mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/73045 Reviewed By: zou3519 Differential Revision: D34318185 Pulled By: albanD fbshipit-source-id: abc30fe69176ba474e28bb045406a410e17cfd79 (cherry picked from commit 4d9a305d3a2688e0d6264193f5dd692a2d44aedb)
608 lines
23 KiB
Python
608 lines
23 KiB
Python
# Owner(s): ["high priority"]
|
|
|
|
import torch
|
|
from torch.testing._internal.common_utils import TestCase, run_tests
|
|
from torch.testing._internal.logging_tensor import LoggingTensor, log_input, capture_logs, no_dispatch
|
|
from torch.utils._pytree import tree_map
|
|
from torch.utils._python_dispatch import enable_python_mode
|
|
|
|
import logging
|
|
|
|
class TestPythonDispatch(TestCase):
|
|
def test_basic(self) -> None:
|
|
with capture_logs() as logs:
|
|
x = LoggingTensor(torch.tensor([3.0]), requires_grad=True)
|
|
log_input("x", x)
|
|
y = x * x
|
|
saved_x = y.grad_fn._saved_self
|
|
grad_y = LoggingTensor(torch.tensor([1.0]))
|
|
log_input("grad_y", grad_y)
|
|
g, = torch.autograd.grad((y,), (x,), (grad_y,))
|
|
|
|
self.assertEqual(g.elem, torch.tensor([6.0]))
|
|
with torch.no_grad():
|
|
self.assertEqual(saved_x, x)
|
|
self.assertEqual(saved_x._version, x._version)
|
|
x.add_(2)
|
|
self.assertEqual(saved_x, x)
|
|
# TODO: figure out why broken
|
|
# self.assertEqual(saved_x._version, x._version)
|
|
self.assertExpectedInline('\n'.join(logs), '''\
|
|
$0 = input('x')
|
|
$1 = torch._ops.aten.mul($0, $0)
|
|
$2 = input('grad_y')
|
|
$3 = torch._ops.aten.mul($2, $0)
|
|
$4 = torch._ops.aten.mul($2, $0)
|
|
$5 = torch._ops.aten.add($4, $3)''')
|
|
|
|
def test_out(self) -> None:
|
|
with capture_logs() as logs:
|
|
x = LoggingTensor(torch.ones(1))
|
|
y = LoggingTensor(torch.zeros(1))
|
|
log_input("x", x)
|
|
log_input("y", y)
|
|
torch.abs(x, out=y)
|
|
|
|
self.assertEqual(y.elem, torch.ones(1))
|
|
# TODO: arguably this shouldn't pass and we should complain
|
|
# that out isn't a kwarg
|
|
self.assertExpectedInline('\n'.join(logs), '''\
|
|
$0 = input('x')
|
|
$1 = input('y')
|
|
$2 = torch._ops.aten.abs($0, out=$1)''')
|
|
|
|
|
|
def test_kwarg_only(self) -> None:
|
|
with capture_logs() as logs:
|
|
x = LoggingTensor(torch.ones(1))
|
|
y = LoggingTensor(torch.ones(1, 1))
|
|
z = LoggingTensor(torch.ones(1))
|
|
log_input("x", x)
|
|
log_input("y", y)
|
|
log_input("z", z)
|
|
torch.addmv(x, y, z)
|
|
torch.addmv(x, y, z, beta=1)
|
|
torch.addmv(x, y, z, beta=2)
|
|
torch.addmv(x, y, z, alpha=2)
|
|
torch.addmv(x, y, z, beta=2, alpha=2)
