Files
pytorch/torch/csrc/jit/script/compiler.h
Peter Goldsborough 04939a4745 Match parameter names and = default (#9737)
Summary:
More clang tidy cleanups in `torch/csrc`. This time:

1. `hicpp-use-equals-default` recommends `= default` instead of `{}` for constructors/destructors. This is better practice because it expresses the intent better (https://stackoverflow.com/questions/6502828/what-does-default-mean-after-a-class-function-declaration)
2. `readability-inconsistent-declaration-parameter-name` enforces that parameter names in the declaration match parameter names in the definition. This is just generally useful and can prevent confusion and bugs.

Also updated my script a little bit.

apaszke ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9737

Differential Revision: D9069069

Pulled By: goldsborough

fbshipit-source-id: f7b3f3a4eb4c9fadc30425a153566d3b613a41ae
2018-07-30 14:10:00 -07:00

168 lines
6.1 KiB
C++

#pragma once
#include <functional>
#include <memory>
#include <string>
#include "torch/csrc/jit/ir.h"
#include "torch/csrc/jit/script/error_report.h"
#include "torch/csrc/jit/script/tree_views.h"
#include "torch/csrc/jit/script/module.h"
namespace torch {
namespace jit {
namespace script {
struct CallsiteDescriptor {
size_t n_outputs;
bool allow_varargs;
};
struct TypedDef {
TypedDef(Def def, at::optional<FunctionSchema> schema)
: def(std::move(def)), schema(std::move(schema)) {}
TypedDef(Def def)
: def(std::move(def)), schema(at::nullopt) {}
Def def;
at::optional<FunctionSchema> schema;
};
static inline std::vector<Value*> toValues(at::ArrayRef<NamedValue> nvs) {
return fmap(nvs, [](const NamedValue& v) {
return v.value;
});
}
// The AST can contain nodes like `self`, `self.b` or `python_fn` that
// are not first-class values in the graph representation, but instead
// will be desugared based on how they are used in the AST.
// SugaredValue is used to temporarily represent these values in a way
// that separates their behavior from the AST -> IR converter itself.
// This allows us to keep dependencies on python minimal.
struct SugaredValue : public std::enable_shared_from_this<SugaredValue> {
// what is this node? for error reporting (e.g. Module, python function)
virtual std::string kind() const = 0;
// what can we do with this thing?
// use it as a value e.g. `this + 4`
virtual Value * asValue(SourceRange loc, Method & m) {
throw ErrorReport(loc) << kind() << " cannot be used as a value";
}
// select an attribute on it, e.g. `this.field`
virtual std::shared_ptr<SugaredValue> attr(SourceRange loc, Method & m, const std::string& field) {
throw ErrorReport(loc) << "attribute lookup is not defined on " << kind();
}
// use it as a vector of values, e.g. a tuple of values as return value from
// a method invocation
virtual std::vector<std::shared_ptr<SugaredValue>> asTuple(SourceRange loc, Method& m) {
throw ErrorReport(loc) << kind() << " cannot be used as a tuple";
}
// call it like a function, e.g. `outputs = this(inputs)`
virtual std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method & m,
// note: names for args will be 'argument 0', 'argument 1', etc..
at::ArrayRef<NamedValue> inputs_,
at::ArrayRef<NamedValue> attributes,
size_t n_binders) {
// n_binders is always set to the number of variables an expression is
// syntactically bound to:
// a = foo() # 1 binder (note in this case the single binder might be a tuple)
// a, * b = foo() # 1 binder
// a, b = foo() # 2 binders
// foo() # 0 binders
//
// In subexpressions, like bar() in foo(bar()), n_binders is always set to
// 1. n_binders is used as a hint to subexpressions to determine how many
// values they should return when that number is ambiguous statically. In
// particular it is currently used to decide how many tensors a call to a
// python function will return. It is only a hint, functions do not have to
// check that n_binders match the number of things they are returning, the
// assignment logic will do that anyway.
throw ErrorReport(loc) << "cannot call a " << kind();
}
virtual ~SugaredValue() = default;
};
// most things in the environment are just simple value types
// and not special python syntax sugar types
struct TORCH_API SimpleValue : public SugaredValue {
SimpleValue(Value * value)
: value(value) {}
virtual std::string kind() const override {
return "value";
}
virtual Value * asValue(SourceRange range, Method & m) override {
return value;
}
virtual std::vector<std::shared_ptr<SugaredValue>> asTuple(SourceRange loc, Method& m) override;
virtual std::shared_ptr<SugaredValue> attr(SourceRange loc, Method & m, const std::string& field) override;
Value* getValue() const {
return value;
}
private:
Value* value;
};
struct TORCH_API BuiltinFunction : public SugaredValue {
BuiltinFunction(const std::string& name, at::optional<NamedValue> value)
: name(name), value(std::move(value)) {}
std::string name;
// if this is method, then this is the self argument.
at::optional<NamedValue> value;
virtual std::string kind() const override {
return "builtin";
}
virtual std::shared_ptr<SugaredValue> call(
SourceRange loc,
Method & m,
at::ArrayRef<NamedValue> attributes,
at::ArrayRef<NamedValue> inputs,
size_t n_binders) override;
};
using Resolver = std::function<std::shared_ptr<SugaredValue>(const std::string& name)>;
TORCH_API void defineMethodsInModule(
Module & m,
const std::vector<TypedDef>& definitions,
const std::vector<Resolver>& resolvers, /* determines how we handle free variables in each definition*/
std::shared_ptr<SugaredValue> self /* if non-null, the first argument to each def, is bound to this value */
);
// same as above but parse the definitions from source
TORCH_API void defineMethodsInModule(Module & m, const std::string& source, const Resolver& resolver, std::shared_ptr<SugaredValue> self);
TORCH_API std::shared_ptr<Graph> compileFunction(TypedDef def, const Resolver& resolver);
// pack outputs of a function following python rules. If there is a single value return
// a SimpleValue, otherwise pack all the values into a Tuple.
TORCH_API std::shared_ptr<SugaredValue> packOutputs(Graph& g, at::ArrayRef<Value*> values);
TORCH_API std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs);
TORCH_API void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what);
TORCH_API void ensureTensors(const SourceRange& range, at::ArrayRef<Value*> values);
// try to match a list if inputs and keyword 'attributes' to this schema,
// if it works return the flat list of positional inputs to the call
// if it returns nullopt, then failure_messages contains a good error report
TORCH_API at::optional<std::vector<Value*>> tryMatchSchema(
const FunctionSchema& schema,
const SourceRange& loc,
Graph& graph,
at::ArrayRef<NamedValue> inputs,
at::ArrayRef<NamedValue> attributes,
std::ostream& failure_messages);
} // namespace script
} // namespace jit
} // namespace torch