
min_val, max_val = (random.randint(-8, 0), random.randint(1, 8)) # type: ignore
|
|
return {'min': min_val, 'max': max_val}, {'a_min': min_val, 'a_max': max_val}
|
|
|
|
def sample_inputs_cumprod(op_info, device, dtype, requires_grad, **kwargs):
|
|
def make_arg(shape):
|
|
# shrink values to be in the interval [-1, +1] for better precision in gradgradcheck
|
|
return make_tensor(shape, device, dtype, low=-1, high=+1, requires_grad=requires_grad)
|
|
|
|
def prod_zeros(dim_select):
|
|
assert len(dim_select) == 2
|
|
result = make_arg(3 * (S,))
|
|
with torch.no_grad():
|
|
result.narrow(dim_select[0], 0, 1).narrow(dim_select[1], 1, 1).zero_()
|
|
result.narrow(dim_select[0], 2, 1).narrow(dim_select[1], 3, 1).zero_()
|
|
result.narrow(dim_select[0], 4, 1).narrow(dim_select[1], 3, 1).zero_()
|
|
return result
|
|
|
|
# will not be needed once OpInfo tests suport Iterables
|
|
def sample_generator():
|
|
for dim in range(3):
|
|
yield SampleInput(make_arg((S, S, S)), args=(dim,))
|
|
# Scalar tensors and empty tensor
|
|
for size in [(), (1,), (0,)]:
|
|
yield SampleInput(make_arg(size), args=(0,))
|
|
|
|
yield SampleInput(prod_zeros([0, 1]), args=(1,))
|
|
yield SampleInput(prod_zeros([0, 2]), args=(1,))
|
|
yield SampleInput(prod_zeros([1, 2]), args=(1,))
|
|
|
|
# test dtype kwarg
|
|
yield SampleInput(prod_zeros([1, 2]), args=(1,), kwargs={'dtype': dtype})
|
|
|
|
return list(sample_generator())
|
|
|
|
def sample_inputs_copysign(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _make_tensor(*shape, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
cases = [
|
|
# no broadcast
|
|
((S, S, S), (S, S, S), False),
|
|
# broadcast rhs
|
|
((S, S, S), (S, S), False),
|
|
|
|
# scalar
|
|
((S, S), 3.14, False),
|
|
# scalar positive zero
|
|
((S, S), 0.0, False),
|
|
# scalar negative zero
|
|
((S, S), -0.0, False),
|
|
]
|
|
|
|
# broadcast lhs
|
|
cases.append(((S, S), (S, S, S), True))
|
|
# broadcast all
|
|
cases.append(((S, 1, S), (M, S), True))
|
|
|
|
def generator():
|
|
for input_shape, arg_val, broadcasts_input in cases:
|
|
if isinstance(arg_val, tuple):
|
|
arg = _make_tensor(*arg_val)
|
|
else:
|
|
# arg_val is scalar
|
|
arg = arg_val
|
|
|
|
yield SampleInput(_make_tensor(*input_shape), args=(arg, ), broadcasts_input=broadcasts_input)
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_prod(op_info, device, dtype, requires_grad):
|
|
def make_arg(shape):
|
|
# shrink values to be in the interval [-1, +1] for better precision in gradgradcheck
|
|
return make_tensor(shape, device, dtype, low=-1, high=+1, requires_grad=requires_grad)
|
|
|
|
def prod_single_zero():
|
|
result = make_arg(2 * (S,))
|
|
with torch.no_grad():
|
|
result[0, 1] = 0
|
|
return result
|
|
|
|
# will not be needed once OpInfo tests support Iterables
|
|
def sample_generator():
|
|
for sample in sample_inputs_cumprod(op_info, device, dtype, requires_grad):
|
|
yield SampleInput(sample.input) # only Tensor, ignore other inputs
|
|
yield sample
|
|
sample.kwargs['keepdim'] = True
|
|
yield sample
|
|
yield SampleInput(prod_single_zero())
|
|
yield SampleInput(make_arg((3, 3, 3)), args=(1,))
|
|
yield SampleInput(make_arg((3, 3, 3)), args=(1,), kwargs={'keepdim': True})
|
|
|
|
# test zero scalar tensor
|
|
zero = make_arg(())
|
|
with torch.no_grad():
|
|
zero.zero_()
|
|
yield SampleInput(zero)
|
|
yield SampleInput(zero, args=(0,))
|
|
yield SampleInput(zero, args=(0,), kwargs={'keepdim': True})
|
|
|
|
return list(sample_generator())
|
|
|
|
def sample_inputs_diag(op_info, device, dtype, requires_grad, **kwargs):
|
|
vec_sample = SampleInput(make_tensor((M, ), device, dtype, low=None, high=None, requires_grad=requires_grad))
|
|
|
|
tensors = (
|
|
make_tensor((M, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((3, 5), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
make_tensor((5, 3), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
)
|
|
|
|
args = ((), (2,), (-2,), (1,), (2,))
|
|
|
|
samples = []
|
|
for tensor, arg in product(tensors, args):
|
|
samples.append(SampleInput(tensor, args=arg))
|
|
|
|
return samples + [vec_sample]
|
|
|
|
def sample_inputs_logit(op_info, device, dtype, requires_grad, **kwargs):
|
|
low, high = op_info.domain
|
|
|
|
# Note: Operator is very sensitive at points near the
|
|
# start and end of domain and leads to NaN for float16
|
|
# if domain_eps is 1e-5.
|
|
domain_eps = op_info._domain_eps if dtype != torch.float16 else 3e-2
|
|
|
|
low = low + domain_eps
|
|
high = high - domain_eps
|
|
|
|
samples = (
|
|
SampleInput(make_tensor((S, S, S), device, dtype, low=low, high=high, requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((S, S, S), device, dtype, low=low,
|
|
high=high, requires_grad=requires_grad), args=(0.2,)),
|
|
SampleInput(make_tensor((), device, dtype, low=low, high=high, requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), device, dtype, low=low,
|
|
high=high, requires_grad=requires_grad), args=(0.2,)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_floor_divide(op_info, device, dtype, requires_grad, **kwargs):
|
|
lhs = make_tensor((S, S, S), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
rhs = make_tensor((S, S, S), device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
# Avoid integer divide by 0
|
|
if not (dtype.is_floating_point or dtype.is_complex):
|
|
rhs[rhs == 0] = 1
|
|
|
|
return [
|
|
SampleInput(lhs, args=(rhs,)),
|
|
SampleInput(lhs, args=(rhs[0],)),
|
|
SampleInput(lhs, args=(3.14,)),
|
|
]
|
|
|
|
|
|
def sample_inputs_masked_scatter(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def samples_generator():
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, make_arg((S, S))))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn((S,), device=device) > 0, make_arg((S, S))))
|
|
yield SampleInput(make_arg((S, S)), args=(bernoulli_scalar().to(device), make_arg((S, S))))
|
|
yield SampleInput(make_arg((S,)),
|
|
args=(torch.randn(S, S, device=device) > 0, make_arg((S, S))),
|
|
broadcasts_input=True)
|
|
|
|
samples = tuple(samples_generator())
|
|
return samples
|
|
|
|
|
|
def sample_inputs_masked_fill(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
def sample_generator():
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, 10))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, S, device=device) > 0, make_arg(())))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn(S, device=device) > 0, 10))
|
|
yield SampleInput(make_arg(()), args=(torch.randn((), device=device) > 0, 10))
|
|
yield SampleInput(make_arg(()), args=(torch.randn((), device=device) > 0, make_arg(())))
|
|
yield SampleInput(make_arg((S, S)), args=(torch.randn((), device=device) > 0, 10))
|
|
|
|
yield SampleInput(make_arg((S,)),
|
|
args=(torch.randn(S, S, device=device) > 0, make_arg(())),
|
|
broadcasts_input=True)
|
|
yield SampleInput(make_arg((S,)),
|
|
args=(torch.randn(S, S, device=device) > 0, 10),
|
|
broadcasts_input=True)
|
|
|
|
samples = tuple(sample_generator())
|
|
return samples
|
|
|
|
def sample_inputs_masked_select(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = (
|
|
SampleInput(make_tensor((M, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn(M, M, device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((M, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M,), device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((M,), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M, M), device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((M, 1, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M, M), device=device) > 0,)),
|
|
|
|
SampleInput(make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.tensor(1, device=device, dtype=torch.bool),)),
|
|
|
|
SampleInput(make_tensor((M, M), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.tensor(1, device=device, dtype=torch.bool),)),
|
|
|
|
SampleInput(make_tensor((), device, dtype, low=None, high=None, requires_grad=requires_grad),
|
|
args=(torch.randn((M, M), device=device) > 0,)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_matrix_exp(op_info, device, dtype, requires_grad, **kwargs):
|
|
samples = (
|
|
SampleInput(make_tensor((S, S), device, dtype, requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((S, S, S), device, dtype, requires_grad=requires_grad)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_matmul(op_info, device, dtype, requires_grad):
|
|
test_cases = (((L,), (L,)),
|
|
((S, M), (M,)),
|
|
((M,), (M, S)),
|
|
((S, M), (M, S)),
|
|
((S, S, M), (M,)),
|
|
((S, S, M), (M, S)),
|
|
((M,), (S, M, S)),
|
|
((S, M), (S, M, S)),
|
|
((S, S, M, M), (S, S, M, S)),
|
|
((S, S, M, M), (M,)),
|
|
((M,), (S, S, M, S)))
|
|
sample_inputs = []
|
|
for lhs_shape, rhs_shape in test_cases:
|
|
lhs = make_tensor(lhs_shape, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
rhs = make_tensor(rhs_shape, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
sample_inputs.append(SampleInput(lhs, args=(rhs,)))
|
|
return tuple(sample_inputs)
|
|
|
|
|
|
def sample_inputs_polar(op_info, device, dtype, requires_grad, **kwargs):
|
|
def _make_tensor_helper(shape, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
samples = (
|
|
SampleInput(_make_tensor_helper((S, S), low=0), args=(_make_tensor_helper((S, S)),)),
|
|
SampleInput(_make_tensor_helper((), low=0), args=(_make_tensor_helper(()),)),
|
|
)
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_polygamma(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
tensor_shapes = ((S, S), ())
|
|
ns = (1, 2, 3, 4, 5)
|
|
|
|
def generator():
|
|
for shape, n in product(tensor_shapes, ns):
|
|
yield SampleInput(make_arg(shape), args=(n,))
|
|
|
|
return list(generator())
|
|
|
|
|
|
def sample_inputs_entr(op_info, device, dtype, requires_grad, **kwargs):
|
|
low, _ = op_info.domain
|
|
|
|
if requires_grad:
|
|
low = 0 + op_info._domain_eps
|
|
|
|
return (SampleInput(make_tensor((L,), device, dtype,
|
|
low=low,
|
|
requires_grad=requires_grad)),
|
|
SampleInput(make_tensor((), device, dtype,
|
|
low=low,
|
|
requires_grad=requires_grad)))
|
|
|
|
def sample_inputs_rsub(op_info, device, dtype, requires_grad, variant='tensor', **kwargs):
|
|
def _make_tensor_helper(shape, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
def _samples_with_alpha_helper(args, alphas, filter_fn=lambda arg_alpha: True):
|
|
filtered_product = filter(filter_fn, product(args, alphas)) # type: ignore
|
|
return (SampleInput(input, args=(arg,), kwargs=dict(alpha=alpha))
|
|
for (input, arg), alpha in filtered_product) # type: ignore
|
|
|
|
int_alpha, float_alpha, complex_alpha = 2, 0.1, 1 + 0.6j
|
|
|
|
if variant == 'tensor':
|
|
samples = ( # type: ignore
|
|
SampleInput(_make_tensor_helper((S, S)), args=(_make_tensor_helper((S, S)),)),
|
|
SampleInput(_make_tensor_helper((S, S)), args=(_make_tensor_helper((S,)),)),
|
|
SampleInput(_make_tensor_helper((S,)), args=(_make_tensor_helper((S, S)),)),
|
|
SampleInput(_make_tensor_helper(()), args=(_make_tensor_helper(()),)),
|
|
SampleInput(_make_tensor_helper(()), args=(_make_tensor_helper((S,)),)),
|
|
SampleInput(_make_tensor_helper((S,)), args=(_make_tensor_helper(()),)),
|
|
)
|
|
|
|
if dtype.is_complex:
|
|
alphas = [int_alpha, float_alpha, complex_alpha]
|
|
elif dtype.is_floating_point:
|
|
alphas = [int_alpha, float_alpha]
|
|
else:
|
|
alphas = [int_alpha]
|
|
|
|
args = ((_make_tensor_helper((S, S)), _make_tensor_helper((S, S))),
|
|
(_make_tensor_helper((S, S)), _make_tensor_helper((S,))),
|
|
(_make_tensor_helper(()), _make_tensor_helper(())))
|
|
samples += tuple(_samples_with_alpha_helper(args, alphas)) # type: ignore
|
|
elif variant == 'scalar':
|
|
# Scalar Other
|
|
samples = (SampleInput(_make_tensor_helper((S, S)), args=(0.5,)),
|
|
SampleInput(_make_tensor_helper(()), args=(0.5,)),
|
|
SampleInput(_make_tensor_helper((S, S)), args=(1.5j,)),
|
|
SampleInput(_make_tensor_helper(()), args=(1.5j,)),
|
|
SampleInput(_make_tensor_helper((S, S)), args=(0.4 + 1.2j,)),
|
|
SampleInput(_make_tensor_helper(()), args=(1.2 + 1.76j,))) # type: ignore
|
|
|
|
scalar_args = [(_make_tensor_helper((S, S)), 0.5), (_make_tensor_helper(()), 0.5),
|
|
(_make_tensor_helper((S, S)), 2.7j), (_make_tensor_helper(()), 2.7j),
|
|
(_make_tensor_helper((S, S)), 1 - 2.7j), (_make_tensor_helper(()), 1 + 2.7j)] # type: ignore
|
|
|
|
alphas = [int_alpha, float_alpha, complex_alpha]
|
|
|
|
def filter_fn(arg_alpha):
|
|
arg, alpha = arg_alpha
|
|
if isinstance(alpha, complex):
|
|
if dtype.is_complex or isinstance(arg[1], complex):
|
|
return True
|
|
else:
|
|
# complex alpha is valid only if either `self` or `other` is complex
|
|
return False
|
|
|
|
# Non-Complex Alpha
|
|
return True
|
|
|
|
# Samples with alpha (scalar version) covers the following cases
|
|
# self | other | alpha
|
|
# -----------------------------------------
|
|
# real | real | real (int and float)
|
|
# real | complex | real and complex
|
|
# complex | real | real and complex
|
|
# complex | complex | real and complex
|
|
#
|
|
# It does not cover
|
|
# real | real | complex
|
|
# x = torch.randn(2, requires_grad=True, dtype=torch.float64)
|
|
# torch.rsub(x, 1, alpha=1. + 1.6j)
|
|
# RuntimeError: value cannot be converted to type double without overflow: (-1,-1.6)
|
|
|
|
samples += tuple(_samples_with_alpha_helper(scalar_args, alphas, filter_fn=filter_fn)) # type: ignore
|
|
else:
|
|
raise Exception("Invalid variant!")