|
|
|
|
# The expectation is that beta/alpha don't show up when they're
|
|
# defaulted. This is even if the user explicitly specified it.
|
|
self.assertExpectedInline('\n'.join(logs), '''\
|
|
$0 = input('x')
|
|
$1 = input('y')
|
|
$2 = input('z')
|
|
$3 = torch._ops.aten.addmv($0, $1, $2)
|
|
$4 = torch._ops.aten.addmv($0, $1, $2)
|
|
$5 = torch._ops.aten.addmv($0, $1, $2, beta=2)
|
|
$6 = torch._ops.aten.addmv($0, $1, $2, alpha=2)
|
|
$7 = torch._ops.aten.addmv($0, $1, $2, beta=2, alpha=2)''')
|
|
|
|
def test_kwarg_only_and_positional_default(self) -> None:
|
|
with capture_logs() as logs:
|
|
x = LoggingTensor(torch.ones(1))
|
|
y = LoggingTensor(torch.ones(1))
|
|
log_input("x", x)
|
|
log_input("y", y)
|
|
torch.ops.aten.kl_div(x, y)
|
|
torch.ops.aten.kl_div(x, y, 2)
|
|
torch.ops.aten.kl_div(x, y, log_target=True)
|
|
torch.ops.aten.kl_div(x, y, 2, log_target=True)
|
|
|
|
# What we are testing here is that we omit reduction
|
|
# if it is defaulted, even if a kwarg is set
|
|
self.assertExpectedInline('\n'.join(logs), '''\
|
|
$0 = input('x')
|
|
$1 = input('y')
|
|
$2 = torch._ops.aten.kl_div($0, $1)
|
|
$3 = torch._ops.aten.kl_div($0, $1, 2)
|
|
$4 = torch._ops.aten.kl_div($0, $1, log_target=True)
|
|
$5 = torch._ops.aten.kl_div($0, $1, 2, log_target=True)''')
|
|
|
|
def test_list_ret(self) -> None:
|
|
# test all sequence types are permissible returns
|
|
for list_type in (list, tuple):
|
|
class A(torch._C._TensorBase):
|
|
@staticmethod
|
|
def __new__(cls, elem):
|
|
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
if func == torch.ops.aten.split:
|
|
with no_dispatch():
|
|
return list_type(torch.split(*args))
|
|
else:
|
|
raise AssertionError(f"unrecognized func: {func}")
|
|
|
|
self.assertEqual(
|
|
torch.split(A(torch.tensor([0, 1])), 2),
|
|
torch.split(torch.tensor([0, 1]), 2)
|
|
)
|
|
|
|
def test_invalid_ret(self) -> None:
|
|
# test invalid return gets reasonable error message
|
|
class A(torch._C._TensorBase):
|
|
@staticmethod
|
|
def __new__(cls, elem):
|
|
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
return "arf"
|
|
|
|
# Wobbles depending on NDEBUG mode of pybind11
|
|
self.assertRaisesRegexp(
|
|
RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).neg(),
|
|
)
|
|
self.assertRaisesRegexp(
|
|
RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).detach(),
|
|
)
|
|
|
|
def test_detach_appears_twice_when_called_once(self) -> None:
|
|
with capture_logs() as logs:
|
|
x = LoggingTensor(torch.tensor([3.0]), requires_grad=True)
|
|
log_input("x", x)
|
|
x.detach()
|
|
# FIXME: We actually want this to emit a single detach. However,
|
|
# it currently emits two, for reasons unclear to us. Leaving
|
|
# this test here to make sure we don't regress even further (it
|
|
# would be bad if calling .detach() once emits 3+ detaches).
|
|
self.assertExpectedInline('\n'.join(logs), '''\
|
|
$0 = input('x')
|
|
$1 = torch._ops.aten.detach($0)
|
|
$2 = torch._ops.aten.detach($1)''')
|
|
|
|
def test_metadata_change_not_allowed(self) -> None:
|
|
x = LoggingTensor(torch.ones(1))
|
|
y = x.data
|
|
self.assertIsInstance(y, LoggingTensor)
|
|
self.assertRaises(RuntimeError, lambda: y.resize_(4))
|
|
|
|
def test_storage(self) -> None:
|
|
# For now, just make sure it doesn't crash. Ideally, we should
|