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_cumulative_ops(op_info, device, dtype, requires_grad, supports_dtype_kwargs=True, **kwargs):
|
|
def _make_tensor_helper(shape, low=None, high=None):
|
|
return make_tensor(shape, device, dtype, low=low, high=high, requires_grad=requires_grad)
|
|
|
|
samples = [
|
|
SampleInput(_make_tensor_helper((S, S, S)), args=(0,)),
|
|
SampleInput(_make_tensor_helper((S, S, S)), args=(1,)),
|
|
SampleInput(_make_tensor_helper(()), args=(0,)),
|
|
]
|
|
|
|
if supports_dtype_kwargs:
|
|
# NOTE: if `dtype` is not same as input, then inplace variants fail with
|
|
# `provided dtype must match the dtype of self tensor in cumsum`
|
|
samples.append(SampleInput(_make_tensor_helper((S, S, S)), args=(1,), kwargs={'dtype': dtype}))
|
|
|
|
return samples
|
|
|
|
|
|
def sample_inputs_unfold(op_info, device, dtype, requires_grad, **kwargs):
|
|
test_cases = (
|
|
((), (0, 1, 1)),
|
|
((S, S, S, S), (0, 3, 1)),
|
|
((S, S, S, S), (1, 3, 1)),
|
|
((S, S, S, S), (2, 3, 1)),
|
|
((S, S, S, S), (3, 3, 1)),
|
|
((S, S, S, S), (0, 3, 2)),
|
|
((S, S, S, S), (1, 3, 2)),
|
|
((S, S, S, S), (2, 3, 2)),
|
|
((S, S, S, S), (3, 3, 2)),
|
|
((S, S, S, S), (0, 4, 1)),
|
|
((S, S, S, S), (1, 4, 1)),
|
|
((S, S, S, S), (2, 4, 1)),
|
|
((S, S, S, S), (3, 4, 1)),
|
|
((M,), (0, 3, 1)),
|
|
((M,), (0, 3, 2)),
|
|
((M,), (0, 3, 3)),
|
|
((1000,), (0, 3, 11)),
|
|
((1000,), (0, 2, 27)),
|
|
((10, 10), (0, 1, 2)),
|
|
((10, 10), (1, 2, 3)),
|
|
((10, 10), (1, 2, 2)),
|
|
((S, S, S), (2, 3, 2)),
|
|
)
|
|
|
|
sample_inputs = []
|
|
for shape, arguments in test_cases:
|
|
sample_inputs += [SampleInput(make_tensor(shape, device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad),
|
|
args=arguments)]
|
|
return sample_inputs
|
|
|
|
|
|
def sample_inputs_atan2(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
cases = (
|
|
((S, S, S), (S, S, S)),
|
|
((), ()),
|
|
((S, S, S), (S,)),
|
|
# Enable the cases below once gh-53014 is in
|
|
# ((S,), (S, S, S)),
|
|
# ((S, 1, S), (S, S)),
|
|
)
|
|
|
|
def generator():
|
|
for x_shape, y_shape in cases:
|
|
yield SampleInput(make_arg(x_shape), args=(make_arg(y_shape),))
|
|
|
|
return list(generator())
|
|
|
|
def sample_inputs_msort(op_info, device, dtype, requires_grad):
|
|
sample = (SampleInput(make_tensor((S, M, S), device, dtype,
|
|
low=None, high=None,
|
|
requires_grad=requires_grad)),)
|
|
|
|
return sample
|
|
|
|
def sample_inputs_lerp(op_info, device, dtype, requires_grad, **kwargs):
|
|
make_arg = partial(make_tensor, dtype=dtype, device=device, requires_grad=requires_grad)
|
|
|
|
samples = (
|
|
# no broadcast
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 0.4)),
|
|
# broadcast rhs
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S,)), 0.4)),
|
|
# scalar tensor
|
|
SampleInput(make_arg(()), args=(make_arg(()), 0.4)),
|
|
# broadcast rhs scalar-tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg(()), 0.4)),
|
|
# broadcast rhs with weight tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S,)), make_arg((S, S)))),
|
|
# broadcast rhs and weight tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, 1)), make_arg((S,)))),
|
|
# broadcast_lhs
|
|
SampleInput(make_arg((S,)), args=(make_arg((S, S)), 0.4), broadcasts_input=True),
|
|
# scalar broadcast_lhs
|
|
SampleInput(make_arg(()), args=(make_arg((S, S)), 0.4), broadcasts_input=True),
|
|
# broadcast all
|
|
SampleInput(make_arg((S, 1)), args=(make_arg((S, S)), 0.4), broadcasts_input=True),
|
|
# tensor broadcast all
|
|
SampleInput(make_arg((S, 1)), args=(make_arg((S, S)), make_arg((S, 1))),
|
|
broadcasts_input=True),
|
|
) # type: ignore
|
|
|
|
if dtype.is_complex:
|
|
samples = samples + ( # type: ignore
|
|
# no broadcast
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 0.4j)),
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 1.2 + 0.1j)),
|
|
# broadcast rhs
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S,)), 0.4j)),
|
|
SampleInput(make_arg((S, S)), args=(make_arg((S, S)), 5.4 + 9j)),
|
|
# scalar tensor
|
|
SampleInput(make_arg(()), args=(make_arg(()), 0.4j)),
|
|
SampleInput(make_arg(()), args=(make_arg(()), 6.1 + 0.004j)),
|
|
# broadcast rhs scalar-tensor
|
|
SampleInput(make_arg((S, S)), args=(make_arg(()), 0.4j)),
|
|
SampleInput(make_arg((S, S)), args=(make_arg(()), 1 + 2j)),
|
|
)
|
|
|
|
return samples
|
|
|
|
def sample_inputs_tensordot(self, device, dtype, requires_grad, **kwargs):
|
|
cases = (
|
|
((2, 2, 2), (2, 2, 2), (2)),
|
|
((2, 2, 1), (2, 1, 2), ([0, 1], [2, 0])),
|
|
)
|
|
samples = []
|
|
for first_shape, second_shape, dims in cases:
|
|
samples.append(SampleInput(make_tensor(first_shape, device, dtype,
|
|
requires_grad=requires_grad),
|
|
args=(make_tensor(second_shape, device, dtype,
|
|
requires_grad=requires_grad),),
|
|
kwargs=dict(dims=dims,)))
|
|
return tuple(samples)
|
|
|
|
def sample_inputs_kron(op_info, device, dtype, requires_grad):
|
|
test_cases = (
|
|
((S, S), (M, L)),
|
|
)
|
|
|
|
sample_inputs = []
|
|
for input_shape, other_shape in test_cases:
|
|
input = make_tensor(input_shape, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
other = make_tensor(other_shape, device, dtype, low=None, high=None, requires_grad=requires_grad)
|
|
sample = SampleInput(input, args=(other,))
|
|
sample_inputs.append(sample)
|
|
return tuple(sample_inputs)
|
|
|
|
def sample_inputs_inner(self, device, dtype, requires_grad, **kwargs):
|
|
return (
|
|
SampleInput(
|
|
make_tensor((S, ), device, dtype, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, ), device, dtype, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
SampleInput(
|
|
make_tensor((), device, dtype, requires_grad=requires_grad),
|
|
args=(
|
|
make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
)
|
|
),
|
|
)
|
|
|
|
foreach_unary_op_db: List[OpInfo] = [
|
|
ForeachUnaryFuncInfo('exp'),
|
|
ForeachUnaryFuncInfo('acos'),
|
|
ForeachUnaryFuncInfo('asin'),
|
|
ForeachUnaryFuncInfo('atan'),
|
|
ForeachUnaryFuncInfo('cos'),
|
|
ForeachUnaryFuncInfo('cosh'),
|
|
ForeachUnaryFuncInfo('log'),
|
|
ForeachUnaryFuncInfo('log10'),
|
|
ForeachUnaryFuncInfo('log2'),
|
|
ForeachUnaryFuncInfo('tan'),
|
|
ForeachUnaryFuncInfo('tanh'),
|
|
ForeachUnaryFuncInfo('sin'),
|
|
ForeachUnaryFuncInfo('sinh'),
|
|
|
|
ForeachUnaryFuncInfo('neg',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCPU=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex(),
|
|
sample_inputs_func=sample_inputs_foreach,
|
|
safe_casts_outputs=False),
|
|
|
|
ForeachUnaryFuncInfo('sqrt',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('ceil',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('erf',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('erfc',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('expm1',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('floor',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('log1p',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('round',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('frac',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('reciprocal',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('sigmoid',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('trunc',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half)),
|
|
|
|
ForeachUnaryFuncInfo('abs',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bfloat16, torch.half, torch.bool),
|
|
safe_casts_outputs=False)
|
|
]
|
|
|
|
def reference_sign(x):
|
|
if x.dtype == np.bool_:
|
|
# `np.sign` doesn't support `bool`.
|
|
# >>> np.sign(True)
|
|
# ufunc 'sign' did not contain a loop
|
|
# with signature matching types dtype('bool') -> dtype('bool')
|
|
return np.sign(x, dtype=np.uint8).astype(np.bool_)
|
|
return np.sign(x)
|
|
|
|
|
|
def reference_sgn(x):
|
|
# NumPy doesn't have an equivalent to `torch.sgn` when the dtype is complex.
|
|
# For complex inputs, `np.sign` returns sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j.
|
|
# while `torch.sgn` returns, 0 if abs(input) == 0 else input/abs(input)
|
|
if x.dtype not in [np.complex64, np.complex128]:
|
|
return reference_sign(x)
|
|
|
|
out = (x / np.abs(x))
|
|
if out.ndim == 0:
|
|
# Handle x == 0 case
|
|
if (x == 0):
|
|
# Can't assign to np.complex object
|
|
# So make a new one.
|
|
return np.array(complex(0, 0), dtype=x.dtype)
|
|
return out
|
|
|
|
# Handle x == 0 case
|
|
mask = (x == 0)
|
|
out[mask] = complex(0, 0)
|
|
return out
|
|
|
|
|
|
def reference_sigmoid(x):
|
|
# 'scipy.special.expit' not supported for the input types
|
|
if x.dtype in [np.complex64, np.complex128]:
|
|
return (1 / (1 + np.exp(-x)))
|
|
return scipy.special.expit(x)
|
|
|
|
|
|
def reference_lgamma(x):
|
|
# scipy.special.gammaln returns `-inf` when input is `-inf`.
|
|
# While Pytorch, C and C++, all return `inf` when input is `-inf`.
|
|
# Reference:
|
|
# https://en.cppreference.com/w/cpp/numeric/math/lgamma
|
|
# https://en.cppreference.com/w/c/numeric/math/lgamma
|
|
|
|
# To handle the above discrepancy,
|
|
# we replace -inf with inf so values
|
|
# that were originally -inf map to inf as expected
|
|
if x.dtype.kind == 'f':
|
|
x = np.where(x == float('-inf'), np.array(float('inf'), dtype=x.dtype), x)
|
|
|
|
out = scipy.special.gammaln(x)
|
|
|
|
if x.dtype == np.float16:
|
|
# `scipy.special.gammaln` returns output of float32 when input is float16,
|
|
# while `torch.lgamma` preserves `float16`. But due to smaller range of float16,
|
|
# Pytorch version outputs `inf` while SciPy returns finite values.
|
|
out = out.astype(np.float16)
|
|
|
|
return out
|
|
|
|
def reference_polygamma(x, n):
|
|
# WEIRD `scipy.special.polygamma` behavior
|
|
# >>> scipy.special.polygamma(0, np.array(501, dtype=np.float32)).dtype
|
|
# dtype('float64')
|
|
# >>> scipy.special.polygamma(0, np.array([501], dtype=np.float32)).dtype
|
|
# dtype('float32')
|
|
#
|
|
# Thus we cast output to the default torch dtype.
|
|
np_dtype = torch_to_numpy_dtype_dict[torch.get_default_dtype()]
|
|
return scipy.special.polygamma(n, x).astype(np_dtype)
|
|
|
|
def gradcheck_wrapper_hermitian_input(op, input, *args, **kwargs):
|
|
"""Gradcheck wrapper for functions that take Hermitian matrices as input.
|
|
|
|
They require a modified function because the finite-difference algorithm
|
|
for calculating derivatives does not preserve the Hermitian property of the input.
|
|
"""
|
|
return op(input + input.conj().transpose(-2, -1), *args, **kwargs)
|
|
|
|
|
|
def gradcheck_wrapper_triangular_input(op, input, *args, upper=False, **kwargs):
|
|
"""Gradcheck wrpper for functions that take lower or upper triangular matrices as input.
|
|
|
|
They require a modified function because the finite-difference algorithm
|
|
for calculating derivatives does not preserve the triangular property of the input.
|
|
"""
|
|
return op(input.triu() if upper else input.tril(), upper)
|
|
|
|
|
|
# Operator database (sorted alphabetically)
|
|
op_db: List[OpInfo] = [
|
|
UnaryUfuncInfo('abs',
|
|
aliases=('absolute', ),
|
|
ref=np.abs,
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/49224
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.int8], active_if=TEST_WITH_ASAN),
|
|
# TODO: Fix test_out_arg_all_dtypes as torch.empty_like(expected_output) where expected_output=op(input)
|
|
# We can break the logic of the loop over all possible types but it is OK.
|
|
# https://github.com/pytorch/pytorch/blob/master/test/test_unary_ufuncs.py#L440-L449
|
|
SkipInfo('TestUnaryUfuncs', 'test_out_arg_all_dtypes',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
),
|
|
supports_inplace_autograd=False,
|
|
assert_autodiffed=True),
|
|
# NOTE: CPU complex acos produces incorrect outputs (https://github.com/pytorch/pytorch/issues/42952)
|
|
UnaryUfuncInfo('acos',
|
|
aliases=('arccos', ),
|
|
ref=np.arccos,
|
|
domain=(-1, 1),
|
|
handles_complex_extremals=False,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
assert_autodiffed=True,
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-1,
|
|
torch.complex64: 1e-2}),),
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
# "rsqrt_cpu" not implemented for 'BFloat16'
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.bfloat16,)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestGradients', 'test_fn_grad',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
SkipInfo('TestGradients', 'test_method_grad',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
SkipInfo('TestGradients', 'test_inplace_grad',
|
|
dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
)),
|
|
# NOTE: the derivative for inplace acosh is not implemented
|
|
UnaryUfuncInfo('acosh',
|
|
aliases=('arccosh', ),
|
|
ref=np.arccosh,
|
|
domain=(1, float('inf')),
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# "rsqrt_cuda" not implemented for 'BFloat16'
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.bfloat16,)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/50692
|
|
SkipInfo('TestGradients', 'test_fn_grad',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
SkipInfo('TestGradients', 'test_method_grad',
|
|
device_type='cuda', dtypes=[torch.cdouble], active_if=IS_WINDOWS),
|
|
)),
|
|
OpInfo('add',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_add,
|
|
supports_inplace_autograd=False),
|
|
OpInfo('addmm',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
# BFloat16 support on CUDA requires CUDA 11 and SM53
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.complex64, torch.complex128,
|
|
*[torch.bfloat16] if CUDA11OrLater else []),
|
|
dtypesIfROCM=floating_types_and(torch.float16, torch.complex64, torch.complex128, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
autodiff_nonfusible_nodes=['aten::add', 'aten::mm'],
|
|
skips=(
|
|
# Skips unsupported bfloat16 check because above support check
|
|
# doesn't work on all platforms
|
|
SkipInfo('TestOpInfo', 'test_unsupported_dtypes', dtypes=(torch.bfloat16,)),
|
|
# TODO: remove redundant method_tests() entries
|
|
SkipInfo('TestOpInfo', 'test_duplicate_method_tests')),
|
|
sample_inputs_func=sample_inputs_addmm),
|
|
OpInfo('addmv',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.complex64, torch.complex128,
|
|
*[torch.bfloat16] if CUDA11OrLater else []),
|
|
dtypesIfROCM=floating_types_and(torch.half),
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# issue may fix: https://github.com/pytorch/pytorch/issues/55589