|
# return some virtual storage that is safe to work with
|
|
x = LoggingTensor(torch.ones(1))
|
|
self.assertRaises(RuntimeError, lambda: x.storage())
|
|
|
|
def test_make_wrapper_subclass_noalloc(self) -> None:
|
|
# This is ludicrously big (8TB) and this should pass because wrapper
|
|
# subclasses don't allocate
|
|
torch.Tensor._make_wrapper_subclass(LoggingTensor, (1000000000000,))
|
|
|
|
def test_version(self) -> None:
|
|
x = LoggingTensor(torch.ones(1))
|
|
prev_vc = x._version
|
|
x.detach().add_(2)
|
|
cur_vc = x._version
|
|
self.assertNotEqual(prev_vc, cur_vc)
|
|
x.data.add_(2)
|
|
self.assertEqual(cur_vc, x._version)
|
|
|
|
def test_subclass_priority(self) -> None:
|
|
class ErrorA(RuntimeError):
|
|
pass
|
|
|
|
class ErrorB(RuntimeError):
|
|
pass
|
|
|
|
# The big tests for code coverage are test_precedence_semantics in
|
|
# test_overrides.py; this is just to make sure it is wired up at all
|
|
# correctly for __torch_dispatch__
|
|
class A(torch.Tensor):
|
|
@staticmethod
|
|
def __new__(cls, elem):
|
|
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
raise ErrorA
|
|
|
|
class B(A):
|
|
@staticmethod
|
|
def __new__(cls, elem):
|
|
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
raise ErrorB
|
|
|
|
self.assertRaises(ErrorA, lambda: torch.add(A(torch.empty(1)), A(torch.empty(1))))
|
|
self.assertRaises(ErrorB, lambda: torch.add(A(torch.empty(1)), B(torch.empty(1))))
|
|
self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), A(torch.empty(1))))
|
|
self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), B(torch.empty(1))))
|
|
|
|
def test_format(self) -> None:
|
|
x = LoggingTensor(torch.ones(1))
|
|
s1 = str(x)
|
|
s2 = repr(x)
|
|
s3 = f"{x}"
|
|
self.assertExpectedInline(s1, """LoggingTensor(tensor([1.]))""")
|
|
self.assertEqual(s1, s2)
|
|
self.assertEqual(s1, s3)
|
|
|
|
def test_custom_autograd(self) -> None:
|
|
escape = [None]
|
|
|
|
class Square(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x):
|
|
y = x ** 2
|
|
ctx.save_for_backward(x)
|
|
return y
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
assert isinstance(grad_output, LoggingTensor)
|
|
x, = ctx.saved_tensors
|
|
assert isinstance(x, LoggingTensor)
|
|
escape[0] = x
|
|
return grad_output * 2 * x
|
|
|
|
with capture_logs() as logs:
|
|
x = LoggingTensor(torch.ones(1), requires_grad=True)
|
|
log_input("x", x)
|
|
x.grad = LoggingTensor(torch.zeros(1))
|
|
log_input("x.grad", x.grad)
|
|
y = Square.apply(x)
|
|
grad_output = LoggingTensor(torch.ones(1))
|
|
log_input("grad_output", grad_output)
|
|
y.backward(grad_output)
|
|
|
|
with torch.no_grad():
|
|
self.assertEqual(escape[0], x)
|
|
self.assertEqual(escape[0]._version, x._version)
|
|
# TODO: figure out why x.requires_grad = False doesn't
|
|
# trigger an error for LoggingTensor
|
|
x.add_(2)
|
|
self.assertEqual(escape[0], x)
|
|
# TODO: figure out why this is broken
|
|
# self.assertEqual(escape[0]._version, x._version)
|
|
|
|
self.assertExpectedInline('\n'.join(logs), '''\
|
|
$0 = input('x')
|
|
$1 = input('x.grad')
|
|
$2 = torch._ops.aten.pow($0, 2)
|
|
$3 = input('grad_output')
|
|
$4 = torch._ops.aten.mul($3, tensor(2))
|
|
$5 = torch._ops.aten.mul($4, $0)
|
|
$6 = torch._ops.aten.add_($1, $5)''')
|
|
|
|
def test_subclass_creation(self):
|
|
# Make sure these statements runs without error
|
|
# In particular checking that when internal detach returns
|
|
# subclasses, these are cleanly overwritten.
|
|
class Foo(torch.Tensor):
|
|
pass
|
|
|
|
err_msg = "subclass Foo but.*already associated to a python object of type LoggingTensor"
|
|
with self.assertRaisesRegex(RuntimeError, err_msg):
|
|
a = torch.Tensor._make_subclass(Foo, LoggingTensor(torch.rand(2)))
|
|
with self.assertRaisesRegex(RuntimeError, err_msg):
|
|
b = LoggingTensor(torch.rand(2)).as_subclass(Foo)
|
|
with self.assertRaisesRegex(RuntimeError, err_msg):
|
|
Foo(LoggingTensor(torch.rand(2)))
|
|
|
|
with self.assertRaisesRegex(TypeError, "Foo must define __torch_dispatch__"):
|
|
torch.Tensor._make_wrapper_subclass(Foo, (2, 2))
|
|
|
|
def test_new_ones(self) -> None:
|
|
class MyTensor(torch.Tensor):
|
|
__torch_function__ = torch._C._disabled_torch_function_impl
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
return MyTensor(3)
|
|
|
|
self.assertEqual(type(MyTensor(2).new_ones(3)), MyTensor)
|
|
|
|
def test_like(self) -> None:
|
|
class MyTensor(torch.Tensor):
|
|
__torch_function__ = torch._C._disabled_torch_function_impl
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
return MyTensor(3)
|
|
|
|
for f in ["empty", "ones", "rand", "randn", "zeros"]:
|
|
f_name = f + "_like"
|
|
self.assertEqual(type(getattr(torch, f_name)(MyTensor(2))), MyTensor)
|
|
|
|
self.assertEqual(type(torch.full_like(MyTensor(2), 1.)), MyTensor)
|
|
self.assertEqual(type(torch.randint_like(MyTensor(2), high=3)), MyTensor)
|
|
|
|
def test_make_wrapper_subclass_propagates_metadata(self) -> None:
|
|
class WrapperTensor(torch.Tensor):
|
|
elem: torch.Tensor
|
|
|
|
__slots__ = ['elem']
|
|
|
|
@staticmethod
|
|
def __new__(cls, elem, *args, **kwargs):
|
|
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
|
|
cls, elem.size(),
|
|
dtype=elem.dtype, layout=elem.layout,
|
|
device=elem.device, requires_grad=elem.requires_grad,
|
|
strides=elem.stride(), storage_offset=elem.storage_offset())
|
|
r.elem = elem
|
|
return r
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
raise RuntimeError("NYI")
|
|
|
|
# non-contiguous strides, non-zero storage offset
|
|
x = torch.randn(4, 6).t().diagonal(offset=2)
|
|
y = WrapperTensor(x)
|
|
self.assertEqual(y.size(), x.size())
|
|
self.assertEqual(y.stride(), x.stride())
|
|
self.assertEqual(y.storage_offset(), x.storage_offset())
|
|
|
|
def test_index_put_where_only_index_is_subclass(self) -> None:
|
|
called_funcs = []
|
|
|
|
class MyTensor(torch.Tensor):
|
|
__torch_function__ = torch._C._disabled_torch_function_impl
|
|
elem: torch.Tensor
|
|
__slots__ = ['elem']
|
|
|
|
@staticmethod
|
|
def __new__(cls, elem, *args, **kwargs):
|
|
r = torch.Tensor._make_wrapper_subclass(
|
|
cls, elem.size(),
|
|
dtype=elem.dtype, layout=elem.layout,
|
|
device=elem.device, requires_grad=elem.requires_grad
|
|
)
|
|
r.elem = elem
|
|
return r
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
called_funcs.append(func)
|
|
return MyTensor(torch.tensor(3))
|
|
|
|
x = torch.randn(3, 3)
|
|
idxs = (MyTensor(torch.tensor(0)),)
|
|
v = torch.randn(1)
|
|
res = x.index_put_(idxs, v)
|
|
self.assertEqual(called_funcs, [torch.ops.aten.index_put_])
|
|
|
|
def test_enable_python_mode_error(self) -> None:
|
|
with self.assertRaisesRegex(ValueError, "__torch_dispatch__"):
|
|
with enable_python_mode(torch.Tensor):
|
|
pass
|
|
z = LoggingTensor(torch.empty([]))
|
|
with self.assertRaisesRegex(ValueError, "must be the type"):
|
|
with enable_python_mode(z):
|
|
pass
|
|
|
|
def test_enable_python_mode_basic(self) -> None:
|
|
with enable_python_mode(LoggingTensor):
|
|
z = torch.empty([])
|
|
self.assertTrue(isinstance(z, LoggingTensor))
|
|
|
|