|
|
# AssertionError: UserWarning not triggered : Resized a non-empty tensor but did not warn about it.
|
|
SkipInfo('TestCommon', 'test_out', dtypes=(torch.float32,)),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/55589
|
|
SkipInfo('TestCommon', 'test_variant_consistency_eager'),
|
|
),
|
|
sample_inputs_func=sample_inputs_addmv),
|
|
OpInfo('addbmm',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
dtypesIfROCM=floating_types_and(torch.half),
|
|
skips=(
|
|
# addbmm does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),
|
|
# https://github.com/pytorch/pytorch/issues/55907
|
|
SkipInfo('TestCommon', 'test_variant_consistency_eager'),
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.bfloat16, ),
|
|
device_type='cuda', active_if=not SM53OrLater)),
|
|
sample_inputs_func=sample_inputs_addbmm),
|
|
OpInfo('dot',
|
|
dtypes=all_types_and_complex_and(torch.float16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16),
|
|
skips=(
|
|
# dot does not handle correctly out= dtypes
|
|
# https://github.com/pytorch/pytorch/issues/55561
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_dot_vdot),
|
|
OpInfo('vdot',
|
|
dtypes=all_types_and_complex_and(torch.float16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16),
|
|
skips=(
|
|
# vdot does not handle correctly out= dtypes
|
|
# https://github.com/pytorch/pytorch/issues/55561
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
),
|
|
sample_inputs_func=sample_inputs_dot_vdot),
|
|
OpInfo('bmm',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# bmm does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.bfloat16, ),
|
|
device_type='cuda', active_if=not SM53OrLater)),
|
|
sample_inputs_func=sample_inputs_bmm),
|
|
OpInfo('mv',
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
skips=(
|
|
# bmm does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.float16,)),
|
|
# mv calls into addmv which doesn't fully support float16
|
|
# RuntimeError: "addmv_impl_cpu" not implemented for 'Half'
|
|
SkipInfo('TestOpInfo', 'test_supported_dtypes', dtypes=(torch.float16,)),),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_mv),
|
|
OpInfo('addr',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/50747
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# "addmv_impl_cpu" not implemented for 'Half'
|
|
# at::cuda::blas::gemv: not implemented for N3c108BFloat16E
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.float16, torch.bfloat16)),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/50747
|
|
SkipInfo('TestCommon', 'test_variant_consistency_eager',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16)),),
|
|
sample_inputs_func=sample_inputs_addr),
|
|
OpInfo('addcmul',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# TODO: update sample inputs with for_inplace_variant kwarg to support this test
|
|
SkipInfo('TestCommon', 'test_variant_consistency_eager'),),
|
|
sample_inputs_func=sample_inputs_addcmul_addcdiv),
|
|
OpInfo('addcdiv',
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# TODO: update sample inputs with for_inplace_variant kwarg to support this test
|
|
SkipInfo('TestCommon', 'test_variant_consistency_eager'),),
|
|
sample_inputs_func=sample_inputs_addcmul_addcdiv),
|
|
OpInfo('amax',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_amax_amin,),
|
|
OpInfo('amin',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_amax_amin),
|
|
OpInfo('argmax',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_argmax_argmin,),
|
|
OpInfo('argmin',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_argmax_argmin,),
|
|
UnaryUfuncInfo('asin',
|
|
aliases=('arcsin', ),
|
|
ref=np.arcsin,
|
|
domain=(-1, 1),
|
|
supports_sparse=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
safe_casts_outputs=True,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# "rsqrt_cpu" not implemented for 'BFloat16'
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.bfloat16,)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS)
|
|
)),
|
|
# NOTE: derivative for inplace asinh is not implemented
|
|
UnaryUfuncInfo('asinh',
|
|
aliases=('arcsinh', ),
|
|
ref=np.arcsinh,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# "rsqrt_cuda" not implemented for 'BFloat16'
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.bfloat16,)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
UnaryUfuncInfo('atan',
|
|
aliases=('arctan', ),
|
|
ref=np.arctan,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
assert_autodiffed=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
OpInfo('atan2',
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
sample_inputs_func=sample_inputs_atan2,
|
|
),
|
|
UnaryUfuncInfo('atanh',
|
|
aliases=('arctanh', ),
|
|
ref=np.arctanh,
|
|
domain=(-1, 1),
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.cfloat],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
OpInfo('broadcast_to',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_broadcast_to),
|
|
UnaryUfuncInfo('bitwise_not',
|
|
ref=np.bitwise_not,
|
|
dtypes=integral_types_and(torch.bool),
|
|
dtypesIfCPU=None,
|
|
dtypesIfCUDA=None,
|
|
dtypesIfROCM=None,
|
|
supports_autograd=False),
|
|
UnaryUfuncInfo('ceil',
|
|
ref=np.ceil,
|
|
dtypes=floating_types_and(torch.half),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
assert_autodiffed=True),
|
|
OpInfo('cholesky',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('cholesky_inverse',
|
|
dtypes=floating_and_complex_types(),
|
|
# TODO: RuntimeError: cholesky_inverse does not support automatic differentiation for outputs
|
|
# with complex dtype.
|
|
supports_complex_autograd=False,
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky_inverse,
|
|
gradcheck_wrapper=gradcheck_wrapper_triangular_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cholesky_inverse does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),)),
|
|
OpInfo('symeig',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_symeig,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)
|
|
),
|
|
UnaryUfuncInfo('clamp',
|
|
aliases=('clip', ),
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-2, torch.float16: 1e-2}),),
|
|
ref=np.clip,
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54841
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
),
|
|
sample_kwargs=sample_kwargs_clamp,
|
|
sample_inputs_func=sample_inputs_clamp),
|
|
UnaryUfuncInfo('conj',
|
|
ref=np.conj,
|
|
dtypes=all_types_and_complex_and(torch.bool,
|
|
torch.bfloat16, torch.half),
|
|
dtypesIfCPU=None,
|
|
dtypesIfCUDA=None,
|
|
dtypesIfROCM=None,
|
|
skips=(
|
|
# File "test_unary_ufuncs.py", line 289, in test_reference_numerics
|
|
# if not torch.can_cast(numpy_to_torch_dtype_dict[expected.dtype.type], dtype):
|
|
# KeyError: <class 'numpy.intc'>
|
|
# Following error in Windows CI
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.int],
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.int],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
OpInfo('copysign',
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_copysign,
|
|
supports_inplace_autograd=False,
|
|
),
|
|
UnaryUfuncInfo('cos',
|
|
ref=np.cos,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
handles_large_floats=False,
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
skips=(
|
|
# "sin_cuda" not implemented for 'BFloat16'
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.bfloat16,)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal', device_type='cpu',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS),
|
|
)),
|
|
UnaryUfuncInfo('cosh',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.cosh),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48641
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.int8]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal', device_type='cpu',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard', device_type='cpu',
|
|
dtypes=[torch.cfloat, torch.cdouble], active_if=IS_MACOS),
|
|
)),
|
|
OpInfo('cumsum',
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
skips=(
|
|
# "cumsum_out_{cpu,cuda}" not implemented for 'Bool'
|
|
SkipInfo('TestOpInfo', 'test_supported_dtypes',
|
|
dtypes=(torch.bool,)),
|
|
# cumsum does not handle correctly out= dtypes
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
),
|
|
sample_inputs_func=sample_inputs_cumulative_ops),
|
|
OpInfo('cumprod',
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16),
|
|
skips=(
|
|
# "cumprod_out_{cpu, cuda}" not implemented for 'Bool'
|
|
SkipInfo('TestOpInfo', 'test_supported_dtypes',
|
|
dtypes=(torch.bool,)),
|
|
# cumprod does not handle correctly out= dtypes
|
|
SkipInfo('TestCommon', 'test_out',
|
|
dtypes=[torch.float32]),
|
|
),
|
|
sample_inputs_func=sample_inputs_cumprod),
|
|
OpInfo('cummax',
|
|
dtypesIfCPU=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
sample_inputs_func=partial(sample_inputs_cumulative_ops, supports_dtype_kwargs=False)),
|
|
OpInfo('cummin',
|
|
dtypesIfCPU=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
sample_inputs_func=partial(sample_inputs_cumulative_ops, supports_dtype_kwargs=False)),
|
|
UnaryUfuncInfo('deg2rad',
|
|
ref=np.radians,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-1,
|
|
torch.float16: 7e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/51283#issuecomment-770614273
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16]),
|
|
),
|
|
safe_casts_outputs=True),
|
|
OpInfo('diff',
|
|
op=torch.diff,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_diff),
|
|
OpInfo('div',
|
|
variant_test_name='no_rounding_mode',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_div,
|
|
skips=(SkipInfo('TestOpInfo', 'test_duplicate_method_tests'),),
|
|
assert_autodiffed=True),
|
|
OpInfo('div',
|
|
variant_test_name='true_rounding',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_div, rounding_mode=None),
|
|
skips=(SkipInfo('TestOpInfo', 'test_duplicate_method_tests'),),
|
|
assert_autodiffed=True),
|
|
OpInfo('div',
|
|
variant_test_name='trunc_rounding',
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_div, rounding_mode='trunc'),
|
|
skips=(SkipInfo('TestOpInfo', 'test_duplicate_method_tests'),),
|
|
assert_autodiffed=True),
|
|
OpInfo('div',
|
|
variant_test_name='floor_rounding',
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=partial(sample_inputs_div, rounding_mode='floor'),
|
|
skips=(SkipInfo('TestOpInfo', 'test_duplicate_method_tests'),),
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('exp',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.exp),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/50093#pullrequestreview-561791547
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal', dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard', dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal', dtypes=[torch.bfloat16]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48010
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True),
|
|
OpInfo('diag',
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
sample_inputs_func=sample_inputs_diag),
|
|
OpInfo('eq',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
OpInfo('fmax',
|
|
op=torch.fmax,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_binary,),
|
|
OpInfo('fmin',
|
|
op=torch.fmin,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_binary,),
|
|
UnaryUfuncInfo('frac',
|
|
ref=lambda x: np.modf(x)[0],
|
|
dtypes=floating_types_and(torch.bfloat16, torch.float16),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
assert_autodiffed=True,
|
|
# Reference for disabling extremals
|
|
# https://github.com/pytorch/pytorch/issues/51948
|
|
handles_extremals=False),
|
|
SpectralFuncInfo('fft.fft',
|
|
aten_name='fft_fft',
|
|
ref=np.fft.fft,
|
|
ndimensional=False,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types()),
|
|
SpectralFuncInfo('fft.fftn',
|
|
aten_name='fft_fftn',
|
|
ref=np.fft.fftn,
|
|
ndimensional=True,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
decorators=[precisionOverride(
|
|
{torch.float: 1e-4, torch.cfloat: 1e-4})],),
|
|
SpectralFuncInfo('fft.hfft',
|
|
aten_name='fft_hfft',
|
|
ref=np.fft.hfft,
|
|
ndimensional=False,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False),
|
|
SpectralFuncInfo('fft.rfft',
|
|
aten_name='fft_rfft',
|
|
ref=np.fft.rfft,
|
|
ndimensional=False,
|
|
dtypes=all_types_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False),
|
|
SpectralFuncInfo('fft.rfftn',
|
|
aten_name='fft_rfftn',
|
|
ref=np.fft.rfftn,
|
|
ndimensional=True,
|
|
dtypes=all_types_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[precisionOverride({torch.float: 1e-4})],),
|
|
SpectralFuncInfo('fft.ifft',
|
|
aten_name='fft_ifft',
|
|
ref=np.fft.ifft,
|
|
ndimensional=False,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types()),
|
|
SpectralFuncInfo('fft.ifftn',
|
|
aten_name='fft_ifftn',
|
|
ref=np.fft.ifftn,
|
|
ndimensional=True,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types()),
|
|
SpectralFuncInfo('fft.ihfft',
|
|
aten_name='fft_ihfft',
|
|
ref=np.fft.ihfft,
|
|
ndimensional=False,
|
|
dtypes=all_types_and(torch.bool),
|
|
default_test_dtypes=floating_types(),
|
|
check_batched_grad=False),
|
|
SpectralFuncInfo('fft.irfft',
|
|
aten_name='fft_irfft',
|
|
ref=np.fft.irfft,
|
|
ndimensional=False,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False),
|
|
SpectralFuncInfo('fft.irfftn',
|
|
aten_name='fft_irfftn',
|
|
ref=np.fft.irfftn,
|
|
ndimensional=True,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
default_test_dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False),
|
|
UnaryUfuncInfo('floor',
|
|
ref=np.floor,
|
|
dtypes=floating_types_and(torch.half),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
assert_autodiffed=True),
|
|
OpInfo('flip',
|
|
op=torch.flip,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_flip,
|
|
supports_out=False),
|
|
OpInfo('fliplr',
|
|
op=torch.fliplr,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_fliplr_flipud,
|
|
supports_out=False),
|
|
OpInfo('flipud',
|
|
op=torch.flipud,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_fliplr_flipud,
|
|
supports_out=False),
|
|
UnaryUfuncInfo('i0',
|
|
ref=np.i0,
|
|
decorators=(precisionOverride({torch.bfloat16: 3e-1,
|
|
torch.float16: 5e-1}),),
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half, torch.bfloat16),
|
|
supports_autograd=False),
|
|
UnaryUfuncInfo('special.i0e',
|
|
aten_name='special_i0e',
|
|
ref=scipy.special.i0e if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.bfloat16: 3e-1,
|
|
torch.float16: 3e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_autograd=False,
|
|
safe_casts_outputs=True),
|
|
OpInfo('floor_divide',
|
|
dtypes=all_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_floor_divide,
|
|
decorators=[_wrap_warn_once("floor_divide is deprecated, and will be removed")],
|
|
skips=(
|
|
# `test_duplicate_method_tests` doesn't raise any warning, as it doesn't actually
|
|
# call the operator.
|
|
SkipInfo('TestOpInfo', 'test_duplicate_method_tests'),),
|
|
supports_autograd=False,
|
|
),
|
|
UnaryUfuncInfo('frexp',
|
|
op=torch.frexp,
|
|
ref=np.frexp,
|
|
dtypesIfCPU=floating_types_and(torch.half),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
# skip testing torch.frexp as it is not supported by ROCm platform yet
|
|
decorators=[skipCUDAIfRocm],
|
|
supports_out=False,
|
|
skips=(
|
|
# skips below tests as torch.frexp returns tuple-like (mantissa, exponent) as outputs,
|
|
# while theses tests currently requires output to a single tensor.
|
|
SkipInfo('TestUnaryUfuncs', 'test_batch_vs_slicing'),
|
|
SkipInfo('TestUnaryUfuncs', 'test_contig_vs_every_other'),
|
|
SkipInfo('TestUnaryUfuncs', 'test_contig_vs_transposed'),
|
|
SkipInfo('TestUnaryUfuncs', 'test_non_contig_expand'),
|
|
SkipInfo('TestUnaryUfuncs', 'test_variant_consistency'),
|
|
|
|
# skips test_reference_numerics due to error in Windows CI.
|
|
# The np.frexp returns exponent as np.intc dtype on Windows platform,
|
|
# and np.intc does not have the correspond torch dtype
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
OpInfo('ge',
|
|
aliases=('greater_equal',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
OpInfo('gt',
|
|
aliases=('greater',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
UnaryUfuncInfo('imag',
|
|
ref=np.imag,
|
|
dtypes=complex_types(),
|
|
dtypesIfCPU=complex_types(),
|
|
dtypesIfCUDA=complex_types(),
|
|
dtypesIfROCM=complex_types(),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# Skip since real and imag don't have out variants.
|
|
SkipInfo('TestUnaryUfuncs', 'test_out_arg_all_dtypes'),
|
|
)),
|
|
OpInfo('inverse',
|
|
op=torch.inverse,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('le',
|
|
aliases=('less_equal',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
OpInfo('linalg.det',
|
|
op=torch.linalg.det,
|
|
aliases=('det', ),
|
|
dtypes=floating_and_complex_types(),
|
|
aten_name='linalg_det',
|
|
sample_inputs_func=sample_inputs_linalg_det,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
supports_complex_autograd=False,
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# The following tests fail only on ROCm. This is probably