def test_enable_python_mode_unrelated_tensors(self) -> None:
|
|
x = torch.randn([])
|
|
y = torch.randn([])
|
|
with enable_python_mode(LoggingTensor):
|
|
z = x + y
|
|
self.assertTrue(isinstance(z, LoggingTensor))
|
|
|
|
def test_enable_python_mode_subclass_priority(self) -> None:
|
|
class ErrorA(RuntimeError):
|
|
pass
|
|
|
|
class ErrorB(RuntimeError):
|
|
pass
|
|
|
|
class A(torch.Tensor):
|
|
@staticmethod
|
|
def __new__(cls, elem):
|
|
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
raise ErrorA
|
|
|
|
class B(A):
|
|
@staticmethod
|
|
def __new__(cls, elem):
|
|
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
raise ErrorB
|
|
|
|
a = A(torch.empty(1))
|
|
b = B(torch.empty(1))
|
|
with self.assertRaises(ErrorA):
|
|
a + a
|
|
|
|
# B has precedence over A due to the subclass relationship
|
|
with self.assertRaises(ErrorB):
|
|
with enable_python_mode(A):
|
|
b + b
|
|
with self.assertRaises(ErrorB):
|
|
with enable_python_mode(B):
|
|
a + a
|
|
with self.assertRaises(ErrorB):
|
|
with enable_python_mode(B):
|
|
a + b
|
|
|
|
def test_enable_python_mode_respects_no_dispatch(self) -> None:
|
|
with enable_python_mode(LoggingTensor):
|
|
z = torch.ones([2, 3])
|
|
self.assertTrue(isinstance(z, LoggingTensor))
|
|
with no_dispatch():
|
|
expected = torch.ones([2, 3])
|
|
self.assertEqual(z.elem, expected)
|
|
|
|
def test_nested_enable_python_mode(self) -> None:
|
|
with self.assertRaisesRegex(RuntimeError, "has already been set"):
|
|
with enable_python_mode(LoggingTensor):
|
|
with enable_python_mode(LoggingTensor):
|
|
pass
|
|
|
|
def test_tolist_numpy_with_python_mode(self) -> None:
|
|
x = LoggingTensor(torch.tensor([2.0, 3.0]))
|
|
with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."):
|
|
x.tolist()
|
|
with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."):
|
|
x.numpy()
|
|
with self.assertRaises(AssertionError):
|
|
self.assertEqual(x, None)
|
|
|
|
def test_enable_python_mode_subclass_autograd_device_check(self) -> None:
|
|
class NonWrapperSubclass(torch.Tensor):
|
|
elem: torch.Tensor
|
|
|
|
__slots__ = ['elem']
|
|
|
|
@staticmethod
|
|
def __new__(cls, elem, *args, **kwargs):
|
|
# Wrong device here!
|
|
r = torch.Tensor._make_subclass(cls, elem.to("meta"), elem.requires_grad)
|
|
# ...the real tensor is held as an element on the tensor.
|
|
r.elem = elem
|
|
return r
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
def unwrap(e):
|
|
return e.elem if isinstance(e, NonWrapperSubclass) else e
|
|
|
|
def wrap(e):
|
|
return NonWrapperSubclass(e) if isinstance(e, torch.Tensor) else e
|
|
|
|
# no_dispatch is only needed if you use enable_python_mode.
|
|
# It prevents infinite recursion.
|
|
with no_dispatch():
|
|
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
|
|
logging.getLogger("NonWrapperSubclass").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs)
|
|
return rs
|
|
|
|
x = NonWrapperSubclass(torch.tensor([3.0, 4.0], requires_grad=True))
|
|
y = torch.randn(2, requires_grad=True)
|
|
z = x * y
|
|
self.assertIsInstance(z, NonWrapperSubclass)
|
|
z.sum().backward(torch.tensor(1))
|
|
self.assertEqual(x.grad, y)
|
|
self.assertEqual(y.grad, x)
|
|
|
|
def test_none_wrapping(self):
|
|
# A Tensor subclass that returns None when doing add
|
|
# See LoggingTensor above for more details on the subclass
|
|
class SubclassWithNone(torch.Tensor):
|
|
@staticmethod
|
|
def __new__(cls, elem, *args, **kwargs):
|
|
r = torch.Tensor._make_wrapper_subclass(
|
|
cls, elem.size(),
|
|
dtype=elem.dtype, layout=elem.layout,
|
|
device=elem.device, requires_grad=elem.requires_grad
|
|
)
|
|
r.elem = elem
|
|
return r
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
def unwrap(e):
|
|
return e.elem if isinstance(e, SubclassWithNone) else e
|
|
|
|
def wrap(e):