|
|
# related to the fact that the current linalg.det backward is
|
|
# unstable if the matrix has repeated singular values, see
|
|
# https://github.com/pytorch/pytorch/issues/53364
|
|
SkipInfo('TestGradients', 'test_fn_grad', device_type='cuda',
|
|
dtypes=(torch.float64,), active_if=TEST_WITH_ROCM),
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda',
|
|
dtypes=(torch.float64,), active_if=TEST_WITH_ROCM),
|
|
SkipInfo('TestCommon', 'test_variant_consistency_jit', device_type='cuda',
|
|
dtypes=(torch.float64, torch.float32), active_if=TEST_WITH_ROCM),
|
|
)),
|
|
OpInfo('linalg.cholesky',
|
|
aten_name='linalg_cholesky',
|
|
dtypes=floating_and_complex_types(),
|
|
# TODO: RuntimeError: While computing batched gradients,
|
|
# got: vmap: Calling Tensor.as_strided is not supported
|
|
# unless the batch dims being vmapped over are at the front of the tensor (in memory layout).
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_cholesky,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)
|
|
),
|
|
OpInfo('linalg.eig',
|
|
aten_name='linalg_eig',
|
|
op=torch.linalg.eig,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.eigvals',
|
|
aten_name='linalg_eigvals',
|
|
op=torch.linalg.eigvals,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.eigh',
|
|
aten_name='linalg_eigh',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_eigh,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)
|
|
),
|
|
OpInfo('linalg.householder_product',
|
|
aten_name='linalg_householder_product',
|
|
op=torch.linalg.householder_product,
|
|
aliases=('orgqr', ),
|
|
dtypes=floating_and_complex_types(),
|
|
# TODO: backward uses in-place operations that vmap doesn't like
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_householder_product,
|
|
decorators=[skipCUDAIfNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack,
|
|
# gradgrad checks are slow
|
|
DecorateInfo(slowTest, 'TestGradients', 'test_fn_gradgrad'), ]),
|
|
OpInfo('linalg.lstsq',
|
|
aten_name='linalg_lstsq',
|
|
op=torch.linalg.lstsq,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_out=True,
|
|
sample_inputs_func=sample_inputs_linalg_lstsq,
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
skips=(
|
|
# skip because `linalg_lstsq` is not differentiable
|
|
SkipInfo('TestGradients', 'test_fn_grad'),
|
|
SkipInfo('TestCommon', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('linalg.matrix_power',
|
|
aliases=('matrix_power',),
|
|
aten_name='linalg_matrix_power',
|
|
dtypes=floating_and_complex_types(),
|
|
supports_inplace_autograd=False,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCPUIfNoLapack, skipCUDAIfRocm],
|
|
sample_inputs_func=sample_inputs_linalg_matrix_power,),
|
|
OpInfo('linalg.multi_dot',
|
|
# Need this lambda because gradcheck does not work with TensorList inputs
|
|
aten_name='linalg_multi_dot',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
supports_inplace_autograd=False,
|
|
# Batched grad checks fail for empty input tensors (see https://github.com/pytorch/pytorch/issues/53407)
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_multi_dot,),
|
|
OpInfo('linalg.norm',
|
|
op=torch.linalg.norm,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
sample_inputs_func=sample_inputs_linalg_norm,
|
|
aten_name='linalg_norm',
|
|
skips=(
|
|
# linalg.norm does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('linalg.qr',
|
|
aten_name='linalg_qr',
|
|
op=torch.linalg.qr,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_qr,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('linalg.slogdet',
|
|
aten_name='linalg_slogdet',
|
|
op=torch.linalg.slogdet,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_slogdet,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack]),
|
|
OpInfo('linalg.vector_norm',
|
|
op=torch.linalg.vector_norm,
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
decorators=[skipCUDAIfNoMagma, skipCPUIfNoLapack],
|
|
sample_inputs_func=sample_inputs_linalg_vector_norm,
|
|
aten_name='linalg_vector_norm',
|
|
skips=(
|
|
# linalg.vector_norm does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
)),
|
|
UnaryUfuncInfo('log',
|
|
ref=np.log,
|
|
domain=(0, float('inf')),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
skips=(
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
UnaryUfuncInfo('log10',
|
|
ref=np.log10,
|
|
domain=(0, float('inf')),
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-2}),),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_WINDOWS),
|
|
)),
|
|
UnaryUfuncInfo('log1p',
|
|
ref=np.log1p,
|
|
domain=(-1, float('inf')),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-1}),),
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('log2',
|
|
ref=np.log2,
|
|
domain=(0, float('inf')),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-1}),),
|
|
skips=(
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
)),
|
|
OpInfo('logaddexp',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=lambda op_info, device, dtype, requires_grad=False, **kwargs:
|
|
(SampleInput(make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
args=(make_tensor((S, S), device, dtype, requires_grad=requires_grad),)),)),
|
|
OpInfo('logaddexp2',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=lambda op_info, device, dtype, requires_grad=False, **kwargs:
|
|
(SampleInput(make_tensor((S, S), device, dtype, requires_grad=requires_grad),
|
|
args=(make_tensor((S, S), device, dtype, requires_grad=requires_grad),)),)),
|
|
UnaryUfuncInfo('logical_not',
|
|
ref=np.logical_not,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-1,
|
|
torch.float16: 5e-1}),),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# The function variant always returns BoolTensor
|
|
# while the inplace variant preserves the input dtype.
|
|
# >>> t = torch.randn(3)
|
|
# >>> torch.logical_not(t)
|
|
# tensor([False, False, False])
|
|
# >>> torch.logical_not(t).dtype
|
|
# torch.bool
|
|
# >>> t.logical_not_().dtype
|
|
# torch.float32
|
|
SkipInfo('TestUnaryUfuncs', 'test_variant_consistency',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16)),
|
|
SkipInfo('TestCommon', 'test_variant_consistency_eager',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16)),
|
|
)),
|
|
OpInfo('lt',
|
|
aliases=('less',),
|
|
dtypes=all_types_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
OpInfo('lu',
|
|
op=torch.lu,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_inplace_autograd=False,
|
|
check_batched_gradgrad=False,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_lu,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),
|
|
# we skip jit tests because lu_backward is impelemented as autograd.Function,
|
|
# which does not support autograd with scripting
|
|
SkipInfo('TestCommon', 'test_variant_consistency_jit'),
|
|
# Skip operator schema test because this is a functional and not an operator
|
|
SkipInfo('TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)),
|
|
OpInfo('masked_fill',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_fill,
|
|
supports_out=False),
|
|
OpInfo('masked_scatter',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_scatter,
|
|
supports_out=False),
|
|
OpInfo('masked_select',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_masked_select),
|
|
OpInfo('matrix_exp',
|
|
dtypesIfCPU=floating_and_complex_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_matrix_exp,
|
|
supports_out=False),
|
|
OpInfo('matmul',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=all_types_and_complex(),
|
|
dtypesIfCUDA=floating_types_and(torch.float16, torch.complex64, torch.complex128),
|
|
dtypesIfROCM=floating_types_and(torch.half),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_matmul,
|
|
skips=(
|
|
# matmul does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
# https://github.com/pytorch/pytorch/issues/55754
|
|
SkipInfo('TestGradients', 'test_fn_grad',
|
|
device_type='cpu', dtypes=(torch.complex128,)),
|
|
# https://github.com/pytorch/pytorch/issues/55755
|
|
SkipInfo('TestOpInfo', 'test_unsupported_dtypes',
|
|
device_type='cpu', dtypes=(torch.float16,)),)),
|
|
OpInfo('max',
|
|
op=torch.max,
|
|
variant_test_name='binary',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_binary,
|
|
assert_autodiffed=True,),
|
|
OpInfo('max',
|
|
op=torch.max,
|
|
variant_test_name='reduction_with_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_reduction_with_dim,
|
|
skips=(
|
|
# max does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),)),
|
|
OpInfo('max',
|
|
op=torch.max,
|
|
variant_test_name='reduction_no_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_max_min_reduction_no_dim,),
|
|
OpInfo('min',
|
|
op=torch.min,
|
|
variant_test_name='binary',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_binary,
|
|
assert_autodiffed=True,),
|
|
OpInfo('min',
|
|
op=torch.min,
|
|
variant_test_name='reduction_with_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_reduction_with_dim,
|
|
skips=(
|
|
# min does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('min',
|
|
op=torch.min,
|
|
variant_test_name='reduction_no_dim',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_max_min_reduction_no_dim,),
|
|
OpInfo('sum',
|
|
dtypes=all_types_and_complex_and(torch.float16, torch.bfloat16, torch.bool),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_reduction_wrapper(supports_multiple_dims=True)),
|
|
OpInfo('nansum',
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.float16, torch.bool),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_reduction_wrapper(supports_multiple_dims=True)),
|
|
# TODO(@heitorschueroff) Add test for dtype kwarg
|
|
OpInfo('mean',
|
|
dtypes=floating_and_complex_types_and(torch.float16, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_reduction_wrapper(supports_multiple_dims=True),
|
|
# Need to skip out test because one of the overload for mean does not support it
|
|
# TODO(@heitorschueroff) fix this when implementing ReductionInfo
|
|
skips=(SkipInfo('TestCommon', 'test_out'),)),
|
|
OpInfo('quantile',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_reduction_quantile),
|
|
OpInfo('nanquantile',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_reduction_quantile),
|
|
OpInfo('maximum',
|
|
op=torch.maximum,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_binary,),
|
|
OpInfo('minimum',
|
|
op=torch.minimum,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_max_min_binary,),
|
|
OpInfo('topk',
|
|
dtypes=all_types(),
|
|
dtypesIfCUDA=all_types_and(torch.bfloat16, torch.float16),
|
|
sample_inputs_func=sample_inputs_topk,
|
|
skips=(
|
|
# Topk is not raising a warning when the out is resized
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('mm',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_mm,
|
|
skips=(
|
|
# mm does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('mode',
|
|
op=torch.mode,
|
|
dtypes=all_types_and(torch.float16, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_mode,),
|
|
OpInfo('ne',
|
|
aliases=('not_equal',),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_autograd=False,
|
|
sample_inputs_func=sample_inputs_comparison_ops),
|
|
UnaryUfuncInfo('neg',
|
|
aliases=('negative', ),
|
|
ref=np.negative,
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,),
|
|
OpInfo('dist',
|
|
op=torch.dist,
|
|
dtypes=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_dist,
|
|
skips=(
|
|
# "pow" not implemented for 'BFloat16' or 'half'
|
|
SkipInfo('TestOpInfo', 'test_supported_backward',
|
|
dtypes=(torch.bfloat16, torch.float16)),
|
|
# dist does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('outer',
|
|
op=torch.outer,
|
|
aliases=('ger', ),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_outer,),
|
|
OpInfo('pow',
|
|
dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool),
|
|
sample_inputs_func=sample_inputs_pow,
|
|
supports_inplace_autograd=False,
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# Due to AVX2 curently not being fully supported for Float16, log_vml_cpu can't be enabled
|
|
# for Float16, causing this test to fail. pow's autograd for Float16 is thus currently
|
|
# unsupported on CPU.
|
|
SkipInfo('TestOpInfo', 'test_supported_backward',
|
|
device_type='cpu', dtypes=[torch.float16]),
|
|
)
|
|
),
|
|
OpInfo('prod',
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
skips=(
|
|
# "cumprod_cuda" not implemented for 'BFloat16'
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.bfloat16,)),
|
|
# prod does not support the (Tensor, *, out) overload
|
|
SkipInfo('TestCommon', 'test_out',
|
|
dtypes=[torch.float32]),
|
|
),
|
|
sample_inputs_func=sample_inputs_prod),
|
|
OpInfo('qr',
|
|
op=torch.qr,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_qr,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
UnaryUfuncInfo('rad2deg',
|
|
ref=np.degrees,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-1,
|
|
torch.float16: 7e-1}),),
|
|
dtypes=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/51283#issuecomment-770614273
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
),
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('real',
|
|
ref=np.real,
|
|
dtypes=complex_types(),
|
|
dtypesIfCPU=complex_types(),
|
|
dtypesIfCUDA=complex_types(),
|
|
dtypesIfROCM=complex_types(),
|
|
supports_out=False,
|
|
supports_autograd=False,
|
|
skips=(
|
|
# Skip since real and imag don't have out variants.
|
|
SkipInfo('TestUnaryUfuncs', 'test_out_arg_all_dtypes'),
|
|
)),
|
|
UnaryUfuncInfo('round',
|
|
ref=np.round,
|
|
dtypes=floating_types_and(torch.half),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
assert_autodiffed=True,),
|
|
UnaryUfuncInfo('sin',
|
|
ref=np.sin,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
assert_autodiffed=True,
|
|
handles_large_floats=False,
|
|
handles_complex_extremals=False,
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),)),
|
|
UnaryUfuncInfo('sinc',
|
|
ref=np_sinc_with_fp16_as_fp32,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
handles_large_floats=False,
|
|
handles_complex_extremals=False,
|
|
safe_casts_outputs=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2,
|
|
torch.float16: 1e-2}),),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/49133
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.cfloat]),
|
|
)),
|
|
UnaryUfuncInfo('sinh',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.sinh),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True,
|
|
decorators=(precisionOverride({torch.float16: 1e-2}),),
|
|
skips=(
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48641
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.int8]),
|
|
)),
|
|
UnaryUfuncInfo('sign',
|
|
ref=reference_sign,
|
|
dtypes=all_types_and(torch.bfloat16, torch.half),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/41245
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16, torch.float16, torch.float32, torch.float64]),
|
|
)),
|
|
UnaryUfuncInfo('sgn',
|
|
ref=reference_sgn,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.half),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/41245
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16, torch.float16, torch.float32, torch.float64]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/53958
|
|
# Test fails in comparison on Nan as the `equal_nan` is True for
|
|
# comparing the CPU tensors.
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.complex64, torch.complex128]),
|
|
# Reference: https://github.com/pytorch/pytorch/issues/48486
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.complex64])
|
|
)),
|
|
OpInfo('rsub',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
variant_test_name='rsub_tensor',
|
|
supports_out=False,
|
|
supports_inplace_autograd=False,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/53797
|
|
# JIT doesn't understand complex literals
|
|
SkipInfo('TestCommon', 'test_variant_consistency_jit',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
),
|
|
sample_inputs_func=partial(sample_inputs_rsub, variant='tensor'),),
|
|
OpInfo('rsub',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half),
|
|
variant_test_name='rsub_scalar',
|
|
supports_out=False,
|
|
supports_inplace_autograd=False,
|
|
sample_inputs_func=partial(sample_inputs_rsub, variant='scalar'),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/53797
|
|
# JIT doesn't understand complex literals
|
|
SkipInfo('TestCommon', 'test_variant_consistency_jit',
|
|
dtypes=all_types_and_complex_and(torch.bfloat16, torch.half)),),
|
|
assert_autodiffed=True,),
|
|
UnaryUfuncInfo('signbit',
|
|
ref=np.signbit,
|
|
dtypes=all_types_and(torch.bfloat16, torch.half),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.bfloat16, torch.half),
|
|
supports_autograd=False,),
|
|
OpInfo('solve',
|
|
op=torch.solve,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_legacy_solve,
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
skips=(SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('std',
|
|
dtypes=floating_types_and(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_std_var,
|
|
# TODO: std does support out in some signatures
|
|
supports_out=False,
|
|
supports_complex_autograd=False,
|
|
# std has only partial support for complex and half (#51127)
|
|
skips=(SkipInfo('TestOpInfo', 'test_unsupported_dtypes',
|
|
dtypes=[torch.half, torch.complex64, torch.complex128]),),
|
|
assert_autodiffed=True,
|
|
),
|
|
UnaryUfuncInfo('tan',
|
|
ref=np.tan,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.float64],
|
|
active_if=TEST_WITH_ROCM),
|
|
)),
|
|
UnaryUfuncInfo('tanh',
|
|
ref=np.tanh,
|
|
decorators=(precisionOverride({torch.bfloat16: 1e-2}),),
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
# "tanh_backward_cpu" not implemented for 'BFloat16'
|
|
SkipInfo('TestOpInfo', 'test_supported_backward',
|
|
dtypes=(torch.bfloat16,)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=(IS_MACOS or IS_WINDOWS)),
|
|
)),
|
|
OpInfo('tensor_split',
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
supports_out=False,
|
|
skips=(SkipInfo('TestOpInfo', 'test_duplicate_method_tests'),),
|
|
sample_inputs_func=sample_inputs_tensor_split,),
|
|
OpInfo('triangular_solve',
|
|
op=torch.triangular_solve,
|
|
dtypes=floating_and_complex_types(),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_legacy_solve,
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
# CUDA gradchecks are slow and triangular solve backward is a composite operation
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
skips=(SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
UnaryUfuncInfo('trunc',
|
|
aliases=('fix', ),
|
|
ref=np.trunc,
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.float16),
|
|
assert_autodiffed=True),
|
|
UnaryUfuncInfo('exp2',
|
|
aliases=('special.exp2', ),
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.exp2),
|
|
dtypes=all_types_and(torch.bool, torch.half),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.half),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('expm1',
|
|
aliases=('special.expm1', ),
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.expm1),
|
|
dtypes=all_types_and(torch.bool, torch.half),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/48926#issuecomment-739734774
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
)),
|
|
UnaryUfuncInfo('nan_to_num',
|
|
ref=np.nan_to_num,
|
|
dtypes=all_types_and(torch.half, torch.bool),
|
|
dtypesIfCPU=None,
|
|
dtypesIfCUDA=None),
|
|
UnaryUfuncInfo('reciprocal',
|
|
ref=np_unary_ufunc_integer_promotion_wrapper(np.reciprocal),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCPU=None,
|
|
dtypesIfCUDA=None,
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True,
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/45690
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/49102#issuecomment-744604601
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.bfloat16]),
|
|
)),
|
|
UnaryUfuncInfo('rsqrt',
|
|
ref=lambda x: np.reciprocal(np.sqrt(x)),
|
|
domain=(0, float('inf')),
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
decorators=(precisionOverride({torch.half: 5e-2}),),
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True,
|
|
handles_complex_extremals=False),
|
|
UnaryUfuncInfo('sqrt',
|
|
ref=np.sqrt,
|
|
supports_sparse=True,
|
|
domain=(0, float('inf')),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
decorators=(precisionOverride({torch.bfloat16: 7e-2}),),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/47358
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble],
|
|
active_if=IS_MACOS),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/47293#issuecomment-721774436
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16])),
|
|
safe_casts_outputs=True,
|
|
handles_complex_extremals=False),
|
|
UnaryUfuncInfo('square',
|
|
ref=np.square,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
decorators=(precisionOverride({torch.complex64: 3e-4, torch.bfloat16: 3e-1}),),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/52549
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.cfloat, torch.cdouble]),
|
|
# >>> t = torch.tensor(complex(-0.01, float("inf")))
|
|
# >>> np.square(t.numpy())
|
|
# (-inf-infj)
|
|
# >>> t.square()
|
|
# tensor(-inf-infj)
|
|
# >>> t.cuda().square()
|
|
# tensor(inf+nanj, device='cuda:0')
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.cfloat, torch.cdouble]),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/52551#issuecomment-782596181
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16]),
|
|
),),
|
|
OpInfo('lerp',
|
|
dtypes=floating_and_complex_types(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_lerp,
|
|
assert_autodiffed=True),
|
|
OpInfo('linalg.inv',
|
|
aten_name='linalg_inv',
|
|
op=torch.linalg.inv,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# linalg_inv does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
)),
|
|
UnaryUfuncInfo('angle',
|
|
ref=np.angle,
|
|
dtypes=all_types_and_complex_and(torch.bool),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool),
|
|
dtypesIfROCM=all_types_and_complex_and(torch.bool),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2}),),
|
|
safe_casts_outputs=True,
|
|
supports_complex_to_float=True),
|
|
OpInfo('linalg.solve',
|
|
aten_name='linalg_solve',
|
|
op=torch.linalg.solve,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_solve,
|
|
check_batched_gradgrad=False,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('linalg.pinv',
|
|
aten_name='linalg_pinv',
|
|
op=torch.linalg.pinv,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('linalg.pinv',
|
|
aten_name='linalg_pinv',
|
|
variant_test_name='hermitian',
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
sample_inputs_func=sample_inputs_linalg_pinv_hermitian,
|
|
gradcheck_wrapper=gradcheck_wrapper_hermitian_input,
|
|
decorators=[skipCUDAIfNoMagma, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('eig',
|
|
op=torch.eig,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_eig,
|
|
decorators=[
|
|
skipCUDAIfNoMagma,
|
|
skipCPUIfNoLapack,
|
|
skipCUDAIfRocm
|
|
],),
|
|
OpInfo('svd',
|
|
op=torch.svd,
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_svd,
|
|
decorators=[
|
|
skipCUDAIfNoMagmaAndNoCusolver,
|
|
skipCUDAIfRocm,
|
|
skipCPUIfNoLapack,
|
|
# gradgrad checks are slow
|
|
DecorateInfo(slowTest, 'TestGradients', 'test_fn_gradgrad'),
|
|
],
|
|
skips=(
|
|
# cuda gradchecks are very slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('linalg.svd',
|
|
op=torch.linalg.svd,
|
|
aten_name='linalg_svd',
|
|
dtypes=floating_and_complex_types(),
|
|
sample_inputs_func=sample_inputs_linalg_svd,
|
|
decorators=[
|
|
skipCUDAIfNoMagmaAndNoCusolver,
|
|
skipCUDAIfRocm,
|
|
skipCPUIfNoLapack,
|
|
# gradgrad checks are slow
|
|
DecorateInfo(slowTest, 'TestGradients', 'test_fn_gradgrad'),
|
|
],
|
|
skips=(
|
|
# cuda gradchecks are very slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('polar',
|
|
dtypes=floating_types(),
|
|
sample_inputs_func=sample_inputs_polar),
|
|
# To test reference numerics against multiple values of argument `n`,
|
|
# we make multiple OpInfo entries with each entry corresponding to different value of n (currently 0 to 4).
|
|
# We run the op tests from test_ops.py only for `n=0` to avoid redundancy in testing.
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_0',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Probably related to the way the function is
|
|
# scripted for JIT tests (or maybe not).
|
|
# RuntimeError:
|
|
# Arguments for call are not valid.
|
|
# The following variants are available:
|
|
# aten::polygamma(int n, Tensor self) -> (Tensor):
|
|
# Expected a value of type 'Tensor' for argument 'self' but instead found type 'int'.
|
|
# aten::polygamma.out(int n, Tensor self, *, Tensor(a!) out) -> (Tensor(a!)):
|
|
# Expected a value of type 'Tensor' for argument 'self' but instead found type 'int'.
|
|
# The original call is:
|
|
# File "<string>", line 3
|
|
# def the_method(i0):
|
|
# return torch.polygamma(i0, 1)
|
|
# ~~~~~~~~~~~~~~~ <--- HERE
|
|
SkipInfo('TestCommon', 'test_variant_consistency_jit'),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 0}, {'n': 0})),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_1',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
SkipInfo('TestGradients'),
|
|
SkipInfo('TestOpInfo'),
|
|
SkipInfo('TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard'),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal'),
|
|
),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 1}, {'n': 1})),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_2',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
SkipInfo('TestGradients'),
|
|
SkipInfo('TestOpInfo'),
|
|
SkipInfo('TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=TEST_WITH_ROCM),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=TEST_WITH_ROCM),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 2}, {'n': 2})),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_3',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
SkipInfo('TestGradients'),
|
|
SkipInfo('TestOpInfo'),
|
|
SkipInfo('TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=TEST_WITH_ROCM),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=TEST_WITH_ROCM),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 3}, {'n': 3})),
|
|
UnaryUfuncInfo('polygamma',
|
|
op=lambda x, n, **kwargs: torch.polygamma(n, x, **kwargs),
|
|
variant_test_name='polygamma_n_4',
|
|
ref=reference_polygamma if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.float16: 5e-4, torch.float32: 5e-4}),),
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_polygamma,
|
|
skips=(
|
|
# Redundant tests
|
|
SkipInfo('TestGradients'),
|
|
SkipInfo('TestOpInfo'),
|
|
SkipInfo('TestCommon'),
|
|
# Mismatch: https://github.com/pytorch/pytorch/issues/55357
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal'),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=TEST_WITH_ROCM),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=TEST_WITH_ROCM),),
|
|
sample_kwargs=lambda device, dtype, input: ({'n': 4}, {'n': 4})),
|
|
OpInfo('pinverse',
|
|
op=torch.pinverse,
|
|
dtypes=floating_and_complex_types(),
|
|
check_batched_grad=False,
|
|
check_batched_gradgrad=False,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_linalg_invertible,
|
|
decorators=[skipCUDAIfNoMagmaAndNoCusolver, skipCUDAIfRocm, skipCPUIfNoLapack],
|
|
skips=(
|
|
# cuda gradchecks are slow
|
|
# see discussion https://github.com/pytorch/pytorch/pull/47761#issuecomment-747316775
|
|
SkipInfo('TestGradients', 'test_fn_gradgrad', device_type='cuda'),)),
|
|
OpInfo('gather',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_gather,
|
|
),
|
|
OpInfo('index_fill',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
skips=(SkipInfo('TestOpInfo', 'test_duplicate_method_tests'),),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_index_fill),
|
|
OpInfo('index_copy',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_index_copy),
|
|
OpInfo('index_select',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_index_select),
|
|
OpInfo('index_add',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_index_add),
|
|
OpInfo('__getitem__',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_inplace_autograd=False,
|
|
op=torch.Tensor.__getitem__,
|
|
sample_inputs_func=sample_inputs_getitem,
|
|
skips=(SkipInfo('TestCommon', 'test_variant_consistency_jit'),)),
|
|
OpInfo('index_put',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
supports_inplace_autograd=True,
|
|
sample_inputs_func=sample_inputs_index_put,
|
|
skips=(
|
|
SkipInfo('TestCommon', 'test_variant_consistency_jit'),
|
|
)),
|
|
OpInfo('sort',
|
|
dtypes=all_types_and(torch.bool, torch.float16),
|
|
# sort on CUDA is still in the TH, no torch.bool/torch.float16 support yet
|
|
dtypesIfCUDA=all_types_and(torch.float16),
|
|
dtypesIfROCM=all_types_and(torch.float16),
|
|
sample_inputs_func=sample_inputs_sort,
|
|
skips=(
|
|
# sort does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),
|
|
)),
|
|
OpInfo('put',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
check_batched_gradgrad=False, # vmap complains of the sizes
|
|
sample_inputs_func=sample_inputs_put),
|
|
OpInfo('take',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
check_batched_grad=False, # vmap complains of the sizes
|
|
sample_inputs_func=sample_inputs_take),
|
|
OpInfo('stack',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_stack,
|
|
assert_autodiffed=True,
|
|
skips=(
|
|
# stack does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),),),
|
|
OpInfo('hstack',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_hstack_dstack_vstack,
|
|
skips=(
|
|
# hstack does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),),),
|
|
OpInfo('hypot',
|
|
dtypes=floating_types(),
|
|
dtypesIfCPU=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
sample_inputs_func=sample_inputs_hypot,
|
|
),
|
|
OpInfo('vstack',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_hstack_dstack_vstack,
|
|
skips=(
|
|
# vstack does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),),),
|
|
OpInfo('dstack',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_hstack_dstack_vstack,
|
|
skips=(
|
|
# dstack does not correctly warn when resizing out= inputs
|
|
SkipInfo('TestCommon', 'test_out'),),),
|
|
OpInfo('unfold',
|
|
op=lambda x, *args: x.unfold(*args),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
check_batched_gradgrad=False,
|
|
skips=(
|
|
# torch.unfold does not exist so we get a RuntimeError.
|
|
SkipInfo('TestCommon', 'test_variant_consistency_jit',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16)),
|
|
# Skip operator schema test because this is a functional and not an operator
|
|
SkipInfo('TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
),
|
|
sample_inputs_func=sample_inputs_unfold),
|
|
OpInfo('msort',
|
|
dtypes=all_types_and(torch.float16),
|
|
check_batched_gradgrad=False,
|
|
skips=(
|
|
# msort does not correctly warn when resizing out= inputs.
|
|
SkipInfo('TestCommon', 'test_out',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16)),
|
|
# msort does not raise expected Runtime Error.
|
|
SkipInfo('TestOpInfo', 'test_unsupported_dtypes', dtypes=[torch.bool]),
|
|
),
|
|
sample_inputs_func=sample_inputs_msort),
|
|
OpInfo('movedim',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_movedim_moveaxis),
|
|
OpInfo('moveaxis',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_movedim_moveaxis),
|
|
ShapeFuncInfo('repeat',
|
|
op=lambda x, dims: x.repeat(dims),
|
|
ref=np.tile,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
skips=(
|
|
# torch.repeat does not exist so we get a RuntimeError.
|
|
SkipInfo('TestCommon', 'test_variant_consistency_jit',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16)),
|
|
),
|
|
sample_inputs_func=sample_repeat_tile),
|
|
OpInfo('take_along_dim',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
sample_inputs_func=sample_inputs_take_along_dim),
|
|
ShapeFuncInfo('tile',
|
|
ref=np.tile,
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.float16, torch.bfloat16),
|
|
supports_out=False,
|
|
sample_inputs_func=sample_repeat_tile),
|
|
OpInfo('var',
|
|
dtypes=floating_types_and(),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_std_var,
|
|
# TODO: revisit, some var signatures do support out (see std, too)
|
|
supports_out=False,
|
|
supports_complex_autograd=False,
|
|
# var has only partial support for complex and half (#51127)
|
|
skips=(SkipInfo('TestOpInfo', 'test_unsupported_dtypes',
|
|
dtypes=[torch.half, torch.complex64, torch.complex128]),),
|
|
assert_autodiffed=True,
|
|
),
|
|
OpInfo('xlogy',
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_inplace_autograd=True,
|
|
safe_casts_outputs=True,
|
|
sample_inputs_func=sample_inputs_xlogy),
|
|
OpInfo('logsumexp',
|
|
dtypes=floating_types_and(torch.bfloat16),
|
|
dtypesIfCUDA=floating_types_and(torch.bfloat16, torch.half),
|
|
supports_complex_autograd=False,
|
|
assert_autodiffed=True,
|
|
sample_inputs_func=sample_inputs_logsumexp),
|
|
OpInfo('trace',
|
|
dtypes=all_types_and_complex(),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half),
|
|
supports_inplace_autograd=False,
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_trace),
|
|
OpInfo('kron',
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
supports_inplace_autograd=False,
|
|
sample_inputs_func=sample_inputs_kron),
|
|
OpInfo('inner',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_inner),
|
|
OpInfo('tensordot',
|
|
dtypes=floating_and_complex_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.half, torch.bfloat16),
|
|
dtypesIfCUDA=floating_and_complex_types_and(torch.float16, *[torch.bfloat16] if CUDA11OrLater else []),
|
|
dtypesIfROCM=floating_and_complex_types_and(torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
sample_inputs_func=sample_inputs_tensordot,
|
|
skips=(
|
|
# Currently failing due to an INTERNAL_ASSERT_FAILED error.
|
|
# Reference: https://github.com/pytorch/pytorch/issues/56314
|
|
SkipInfo("TestCommon", "test_variant_consistency_jit", dtypes=[torch.float32]),
|
|
# Skip operator schema test because this is a functional and not an operator.
|
|
# Reference: https://github.com/pytorch/pytorch/issues/54574
|
|
SkipInfo('TestOperatorSignatures', 'test_get_torch_func_signature_exhaustive'),
|
|
)