|
|
return SubclassWithNone(e) if isinstance(e, torch.Tensor) else e
|
|
|
|
# no_dispatch is only needed if you use enable_python_mode.
|
|
# It prevents infinite recursion.
|
|
with no_dispatch():
|
|
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
|
|
if func.__name__ == "add":
|
|
return None
|
|
else:
|
|
return rs
|
|
|
|
x = SubclassWithNone(torch.rand(2))
|
|
# Make sure both run without error
|
|
self.assertIsInstance(x * 2, SubclassWithNone)
|
|
self.assertIsNone(x + 2)
|
|
|
|
x.requires_grad_()
|
|
out = x.acos().sum()
|
|
|
|
# The backward of acos does add then rsqrt so here we make sure that the
|
|
# undefined Tensor generated by the user code is nicely handled.
|
|
# If acos formula changes in the future, this can be replaced by any other
|
|
# function that does add then something in the backward in a composite way
|
|
with self.assertRaisesRegex(RuntimeError, "but got None"):
|
|
out.backward()
|
|
|
|
def test_storage_can_be_converted_to_python_object(self):
|
|
with enable_python_mode(LoggingTensor):
|
|
s = torch.Storage()
|
|
z = LoggingTensor(torch.empty([]))
|
|
z.set_(s)
|
|
|
|
def test_autograd_in_attr(self):
|
|
# We want the wrapped Tensor to require gradients!
|
|
true_t = torch.rand(2, requires_grad=True)
|
|
t = LoggingTensor(true_t)
|
|
|
|
out = t + 2
|
|
|
|
self.assertFalse(out.requires_grad)
|
|
self.assertIsNone(out.grad_fn)
|
|
|
|
self.assertTrue(out.elem.requires_grad)
|
|
self.assertIsNotNone(out.elem.grad_fn)
|
|
|
|
with self.assertRaisesRegex(RuntimeError, "does not require grad"):
|
|
out.sum().backward()
|
|
|
|
out.elem.sum().backward()
|
|
|
|
self.assertIsNone(t.grad)
|
|
self.assertIsNotNone(t.elem.grad)
|
|
|
|
def test_multiple_ops_subclass(self):
|
|
# This is a Direct Subclass, don't do that!
|
|
class MySubclass(torch.Tensor):
|
|
@staticmethod
|
|
def __new__(cls, elem):
|
|
r = torch.Tensor._make_subclass(cls, elem)
|
|
return r
|
|
|
|
__torch_function__ = torch._C._disabled_torch_function_impl
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
with no_dispatch():
|
|
return func(*args, **kwargs)
|
|
|
|
x = MySubclass(torch.rand(2, 2, dtype=torch.complex64))
|
|
y = x.conj()
|
|
# Details of the bug that this tests for:
|
|
# Here, y dispatch keys are: {PythonTLSSnapshot, AutogradCPU, Conjugate, Python, CPU}
|
|
# There are a few calls to the dispatcher that are going to happen here:
|
|
# - call_exp: User calling exp on y
|
|
# - PythonTLSSnapshot: records the TLS on entry and redispatch
|
|
# - AutogradCPU: no input requires grad, so does nothing and redispatch
|
|
# - Conjugate: no special implementation for exp: use the fallback that
|
|
# first clone the Tensor (to materialize the conj) then redispatch
|
|
# - call_clone: conjugate fallback calling clone on y
|
|
# - PythonTLSSnapshot: records the TLS on entry and redispatch
|
|
# - (AutogradCPU: skipped as autograd added itself to the exclude set above)
|
|
# - Conjugate: special implementation for clone: just skip this key
|
|
# - Python: Reset the TLS based on the snapshot above and call the user implementation (this
|
|
# actually calls into the dispatcher again but since we disable both our keys
|
|
# before, not detailed here)
|
|
# - exit Python: restore the TLS and exit
|
|
# - exit Conjugate: nothing was inplace so just exit
|
|
# - exit PythonTLSSnapshot: done with this call, reset the saved TLS to empty
|
|
# - Python: Reset the TLS again based on the snapshot. <- this used to fail
|
|
# - More steps....
|
|
y.exp()
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|