|
|
),
|
|
OpInfo('logcumsumexp',
|
|
dtypes=floating_types_and(),
|
|
dtypesIfCUDA=floating_types_and(torch.half),
|
|
skips=(
|
|
# AssertionError: UserWarning not triggered : Resized a non-empty tensor but did not warn about it.
|
|
SkipInfo('TestCommon', 'test_out', dtypes=(torch.float32,), device_type='cuda'),
|
|
# logcumsumexp_backward not implemented for 'Half
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.float16,), device_type='cuda'),
|
|
),
|
|
sample_inputs_func=sample_inputs_logcumsumexp),
|
|
UnaryUfuncInfo('sigmoid',
|
|
aliases=('special.expit', ),
|
|
ref=reference_sigmoid if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.complex64: 1e-1,
|
|
torch.bfloat16: 1e-2}),),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/issues/56012
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cuda', dtypes=[torch.complex64]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cuda', dtypes=[torch.complex64]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.cfloat, torch.cdouble])),
|
|
dtypes=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCPU=all_types_and_complex_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16),
|
|
safe_casts_outputs=True,
|
|
assert_autodiffed=True,
|
|
supports_complex_autograd=False), # Reference: https://github.com/pytorch/pytorch/issues/48552
|
|
UnaryUfuncInfo('digamma',
|
|
ref=scipy.special.digamma if TEST_SCIPY else _NOTHING,
|
|
decorators=(precisionOverride({torch.float16: 5e-1}),),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('special.entr',
|
|
ref=scipy.special.entr if TEST_SCIPY else _NOTHING,
|
|
aten_name='special_entr',
|
|
decorators=(precisionOverride({torch.float16: 1e-1,
|
|
torch.bfloat16: 1e-1}),),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
skips=(
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.bfloat16, torch.float16]),
|
|
),
|
|
supports_inplace_autograd=False,
|
|
safe_casts_outputs=True,
|
|
sample_inputs_func=sample_inputs_entr),
|
|
UnaryUfuncInfo('erf',
|
|
ref=scipy.special.erf if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.erf', ),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2}),),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('erfc',
|
|
ref=scipy.special.erfc if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.erfc', ),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2}),),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
assert_autodiffed=True,
|
|
safe_casts_outputs=True),
|
|
UnaryUfuncInfo('erfinv',
|
|
ref=scipy.special.erfinv if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.erfinv', ),
|
|
decorators=(precisionOverride({torch.float16: 1e-2,
|
|
torch.bfloat16: 1e-2,
|
|
torch.float32: 1e-4}),),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
safe_casts_outputs=True,
|
|
domain=(-1, 1),
|
|
skips=(
|
|
# Reference: https://github.com/pytorch/pytorch/pull/49155#issuecomment-742664611
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
active_if=TEST_SCIPY and LooseVersion(scipy.__version__) < "1.4.0"),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
active_if=TEST_SCIPY and LooseVersion(scipy.__version__) < "1.4.0"),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
active_if=TEST_SCIPY and LooseVersion(scipy.__version__) < "1.4.0"),
|
|
)),
|
|
UnaryUfuncInfo('lgamma',
|
|
ref=reference_lgamma if TEST_SCIPY else _NOTHING,
|
|
aliases=('special.gammaln', ),
|
|
decorators=(precisionOverride({torch.float16: 7e-1}),),
|
|
dtypes=all_types_and(torch.bool),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half),
|
|
skips=(
|
|
# "digamma" not implemented for 'BFloat16'
|
|
SkipInfo('TestOpInfo', 'test_supported_backward', dtypes=(torch.bfloat16,)),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/50140#discussion_r552615345
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
device_type='cpu', dtypes=[torch.bfloat16]),
|
|
# Reference: https://github.com/pytorch/pytorch/pull/50140#issuecomment-756150214
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_extremal',
|
|
dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_hard',
|
|
dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS),
|
|
SkipInfo('TestUnaryUfuncs', 'test_reference_numerics_normal',
|
|
dtypes=[torch.float32, torch.float64], active_if=IS_WINDOWS),
|
|
),
|
|
safe_casts_outputs=True),
|
|
OpInfo(
|
|
'logdet',
|
|
supports_out=False,
|
|
sample_inputs_func=sample_inputs_logdet,
|
|
decorators=(skipCPUIfNoLapack, skipCUDAIfNoMagma, skipCUDAIfRocm)),
|
|
UnaryUfuncInfo('logit',
|
|
ref=scipy.special.logit if TEST_SCIPY else _NOTHING,
|
|
domain=(0, 1),
|
|
aliases=('special.logit', ),
|
|
decorators=(precisionOverride({torch.bfloat16: 5e-1,
|
|
torch.float16: 5e-1}),),
|
|
dtypes=all_types_and(torch.half),
|
|
dtypesIfCPU=all_types_and(torch.bool, torch.bfloat16),
|
|
dtypesIfCUDA=all_types_and(torch.bool, torch.half, torch.bfloat16),
|
|
sample_inputs_func=sample_inputs_logit,
|
|
safe_casts_outputs=True),
|
|
]
|
|
|
|
# Common operator groupings
|
|
unary_ufuncs = [op for op in op_db if isinstance(op, UnaryUfuncInfo)]
|
|
spectral_funcs = [op for op in op_db if isinstance(op, SpectralFuncInfo)]
|
|
sparse_unary_ufuncs = [op for op in op_db if isinstance(op, UnaryUfuncInfo) and op.supports_sparse is True]
|
|
shape_funcs = [op for op in op_db if isinstance(op, ShapeFuncInfo)]
|
|
|
|
def index_variable(shape, max_indices, device=torch.device('cpu')):
|
|
if not isinstance(shape, tuple):
|
|
shape = (shape,)
|
|
index = torch.rand(*shape, device=device).mul_(max_indices).floor_().long()
|
|
return index
|
|
|
|
|
|
def index_perm_variable(shape, max_indices):
|
|
if not isinstance(shape, tuple):
|
|
shape = (shape,)
|
|
|
|
index = torch.randperm(max_indices).narrow(0, 0, reduce(mul, shape)).view(shape)
|
|
return index
|
|
|
|
|
|
def gather_variable(shape, index_dim, max_indices, duplicate=False, device=torch.device('cpu')):
|
|
assert len(shape) == 2
|
|
assert index_dim < 2
|
|
batch_dim = 1 - index_dim
|
|
index = torch.zeros(*shape, dtype=torch.long, device=device)
|
|
for i in range(shape[index_dim]):
|
|
index.select(index_dim, i).copy_(
|
|
torch.randperm(max_indices, device=device)[:shape[batch_dim]])
|
|
if duplicate:
|
|
index.select(batch_dim, 0).copy_(index.select(batch_dim, 1))
|
|
return index
|
|
|
|
|
|
def bernoulli_scalar():
|
|
return torch.tensor(0, dtype=torch.bool).bernoulli_()
|
|
|
|
|
|
def mask_not_all_zeros(shape):
|
|
assert len(shape) > 0
|
|
while True:
|
|
result = torch.randn(shape).gt(0)
|
|
if result.sum() > 0:
|
|
return result
|
|
|
|
|
|
def uniform_scalar(offset=0, requires_grad=False):
|
|
v = torch.rand(()) + offset
|
|
v.requires_grad = requires_grad
|
|
return v
|
|
|
|
|
|
def normal_scalar_clamp(amin, amax, requires_grad=False):
|
|
v = torch.randn(()).clamp(amin, amax)
|
|
v.requires_grad = requires_grad
|
|
return v
|
|
|
|
|
|
def prod_zeros(dim_size, dim_select):
|
|
assert len(dim_select) == 2
|
|
result = torch.randn(dim_size, dim_size, dim_size)
|
|
result.narrow(dim_select[0], 0, 1).narrow(dim_select[1], 1, 1).zero_()
|
|
result.narrow(dim_select[0], 2, 1).narrow(dim_select[1], 3, 1).zero_()
|
|
result.narrow(dim_select[0], 4, 1).narrow(dim_select[1], 3, 1).zero_()
|
|
return result
|
|
|
|
|
|
non_differentiable = collections.namedtuple('non_differentiable', ['tensor'])
|
|
|
|
|
|
class dont_convert(tuple):
|
|
pass
|
|
|
|
|
|
class NoArgsClass(object):
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
raise StopIteration()
|
|
next = __next__ # Python 2 compatibility
|
|
|
|
def __len__(self):
|
|
return 0
|
|
|
|
NO_ARGS = NoArgsClass()
|
|
|
|
def ident(x):
|
|
return x
|
|
|
|
# Do NOT add to this list. Method tests are being DEPRECATED and replaced by OpInfos.
|
|
# See https://github.com/pytorch/pytorch/wiki/Writing-tests-in-PyTorch-1.8
|
|
#
|
|
# (
|
|
# method name,
|
|
# input size/constructing fn,
|
|
# args (tuple represents shape of a tensor arg),
|
|
# test variant name (will be used at test name suffix), // optional
|
|
# (should_autodiff_node[bool], nonfusible_nodes, fusible_nodes) for autodiff, // optional
|
|
# indices for possible dim arg, // optional
|
|
# fn mapping output to part that should be gradcheck'ed, // optional
|
|
# kwargs // optional
|
|
# )
|
|
# Note: some functions have separate schema for (Tensor other) and (Scalar other),
|
|
# and it's possible that we only support AD for Scalar version but not Tensor
|
|
# version, and vice versa.
|
|
# When writing tests, only scalar(float/int) input triggers the Scalar schema.
|
|
# uniform_scalar produces a scalar **Tensor** which won't match Scalar input.
|
|
def method_tests():
|
|
set_rng_seed(SEED)
|
|
return [
|
|
('__radd__', (S, S, S), (3.14,), 'constant', (True, 'aten::add')),
|
|
('__radd__', (), (3.14,), 'scalar_constant', (True, 'aten::add')),
|
|
('sub', (S, S, S), ((S, S, S),), '', (True,)),
|
|
('sub', (S, S, S), ((S, S),), 'broadcast_rhs', (True,)),
|
|
('sub', (S, S), ((S, S, S),), 'broadcast_lhs', (True,)),
|
|
('sub', (S, 1, S), ((M, S),), 'broadcast_all', (True,)),
|
|
('sub', (S, S, S), ((),), 'scalar_broadcast_rhs', (True,)),
|
|
('sub', (), ((S, S, S),), 'scalar_broadcast_lhs', (True,)),
|
|
('sub', (S, S, S), (3.14,), 'constant', (True,)),
|
|
('sub', (), (3.14,), 'scalar_constant', (True,)),
|
|
('sub', (S, S, S), (3.14j,), 'complex_scalar_constant', (True,)),
|
|
('__rsub__', (S, S, S), (3.14,), 'constant', (True, 'aten::rsub')),
|
|
('__rsub__', (), (3.14,), 'scalar_constant', (True, 'aten::rsub')),
|
|
('mul', (S, S, S), ((S, S, S),), '', (True,)),
|
|
('mul', (), ((),), 'scalar', (True,)),
|
|
('mul', (S, S, S), ((S, S),), 'broadcast_rhs', (True,)),
|
|
('mul', (S, S), ((S, S, S),), 'broadcast_lhs', (True,)),
|
|
('mul', (S, 1, S), ((M, S),), 'broadcast_all', (True,)),
|
|
('mul', (S, S, S), ((),), 'scalar_broadcast_rhs', (True,)),
|
|
('mul', (), ((S, S, S),), 'scalar_broadcast_lhs', (True,)),
|
|
('mul', (S, S, S), (3.14,), 'constant', (True,)),
|
|
('mul', (), (3.14,), 'scalar_constant', (True,)),
|
|
# TODO(@anjali411): enable these tests
|
|
# ('mul', (S, S, S), (3.14j,), 'imaginary_constant', (True,)),
|
|
# ('mul', (), (3.14j,), 'imaginary_scalar_constant', (True,)),
|
|
('__rmul__', (S, S, S), (3.14,), 'constant', (True, 'aten::mul')),
|
|
('__rmul__', (), (3.14,), 'scalar_constant', (True, 'aten::mul')),
|
|
('div', (S, S, S), (torch.rand(S, S, S) + 0.1,), '', (True,)),
|
|
('div', (S, S, S), (torch.rand(S, S) + 0.1,), 'broadcast_rhs', (True,)),
|
|
('div', (S, S), (torch.rand(S, S, S) + 0.1,), 'broadcast_lhs', (True,)),
|
|
('div', (S, 1, S), (torch.rand(M, S) + 0.1,), 'broadcast_all', (True,)),
|
|
('div', (), (uniform_scalar(0.1),), 'scalar', (True,)),
|
|
('div', (S, S, S), (uniform_scalar(0.1),), 'scalar_broadcast_rhs', (True,)),
|
|
('div', (), (uniform_scalar(0.1),), 'scalar_broadcast_lhs', (True,)),
|
|
('div', torch.rand(S, S, S) + 1e-1, (3.14,), 'constant', (True,)),
|
|
('div', uniform_scalar(1e-1, requires_grad=True), (3.14,), 'scalar_constant', (True,)),
|
|
('true_divide', (S, S, S), (torch.rand(S, S, S) + 0.1,), '', (True,)),
|
|
('true_divide', (S, S, S), (torch.rand(S, S) + 0.1,), 'broadcast_rhs', (True,)),
|
|
('true_divide', (S, S), (torch.rand(S, S, S) + 0.1,), 'broadcast_lhs', (True,)),
|
|
('true_divide', (S, 1, S), (torch.rand(M, S) + 0.1,), 'broadcast_all', (True,)),
|
|
('true_divide', (), (uniform_scalar(0.1),), 'scalar', (True,)),
|
|
('true_divide', (S, S, S), (uniform_scalar(0.1),), 'scalar_broadcast_rhs', (True,)),
|
|
('true_divide', (), (uniform_scalar(0.1),), 'scalar_broadcast_lhs', (True,)),
|
|
('true_divide', torch.rand(S, S, S) + 1e-1, (3.14,), 'constant', (True,)),
|
|
('true_divide', uniform_scalar(1e-1, requires_grad=True), (3.14,), 'scalar_constant', (True,)),
|
|
('__rdiv__', torch.rand(S, S, S) + 1e-1, (3.14,), 'constant',
|
|
(True, [], ['aten::mul', 'aten::reciprocal'])),
|
|
('__rdiv__', uniform_scalar(1e-1, requires_grad=True), (3.14,), 'scalar_constant',
|
|
(True, [], ['aten::mul', 'aten::reciprocal'])),
|
|
('__rdiv__', torch.rand(S, S, S, dtype=torch.cdouble) + 1e-1, (3.14j,), 'complex_constant',
|
|
(True, [], ['aten::mul', 'aten::reciprocal'])),
|
|
('__rdiv__', uniform_scalar(1e-1 * (1 + 1j), requires_grad=True), (3.14j,), 'complex_scalar_constant',
|
|
(True, [], ['aten::mul', 'aten::reciprocal'])),
|
|
('div', (S, S, S), (torch.rand(S, S, S, dtype=torch.cdouble) + 0.1,), 'complex', (True,)),
|
|
('div', (S, S, S), (torch.rand(S, S, dtype=torch.cdouble) + 0.1,), 'complex_broadcast_rhs', (True,)),
|
|
('div', (S, S), (torch.rand(S, S, S, dtype=torch.cdouble) + 0.1,), 'complex_broadcast_lhs', (True,)),
|
|
('div', (S, 1, S), (torch.rand(M, S, dtype=torch.cdouble) + 0.1,), 'complex_broadcast_all', (True,)),
|
|
('div', (), (uniform_scalar(0.1j),), 'complex_scalar', (True,)),
|
|
('div', (S, S, S), (uniform_scalar(0.1j),), 'complex_scalar_broadcast_rhs', (True,)),
|
|
('div', (), (uniform_scalar(0.1j),), 'complex_scalar_broadcast_lhs', (True,)),
|
|
('div', torch.rand(S, S, S, dtype=torch.cdouble) + 1e-1, (3.14j,), 'complex_constant', (True,)),
|
|
('div', uniform_scalar(1e-1j, requires_grad=True), (3.14j,), 'complex_scalar_constant', (True,)),
|
|
('__rpow__', torch.rand(S, S, S) + 1e-3, (3.14,), 'constant', (True, 'aten::pow')),
|
|
('__rpow__', uniform_scalar(1e-3, requires_grad=True), (3.14,), 'scalar_constant', (True, 'aten::pow')),
|
|
('float_power', torch.rand(S, S, S) + 1e-3, (torch.rand(S, S, S) + 0.1,), ''),
|
|
('float_power', torch.rand(S, S, S) + 1e-3, (torch.rand(1,) + 0.1,), 'broadcast_rhs'),
|
|
('float_power', torch.rand(1,) + 1e-3, (torch.rand(S, S, S) + 0.1,), 'broadcast_lhs'),
|
|
('float_power', torch.rand(S, 1, S) + 1e-3, (torch.rand(1, S, 1) + 0.1,), 'broadcast_all'),
|
|
('float_power', uniform_scalar(1e-3, requires_grad=True), (uniform_scalar(0.1),), 'scalar'),
|
|
('float_power', torch.rand(S, S, S) + 1e-3, (uniform_scalar(0.1),), 'scalar_broadcast_rhs'),
|
|
('float_power', uniform_scalar(1e-3, requires_grad=True), (torch.rand(S, S, S) + 0.1,), 'scalar_broadcast_lhs'),
|
|
('float_power', torch.rand(S, S, S) + 1e-3, (3.14,), 'constant'),
|
|
('transpose', (1, 2, 3), (1, 2), 'dim', (False,), [0, 1]),
|
|
('transpose', (), (0, 0), 'scalar', (False,)),
|
|
('transpose', (1,), (0, 0), '1d', (False,)),
|
|
('transpose', (L, L), (0, 1), '2d', (False,)),
|
|
('transpose', (S, S, S), (2, 0), '3d', (False,)),
|
|
('swapdims', (1, 2, 3), (1, 2), 'dim', (False,), [0, 1]),
|
|
('swapdims', (), (0, 0), 'scalar', (False,)),
|
|
('swapdims', (1,), (0, 0), '1d', (False,)),
|
|
('swapdims', (L, L), (0, 1), '2d', (False,)),
|
|
('swapdims', (S, S, S), (2, 0), '3d', (False,)),
|
|
('swapaxes', (1, 2, 3), (1, 2), 'dim', (False,), [0, 1]),
|
|
('swapaxes', (), (0, 0), 'scalar', (False,)),
|
|
('swapaxes', (1,), (0, 0), '1d', (False,)),
|
|
('swapaxes', (L, L), (0, 1), '2d', (False,)),
|
|
('swapaxes', (S, S, S), (2, 0), '3d', (False,)),
|
|
('t', (1, 2), NO_ARGS, '', (False,)),
|
|
('view', (S, S, S), (S * S, S), '', (False,)),
|
|
('view', (torch.Size([S * S, S]),), (S, S, S), 'size', (False,)),
|
|
('view', (S,), (S,), '1d', (False,)),
|
|
('view', (), (dont_convert(()),), 'scalar_to_scalar', (False,)),
|
|
('view', (), (1,), 'scalar_to_1d', (False,)),
|
|
('ravel', (S, S, S), NO_ARGS, '', (False,)),
|
|
('reshape', (S, S, S), (S * S, S), '', (False,)),
|
|
('reshape', (torch.Size([S * S, S]),), (S, S, S), 'size', (False,)),
|
|
('reshape', (S,), (S,), '1d', (False,)),
|
|
('reshape', (), (dont_convert(()),), 'scalar_to_scalar', (False,)),
|
|
('reshape', (), (1,), 'scalar_to_1d', (False,)),
|
|
('reshape_as', (S, S, S), (non_differentiable(torch.rand(S * S, S)),)),
|
|
('reshape_as', (), (non_differentiable(torch.tensor(42.)),), 'scalar'),
|
|
('reshape_as', (), (non_differentiable(torch.rand(1, 1)),), 'scalar_to_dims'),
|
|
('roll', (S, S, S), (0, 0), 'd0'),
|
|
('roll', (S, S, S), (1, 2), 'd12'),
|
|
('roll', (S, S, S), (0, 2,), 'd02'),
|
|
('roll', (S, S, S), (2, 0,), 'd20'),
|
|
('roll', (S, S, S), (-1, 0), 'neg_shift'),
|
|
('roll', (S, S, S), (10000, 1), 'loop_shift'),
|
|
('roll', (S, S, S), (2,), 'flattened'),
|
|
('roll', (S, S, S), ([1, 2, -1], [0, 1, 2]), 'three_dims'),
|
|
('rot90', (S, S, S), (1, [0, 1],), 'k1_d01'),
|
|
('rot90', (S, S, S), (1, [1, 2],), 'k1_d12'),
|
|
('rot90', (S, S, S), (1, [1, -1],), 'k1_neg_d'),
|
|
('rot90', (S, S, S), (), 'default'),
|
|
('view_as', (S, S, S), (non_differentiable(torch.rand(S * S, S)),)),
|
|
('view_as', (), (non_differentiable(torch.tensor(5.5)),), 'scalar'),
|
|
('view_as', (), (non_differentiable(torch.rand(1, 1)),), 'scalar_to_dims'),
|
|
('expand', (S, 1, 1), (S, S, S), '', (False,)),
|
|
('expand', (torch.Size([S, 1, S]),), (S, S, S), 'size', (False,)),
|
|
('expand', (S, 1), (S, S, S), 'new_dim', (False,)),
|
|
('expand', (1,), (S, S, S), '1_element', (False,)),
|
|
('expand', (1, S), (1, 1, S), 'new_dim_front_old_front_1', (False,)),
|
|
('expand', (), (dont_convert(()),), 'scalar_to_scalar'),
|
|
('expand', (), (1, 3, 2), 'scalar_to_dims', (False,)),
|
|
('expand_as', (S, 1, 1), (torch.rand(S, S, S),), '', (False,)),
|
|
('view_as_real', (S, S, S), NO_ARGS, 'complex'),
|
|
('view_as_complex', (S, S, 2), NO_ARGS),
|
|
('complex', (S, S, S), ((S, S, S),), ''),
|
|
('fmod', (S, S, S), (1.5,), '', (True,)),
|
|
('fmod', (), (1.5,), 'scalar', (True,)),
|
|
('fmod', (S, S, S), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'tensor'),
|
|
('fmod', (S,), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'tensor_broadcast_lhs'),
|
|
('fmod', (S, S, S), (non_differentiable(torch.rand(S) + 1.5),), 'tensor_broadcast_rhs'),
|
|
('fmod', (S, 1, S), (non_differentiable(torch.rand(S, S) + 1.5),), 'tensor_broadcast_all'),
|
|
('fmod', (), (non_differentiable(uniform_scalar(1.5)),), 'scalar_tensor'),
|
|
('fmod', (), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'scalar_tensor_broadcast_lhs'),
|
|
('fmod', (S, S, S), (non_differentiable(uniform_scalar(1.5)),), 'scalar_tensor_broadcast_rhs'),
|
|
('remainder', (S, S, S), (1.5,), '', (True,)),
|
|
('remainder', (), (1.5,), 'scalar', (True,)),
|
|
('remainder', (S, S, S), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'tensor'),
|
|
('remainder', (S,), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'tensor_broadcast_lhs'),
|
|
('remainder', (S, 1, S), (non_differentiable(torch.rand(S, S) + 1.5),), 'tensor_broadcast_all'),
|
|
('remainder', (), (non_differentiable(uniform_scalar(1.5)),), 'scalar_tensor'),
|
|
('remainder', (), (non_differentiable(torch.rand(S, S, S) + 1.5),), 'scalar_tensor_broadcast_lhs'),
|
|
('kthvalue', (S, S, S), (2,)),
|
|
('kthvalue', (S, S, S), (2, 1,), 'dim', (), [1]),
|
|
('kthvalue', (S, S, S), (2, 1,), 'dim_alert_nondeterministic', (), [1],
|
|
[skipMeta, expectedAlertNondeterministic('kthvalue CUDA', 'cuda')]),
|
|
('kthvalue', (S, S, S), (2, 1, True,), 'keepdim_dim', (), [1]),
|
|
('kthvalue', (S,), (2, 0,), 'dim_1d', (), [1]),
|
|
('kthvalue', (S,), (2, 0, True,), 'keepdim_dim_1d', (), [1]),
|
|
('kthvalue', (), (1,), 'scalar', (), ()),
|
|
('kthvalue', (), (1, 0,), 'scalar_dim', (), [1]),
|
|
('kthvalue', (), (1, 0, True), 'scalar_keepdim_dim', (), [1]),
|
|
('median', (S, S, S), NO_ARGS),
|
|
('median', (S, S, S), (1,), 'dim', (), [0]),
|
|
('median', (S, S, S), (1,), 'dim_alert_nondeterministic', (), [0],
|
|
[skipMeta, expectedAlertNondeterministic('median CUDA with indices output', 'cuda')]),
|
|
('median', (S, S, S), (1, True,), 'keepdim_dim', (), [0]),
|
|
('median', (), NO_ARGS, 'scalar'),
|
|
('median', (), (0,), 'scalar_dim', (), [0]),
|
|
('median', (), (0, True,), 'scalar_keepdim_dim', (), [0]),
|
|
('nanmedian', (S, S, S), NO_ARGS),
|
|
('nanmedian', (S, S, S), (1,), 'dim', (), [0]),
|
|
('nanmedian', (S, S, S), (1, True,), 'keepdim_dim', (), [0]),
|
|
('nanmedian', (), NO_ARGS, 'scalar'),
|
|
('nanmedian', (), (0,), 'scalar_dim', (), [0]),
|
|
('nanmedian', (), (0, True,), 'scalar_keepdim_dim', (), [0]),
|
|
('var_mean', (S, S, S), NO_ARGS, ''),
|
|
('var_mean', (S, S, S), (1,), 'dim', [0]),
|
|
('var_mean', (S, S, S), (1, True, True), 'keepdim_dim', [0]),
|
|
('var_mean', (S,), (0,), 'dim_1d', [0]),
|
|
('var_mean', (S,), (0, True, True), 'keepdim_dim_1d', [0]),
|
|
('std_mean', (S, S, S), NO_ARGS, ''),
|
|
('std_mean', (S, S, S), (1,), 'dim', [0]),
|
|
('std_mean', (S, S, S), (1, True, True), 'keepdim_dim', [0]),
|
|
('std_mean', (S,), (0,), 'dim_1d', [0]),
|
|
('std_mean', (S,), (0, True, True), 'keepdim_dim_1d', [0]),
|
|
('renorm', (S, S, S), (2, 1, 0.5), 'dim', (), [1]),
|
|
('renorm', (S, S, S), (1, 2, 3), 'norm_1'),
|
|
('renorm', (S, S, S), (inf, 2, 0.5), 'norm_inf'),
|
|
('log_softmax', (S, S, S), (1, torch.float64,), 'kwarg_dtype_would_break_jit_loader', (True,)),
|
|
('addmm', (S, M), ((S, S), (S, M)), '', (True, ['aten::add', 'aten::mm'])),
|
|
('addmm', (1,), ((S, S), (S, M)), 'broadcast_lhs', (True, ['aten::add', 'aten::mm'])),
|
|
('addmm', (S, M), ((S, S), (S, M)), 'coef', (True,), (), (), ident, {'beta': 0.2, 'alpha': 0.6}),
|
|
('addmm', (1,), ((S, S), (S, M)), 'broadcast_lhs_coef', (True,), (), (), ident, {'beta': 0.2, 'alpha': 0.6}),
|
|
('addmm', (), ((S, S), (S, M)), 'scalar_broadcast_lhs', (True, ['aten::add', 'aten::mm'])),
|
|
('addmm', (), ((S, S), (S, M)), 'scalar_broadcast_lhs_coef', (True,), (), (), ident, {'beta': 0.2, 'alpha': 0.6}),
|
|
('baddbmm', (S, S, M), ((S, S, S), (S, S, M)),),
|
|
('baddbmm', (1,), ((S, S, S), (S, S, M)), 'broadcast_lhs'),
|
|
('baddbmm', (S, S, M), ((S, S, S), (S, S, M)), 'coef', (), (), (), ident, {'beta': 0.2, 'alpha': 0.6}),
|
|
('baddbmm', (1,), ((S, S, S), (S, S, M)), 'broadcast_lhs_coef', (),
|
|
(), (), ident, {'beta': 0.2, 'alpha': 0.6}),
|
|
('baddbmm', (), ((S, S, S), (S, S, M)), 'scalar_broadcast_lhs'),
|
|
('baddbmm', (), ((S, S, S), (S, S, M)), 'scalar_broadcast_lhs_coef', (), (), (), ident,
|
|
{'beta': 0.2, 'alpha': 0.6}),
|
|
('mvlgamma', torch.empty(S,).uniform_(0.5, 1), [1], "p=1"),
|
|
('mvlgamma', torch.empty(S,).uniform_(1, 2), [2], "p=2"),
|
|
('mvlgamma', torch.empty(S, S).uniform_(1.5, 3), [3], "p=3"),
|
|
('mvlgamma', torch.empty(S, S).uniform_(2.5, 5), [5], "p=5"),
|
|
('zero_', (S, S, S), NO_ARGS),
|
|
('zero_', (), NO_ARGS, 'scalar'),
|
|
('norm', (S, S), (), 'default'),
|
|
('norm', (S, S), (2,), '2'),
|
|
('norm', (S, S), (0,), '0'),
|
|
('norm', (S, S), (0.5,), '0_5'),
|
|
('norm', (S, S), (1,), '1'),
|
|
('norm', (S, S), (3,), '3'),
|
|
('norm', (S, S), (inf,), 'inf'),
|
|
('norm', (S, S), (-inf,), '-inf'),
|
|
('norm', (S, S), ('fro',), 'fro_default'),
|
|
('norm', (S, S), ('fro', [0, 1],), 'fro'),
|
|
('norm', (S, S), ('nuc',), 'nuc', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
|
|
('norm', (S, S, S), ('nuc', [1, 2]), 'nuc_batched', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
|
|
('norm', (S, S), (-1,), 'neg_1'),
|
|
('norm', (S, S), (-2,), 'neg_2'),
|
|
('norm', (S, S), (-0.5,), 'neg_0_5'),
|
|
('norm', (S, S), (-1.5,), 'neg_1_5'),
|
|
('norm', (S, S), (-2, 1,), 'neg_2_2_dim', (), [1]),
|
|
('norm', (S, S), (-1, 1,), 'neg_1_2_dim', (), [1]),
|
|
('norm', (S, S), (0, 1,), '0_2_dim', (), [1]),
|
|
('norm', (S, S), (1, 1,), '1_2_dim', (), [1]),
|
|
('norm', (S, S), (2, 1,), '2_2_dim', (), [1]),
|
|
('norm', (S, S), (3, 1,), '3_2_dim', (), [1]),
|
|
('norm', (S, S), (inf, 1,), 'inf_2_dim'),
|
|
('norm', torch.rand(S, S, S) + 5e-2, (1.5,), '1_5_default'),
|
|
('norm', (S, S, S), (2, 1), '2_dim', (), [1]),
|
|
('norm', (S, S, S), (3, 1), '3_dim', (), [1]),
|
|
('norm', torch.rand(S, S, S) + 5e-2, (1.5, 1), '1_5_dim', (), [1]),
|
|
('norm', (S, S, S), (2, 1, True), 'keepdim_2_dim', (), [1]),
|
|
('norm', (S, S, S), (3, 1, True), 'keepdim_3_dim', (), [1]),
|
|
('norm', torch.rand(S, S, S) + 5e-2, (1.5, 1, True), 'keepdim_1_5_dim', (), [1]),
|
|
('norm', (), (2, 0), '2_dim_scalar', (), [1]),
|
|
('norm', (), (3, 0), '3_dim_scalar', (), [1]),
|
|
('norm', (), (2, 0, True), 'keepdim_2_dim_scalar', (), [1]),
|
|
('norm', (), (3, 0, True), 'keepdim_3_dim_scalar', (), [1]),
|
|
('clone', (S, M, S), NO_ARGS),
|
|
('clone', (), NO_ARGS, 'scalar'),
|
|
('contiguous', (S, S), NO_ARGS, '', (True,)),
|
|
('contiguous', torch.randn(S, S).transpose(0, 1), NO_ARGS, 'not_contiguous', (True,)),
|
|
('diag_embed', (S, S), NO_ARGS),
|
|
('diagonal', (M, M), NO_ARGS, '2d'),
|
|
('diagonal', (3, 5), NO_ARGS, '2d_wide'),
|
|
('diagonal', (3, 5), (2,), '2d_wide_pos'),
|
|
('diagonal', (3, 5), (-2,), '2d_wide_neg'),
|
|
('diagonal', (5, 3), NO_ARGS, '2d_tall'),
|
|
('diagonal', (5, 3), (2,), '2d_tall_pos'),
|
|
('diagonal', (5, 3), (-2,), '2d_tall_neg'),
|
|
('diagonal', (M, M), (1,), '2d_1'),
|
|
('diagonal', (M, M), (2,), '2d_2'),
|
|
('diagonal', (M, M, M), (1, 1, 2), '3d_1'),
|
|
('diagonal', (M, M, M), (2, 0, 1), '3d_2'),
|
|
('diagonal', (M, M, M), (-2, 0, 1), '3d_3'),
|
|
('tril', (M, M), NO_ARGS),
|
|
('tril', (M, M), (2,), 'idx'),
|
|
('tril', (S, M, M), NO_ARGS, 'batched'),
|
|
('tril', (S, M, M), (2,), 'batched_idx'),
|
|
('tril', (3, 3, S, S), NO_ARGS, 'more_batched'),
|
|
('triu', (M, M), NO_ARGS),
|
|
('triu', (M, M), (2,), 'idx'),
|
|
('triu', (S, M, M), NO_ARGS, 'batched'),
|
|
('triu', (S, M, M), (2,), 'batched_idx'),
|
|
('triu', (3, 3, S, S), NO_ARGS, 'more_batched'),
|
|
('cross', (S, 3), ((S, 3),)),
|
|
('cross', (S, 3, S), ((S, 3, S), 1), 'dim'),
|
|
('index_fill', (S, S), (0, index_variable(2, S), 2), 'dim', (), [0]),
|
|
('index_fill', (S, S), (0, index_variable(2, S), ()), 'variable_dim', (), [0]),
|
|
('index_fill', (S, S), (0, torch.tensor(0, dtype=torch.int64), 2), 'scalar_index_dim', (), [0]),
|
|
('index_fill', (), (0, torch.tensor([0], dtype=torch.int64), 2), 'scalar_input_dim', (), [0]),
|
|
('index_fill', (), (0, torch.tensor(0, dtype=torch.int64), 2), 'scalar_both_dim', (), [0]),
|
|
('fill_', (S, S, S), (1,), 'number'),
|
|
('fill_', (), (1,), 'number_scalar'),
|
|
('fill_', (S, S, S), ((),), 'variable'),
|
|
('permute', (1, 2, 3, 4), (0, 2, 3, 1), '', (True,)),
|
|
('permute', (1, 2, 3, 4), (0, -2, -1, 1), 'neg_dim', (True,)),
|
|
('permute', (), (dont_convert(()),), 'scalar', (True,)),
|
|
('select', (S, S, S), (1, 2), 'dim', (), [0]),
|
|
('select', (S, S, S), (1, -1), 'wrap_dim', (), [0]),
|
|
('select', (S,), (0, 2), '1d'),
|
|
('narrow', (S, S, S), (1, 2, 2), 'dim', (), [0]),
|
|
('narrow', (S, S, S), (1, 0, 0), 'empty_dim', (), [0]),
|
|
('squeeze', (S, 1, S, 1), NO_ARGS, '', (True,)),
|
|
('squeeze', (1, 1, 1, 1), NO_ARGS, 'input_sizes_are_ones', (True,)),
|
|
('squeeze', (S, 1, S, 1), (1,), '1_dim', (True,), [0]),
|
|
('squeeze', (S, 1, S, 1), (2,), 'not_1_dim', (True,), [0]),
|
|
('squeeze', (), (0,), 'scalar', (True,), [0]),
|
|
('unsqueeze', (S, S, S), (0,), 'first', (True,), [0]),
|
|
('unsqueeze', (S, S, S), (1,), 'middle', (True,), [0]),
|
|
('unsqueeze', (S, S, S), (3,), 'last', (True,), [0]),
|
|
('unsqueeze', (), (0,), 'scalar', (True,), [0]),
|
|
('chunk', (S, S, S), (2,), '', (True, 'prim::ConstantChunk')),
|
|
('chunk', (S, S, S), (S, 1), 'dim', (True, 'prim::ConstantChunk'), [1]),
|
|
('split', (S, S, S), (2,), '', (True,)),
|
|
('split', (S, S, S), (S, 1), 'dim', (True,), [1]),
|
|
('split', (S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)],), 'size_list',
|
|
(True, 'aten::split_with_sizes')),
|
|
('split', (S, S, S), ([int(S / 2), S - int(S / 2) * 2, int(S / 2)], 2), 'size_list_dim',
|
|
(True, 'aten::split_with_sizes'), [1]),
|
|
('split_with_sizes', (S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)],), '', (True,)),
|
|
('split_with_sizes', (S, S, S), ([int(S / 3), S - int(S / 3), 0],), 'size_0', (True, )),
|
|
('split_with_sizes', (S, S, S), ([int(S / 3), S - int(S / 3) * 2, int(S / 3)],), 'dim', (True, ), [1]),
|
|
('tensor_split', (S, S, S), (3,), 'sections', (False,)),
|
|
('tensor_split', (S, S, S), (3, 1), 'sections_dim', (False,), [1]),
|
|
('tensor_split', (S, S, S), ([2, 4],), 'indices', (False,)),
|
|
('tensor_split', (S, S, S), ([2, 4], 1), 'indices_dim', (False,), [1]),
|
|
('scatter', (M, S), (0, gather_variable((S, S), 1, M), (S, S)), 'dim0', (), [0]),
|
|
('scatter', (M, S), (1, gather_variable((M, S // 2), 0, S), (M, S // 2)), 'dim1', (), [0]),
|
|
('scatter', (), (0, torch.tensor(0, dtype=torch.int64), ()), 'scalartensor_all_dim0', (), [0]),
|
|
('scatter', (), (0, torch.tensor(0, dtype=torch.int64), 2.5), 'scalar_all_dim0', (), [0]),
|
|
('scatter_add', (M, S), (0, gather_variable((S, S), 1, M), (S, S)), 'dim0', (), [0]),
|
|
('scatter_add', (M, S), (1, gather_variable((M, S // 2), 0, S), (M, S // 2)), 'dim1', (), [0]),
|
|
('scatter_add', (), (0, torch.tensor(0, dtype=torch.int64), ()), 'scalar_all_dim0', (), [0]),
|
|
('scatter_add', (M, S), (0, gather_variable((S, S), 1, M), (S, S)), 'alert_nondeterministic', (), [0],
|
|
[expectedAlertNondeterministic('scatter_add_cuda_kernel', 'cuda')]),
|
|
('resize_', (S, S, S), (torch.Size([S * S, S])), 'fewer_dims'),
|
|
('resize_', (), (dont_convert(()),), 'scalar'),
|
|
('resize_', (), (torch.Size([1, 1, 1])), 'scalar_to_dims'),
|
|
('resize_as_', (), (non_differentiable(torch.tensor(5.)),), 'scalar'),
|
|
('resize_as_', (), (non_differentiable(torch.randn((1, 1, 1))),), 'scalar_to_dims'),
|
|
('resize_as_', (S, S, S), (non_differentiable(torch.randn(S * S, S)),)),
|
|
('where', (M, M), (mask_not_all_zeros((M, M)), (M, M)), '', (True,)),
|
|
('where', (M, 1, M), (mask_not_all_zeros((M, M)), (M, M, 1)), 'broadcast_all', (True,)),
|
|
('where', (), (bernoulli_scalar(), ()), 'scalar', (True,)),
|
|
('where', (M, 1, M), (bernoulli_scalar(), (M, M, 1)), 'scalar_broadcast_mask', (True,)),
|
|
('where', (), (mask_not_all_zeros((M, M)), ()), 'scalar_broadcast_non_mask', (True,)),
|
|
('to_sparse', (S, S), (), '', (), (), [], lambda x: x.to_dense())
|
|
]
|
|
|
|
def create_input(call_args, requires_grad=True, non_contiguous=False, call_kwargs=None, dtype=torch.double, device=None):
|
|
if not isinstance(call_args, tuple):
|
|
call_args = (call_args,)
|
|
|
|
def map_arg(arg):
|
|
def maybe_non_contig(tensor):
|
|
return tensor if not non_contiguous else make_non_contiguous(tensor)
|
|
|
|
if isinstance(arg, torch.Size) or isinstance(arg, dont_convert):
|
|
return arg
|
|
elif isinstance(arg, tuple) and len(arg) == 0:
|
|
var = torch.randn((), dtype=dtype, device=device)
|
|
var.requires_grad = requires_grad
|
|
return var
|
|
elif isinstance(arg, tuple) and not isinstance(arg[0], torch.Tensor):
|
|
return Variable(maybe_non_contig(torch.randn(*arg, dtype=dtype, device=device)), requires_grad=requires_grad)
|
|
# double check casting
|
|
elif isinstance(arg, non_differentiable):
|
|
if isinstance(arg.tensor, torch.Tensor):
|
|
return maybe_non_contig(arg.tensor.to(device=device))
|
|
return maybe_non_contig(arg.tensor.to(device=device))
|
|
elif isinstance(arg, torch.Tensor):
|
|
if arg.dtype == torch.float:
|
|
arg = arg.double()
|
|
if arg.dtype == torch.cfloat:
|
|
arg = arg.to(torch.cdouble)
|
|
if arg.is_complex() != dtype.is_complex:
|
|
raise RuntimeError("User provided tensor is real for a test that runs with complex dtype, ",
|
|
"which is not supported for now")
|
|
# NOTE: We do clone() after detach() here because we need to be able to change size/storage of v afterwards
|
|
v = maybe_non_contig(arg).detach().to(device=device).clone()
|
|
v.requires_grad = requires_grad and (v.is_floating_point() or v.is_complex())
|
|
return v
|
|
elif callable(arg):
|
|
return map_arg(arg(dtype=dtype, device=device))
|
|
else:
|
|
return arg
|
|
args_out = tuple(map_arg(arg) for arg in call_args)
|
|
kwargs_out = {k: map_arg(v) for k, v in call_kwargs.items()} if call_kwargs else {}
|
|
return args_out, kwargs_out
|
|
|
|
|
|
def _compare_trilu_indices(
|
|
self, row, col, offset=0, dtype=torch.long, device='cpu'):
|
|
if row == 0 or col == 0:
|
|
# have to handle this separately as tril and triu does not take
|
|
# empty matrix as input
|
|
self.assertEqual(
|
|
torch.empty(0, 2, dtype=dtype, device=device).transpose(0, 1),
|
|
torch.tril_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
self.assertEqual(
|
|
torch.empty(0, 2, dtype=dtype, device=device).transpose(0, 1),
|
|
torch.triu_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
else:
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(
|
|
torch.ones(row, col, device='cpu')
|
|
.tril(offset).nonzero().to(dtype).transpose(0, 1),
|
|
torch.tril_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
|
|
self.assertEqualIgnoreType(
|
|
torch.ones(row, col, device='cpu')
|
|
.tril(offset).nonzero().to(dtype).transpose(0, 1),
|
|
torch.tril_indices(row, col, offset, dtype=dtype, device=device))
|
|
|
|
|
|
def _compare_large_trilu_indices(
|
|
self, row, col, offset=0, dtype=torch.long, device='cpu'):
|
|
l = torch.ones(row, col, dtype=dtype, device='cpu').tril(offset) \
|
|
.nonzero()[-100:-1, :].transpose(0, 1).to(device)
|
|
torch.cuda.empty_cache()
|
|
|
|
r = torch.tril_indices(
|
|
row, col, offset, dtype=dtype, device=device)[:, -100:-1]
|
|
self.assertEqual(l, r)
|
|
torch.cuda.empty_cache()
|
|
|
|
l = torch.ones(row, col, dtype=dtype, device='cpu').triu(offset) \
|
|
.nonzero()[-100:-1, :].transpose(0, 1).to(device)
|
|
torch.cuda.empty_cache()
|
|
|
|
r = torch.triu_indices(
|
|
row, col, offset, dtype=dtype, device=device)[:, -100:-1]
|
|
self.assertEqual(l, r)
|
|
torch.cuda.empty_cache()
|
|
|
|
# (
|
|
# row
|
|
# col
|
|
# offset (optional)
|
|
# dtype (optional)
|
|
# )
|
|
tri_tests_args = [
|
|
(1, 1),
|
|
(3, 3),
|
|
(3, 3, 1),
|
|
(3, 3, 2),
|
|
(3, 3, 200),
|
|
(3, 3, -1),
|
|
(3, 3, -2),
|
|
(3, 3, -200),
|
|
(0, 3, 0),
|
|
(0, 3, 1),
|
|
(0, 3, -1),
|
|
(3, 0, 0),
|
|
(3, 0, 1),
|
|
(3, 0, -1),
|
|
(0, 0, 0),
|
|
(0, 0, 1),
|
|
(0, 0, -1),
|
|
(3, 6, 0),
|
|
(3, 6, 1),
|
|
(3, 6, 3),
|
|
(3, 6, 9),
|
|
(3, 6, -1),
|
|
(3, 6, -3),
|
|
(3, 6, -9),
|
|
(6, 3, 0),
|
|
(6, 3, 1),
|
|
(6, 3, 3),
|
|
(6, 3, 9),
|
|
(6, 3, -1),
|
|
(6, 3, -3),
|
|
(6, 3, -9),
|
|
(258, 253, 1, torch.float32),
|
|
(257, 258, 1, torch.float64),
|
|
(258, 258, 1, torch.short),
|
|
(3, 513, 1, torch.long),
|
|
(513, 3, 1, torch.int),
|
|
(513, 0, 1, torch.double),
|
|
(1024, 1024),
|
|
(1024, 1024, 500, torch.float32),
|
|
(1024, 1024, 1023),
|
|
(1024, 1024, -500),
|
|
(1023, 1025),
|
|
(1025, 1023, 1022),
|
|
(1024, 1024, -500),
|
|
(3, 2028),
|
|
(3, 2028, 1),
|
|
(3, 2028, -1),
|
|
(2028, 3),
|
|
(2028, 1),
|
|
(2028, 1, -1)
|
|
]
|
|
|
|
tri_large_tests_args: List[Tuple[int, ...]] = [
|
|
# Large test cases below are deliberately commented out to speed up CI
|
|
# tests and to avoid OOM error. When modifying implementations of
|
|
# tril_indices and triu_indices, please enable these tests and make sure
|
|
# they pass.
|
|
#
|
|
# (1, 268435455),
|
|
# (5000, 5000),
|
|
# (10000, 10000),
|
|
# (268435455, 1),
|
|
# (134217727, 2, 1),
|
|
# (2, 134217727, 1),
|
|
# (536870901, 1),
|
|
# (1, 536870901),
|
|
# (268435455, 2, 1),
|
|
# (2, 268435455, 1)
|
|
]
|
|
|
|
|
|
def run_additional_tri_tests(self, device):
|
|
x = torch.ones(
|
|
3, 3, dtype=torch.long, device=device, layout=torch.strided)
|
|
l = x.tril(0).nonzero().transpose(0, 1)
|
|
u = x.triu(0).nonzero().transpose(0, 1)
|
|
self.assertEqual(l, torch.tril_indices(3, 3, device=device))
|
|
self.assertEqual(
|
|
l, torch.tril_indices(3, 3, device=device, layout=torch.strided))
|
|
|
|
self.assertEqual(u, torch.triu_indices(3, 3, device=device))
|
|
self.assertEqual(
|
|
u, torch.triu_indices(3, 3, device=device, layout=torch.strided))
|
|
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: torch.triu_indices(
|
|
1, 1, device=device, layout=torch.sparse_coo))
|
|
|
|
self.assertRaises(
|
|
RuntimeError,
|
|
lambda: torch.tril_indices(
|
|
1, 1, device=device, layout=torch.sparse_coo))
|
|
|
|
|
|
def unpack_variables(args):
|
|
if isinstance(args, tuple):
|
|
return tuple(unpack_variables(elem) for elem in args)
|
|
else:
|
|
return args
|
|
|
|
|
|
EXCLUDE_FUNCTIONAL = {
|
|
'addmm',
|
|
'addmm_',
|
|
'addbmm',
|
|
'baddbmm',
|
|
'addmv',
|
|
'addmv_',
|
|
'addr',
|
|
'addr_',
|
|
'reshape',
|
|
'where' # argument order
|
|
}
|
|
EXCLUDE_GRADCHECK: Dict[str, Any] = {
|
|
}
|
|
EXCLUDE_GRADGRADCHECK: Dict[str, Any] = {
|
|
}
|
|
EXCLUDE_GRADGRADCHECK_BY_TEST_NAME = {
|
|
# *det methods uses svd in backward when matrix is not invertible. However,
|
|
# svd backward is unstable unless the matrix has positive distinct singular
|
|
# values. Generated random matrices satisfy this with high probability, but
|
|
# we can't rely on it. So only test gradgrad on invertible test cases and
|
|
# _distinct_singular_values.
|
|
'test_det',
|
|
'test_det_1x1',
|
|
'test_det_symmetric',
|
|
'test_det_symmetric_psd',
|
|
'test_det_dim2_null',
|
|
'test_det_rank1',
|
|
'test_det_rank2',
|
|
'test_det_batched',
|
|
'test_det_batched_1x1',
|
|
'test_det_batched_symmetric',
|
|
'test_det_batched_symmetric_psd',
|
|
# `other` expand_as(self, other) is not used in autograd.
|
|
'test_expand_as',
|
|
'test_logdet',
|
|
'test_logdet_1x1',
|
|
'test_logdet_symmetric',
|
|
'test_logdet_batched',
|
|
'test_logdet_batched_1x1',
|
|
'test_logdet_batched_symmetric',
|
|
'test_cdist',
|
|
}
|
|
|
|
|
|
def exclude_tensor_method(name, test_name):
|
|
# there are no tensor equivalents for these (inplace or out)
|
|
exclude_all_tensor_method_by_test_name = {
|
|
'test_slice',
|
|
'test_where',
|
|
'test_where_broadcast_all',
|
|
'test_where_scalar',
|
|
'test_where_scalar_broadcast_mask',
|
|
'test_where_scalar_broadcast_non_mask',
|
|
'test_var_mean_keepdim_dim_1d',
|
|
'test_var_mean_keepdim_dim',
|
|
'test_var_mean_dim_1d',
|
|
'test_var_mean_dim',
|
|
'test_var_mean',
|
|
'test_std_mean_keepdim_dim_1d',
|
|
'test_std_mean_keepdim_dim',
|
|
'test_std_mean_dim_1d',
|
|
'test_std_mean_dim',
|
|
'test_std_mean',
|
|
'test_view_as_complex',
|
|
'test_view_as_real_complex',
|
|
'test_real_complex',
|
|
'test_imag_complex',
|
|
'test_complex'
|
|
}
|
|
# there are no out-of-place tensor equivalents for these
|
|
exclude_outplace_tensor_method = {
|
|
'index_add',
|
|
'index_copy',
|
|
'index_fill',
|
|
'masked_fill',
|
|
'masked_scatter',
|
|
'scatter',
|
|
'scatter_add',
|
|
'det',
|
|
}
|
|
if test_name in exclude_all_tensor_method_by_test_name:
|
|
return True
|
|
is_magic_method = name[:2] == '__' and name[-2:] == '__'
|
|
is_inplace = name[-1] == "_" and not is_magic_method
|
|
if not is_inplace and name in exclude_outplace_tensor_method:
|
|
return True
|
|
if 'fft.' in name:
|
|
return True
|
|
return False
|