mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: More clang tidy cleanups in `torch/csrc`. This time: 1. `hicpp-use-equals-default` recommends `= default` instead of `{}` for constructors/destructors. This is better practice because it expresses the intent better (https://stackoverflow.com/questions/6502828/what-does-default-mean-after-a-class-function-declaration) 2. `readability-inconsistent-declaration-parameter-name` enforces that parameter names in the declaration match parameter names in the definition. This is just generally useful and can prevent confusion and bugs. Also updated my script a little bit. apaszke ezyang Pull Request resolved: https://github.com/pytorch/pytorch/pull/9737 Differential Revision: D9069069 Pulled By: goldsborough fbshipit-source-id: f7b3f3a4eb4c9fadc30425a153566d3b613a41ae
168 lines
6.1 KiB
C++
168 lines
6.1 KiB
C++
#pragma once
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "torch/csrc/jit/ir.h"
|
|
#include "torch/csrc/jit/script/error_report.h"
|
|
#include "torch/csrc/jit/script/tree_views.h"
|
|
#include "torch/csrc/jit/script/module.h"
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace script {
|
|
|
|
struct CallsiteDescriptor {
|
|
size_t n_outputs;
|
|
bool allow_varargs;
|
|
};
|
|
|
|
struct TypedDef {
|
|
TypedDef(Def def, at::optional<FunctionSchema> schema)
|
|
: def(std::move(def)), schema(std::move(schema)) {}
|
|
|
|
TypedDef(Def def)
|
|
: def(std::move(def)), schema(at::nullopt) {}
|
|
|
|
Def def;
|
|
at::optional<FunctionSchema> schema;
|
|
};
|
|
|
|
static inline std::vector<Value*> toValues(at::ArrayRef<NamedValue> nvs) {
|
|
return fmap(nvs, [](const NamedValue& v) {
|
|
return v.value;
|
|
});
|
|
}
|
|
|
|
// The AST can contain nodes like `self`, `self.b` or `python_fn` that
|
|
// are not first-class values in the graph representation, but instead
|
|
// will be desugared based on how they are used in the AST.
|
|
|
|
// SugaredValue is used to temporarily represent these values in a way
|
|
// that separates their behavior from the AST -> IR converter itself.
|
|
// This allows us to keep dependencies on python minimal.
|
|
|
|
struct SugaredValue : public std::enable_shared_from_this<SugaredValue> {
|
|
// what is this node? for error reporting (e.g. Module, python function)
|
|
virtual std::string kind() const = 0;
|
|
|
|
// what can we do with this thing?
|
|
// use it as a value e.g. `this + 4`
|
|
virtual Value * asValue(SourceRange loc, Method & m) {
|
|
throw ErrorReport(loc) << kind() << " cannot be used as a value";
|
|
}
|
|
|
|
// select an attribute on it, e.g. `this.field`
|
|
virtual std::shared_ptr<SugaredValue> attr(SourceRange loc, Method & m, const std::string& field) {
|
|
throw ErrorReport(loc) << "attribute lookup is not defined on " << kind();
|
|
}
|
|
|
|
// use it as a vector of values, e.g. a tuple of values as return value from
|
|
// a method invocation
|
|
virtual std::vector<std::shared_ptr<SugaredValue>> asTuple(SourceRange loc, Method& m) {
|
|
throw ErrorReport(loc) << kind() << " cannot be used as a tuple";
|
|
}
|
|
|
|
// call it like a function, e.g. `outputs = this(inputs)`
|
|
virtual std::shared_ptr<SugaredValue> call(
|
|
SourceRange loc,
|
|
Method & m,
|
|
// note: names for args will be 'argument 0', 'argument 1', etc..
|
|
at::ArrayRef<NamedValue> inputs_,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
size_t n_binders) {
|
|
// n_binders is always set to the number of variables an expression is
|
|
// syntactically bound to:
|
|
// a = foo() # 1 binder (note in this case the single binder might be a tuple)
|
|
// a, * b = foo() # 1 binder
|
|
// a, b = foo() # 2 binders
|
|
// foo() # 0 binders
|
|
//
|
|
// In subexpressions, like bar() in foo(bar()), n_binders is always set to
|
|
// 1. n_binders is used as a hint to subexpressions to determine how many
|
|
// values they should return when that number is ambiguous statically. In
|
|
// particular it is currently used to decide how many tensors a call to a
|
|
// python function will return. It is only a hint, functions do not have to
|
|
// check that n_binders match the number of things they are returning, the
|
|
// assignment logic will do that anyway.
|
|
|
|
throw ErrorReport(loc) << "cannot call a " << kind();
|
|
}
|
|
|
|
virtual ~SugaredValue() = default;
|
|
};
|
|
|
|
// most things in the environment are just simple value types
|
|
// and not special python syntax sugar types
|
|
struct TORCH_API SimpleValue : public SugaredValue {
|
|
SimpleValue(Value * value)
|
|
: value(value) {}
|
|
virtual std::string kind() const override {
|
|
return "value";
|
|
}
|
|
virtual Value * asValue(SourceRange range, Method & m) override {
|
|
return value;
|
|
}
|
|
virtual std::vector<std::shared_ptr<SugaredValue>> asTuple(SourceRange loc, Method& m) override;
|
|
virtual std::shared_ptr<SugaredValue> attr(SourceRange loc, Method & m, const std::string& field) override;
|
|
Value* getValue() const {
|
|
return value;
|
|
}
|
|
private:
|
|
Value* value;
|
|
};
|
|
|
|
struct TORCH_API BuiltinFunction : public SugaredValue {
|
|
BuiltinFunction(const std::string& name, at::optional<NamedValue> value)
|
|
: name(name), value(std::move(value)) {}
|
|
std::string name;
|
|
|
|
// if this is method, then this is the self argument.
|
|
at::optional<NamedValue> value;
|
|
|
|
virtual std::string kind() const override {
|
|
return "builtin";
|
|
}
|
|
virtual std::shared_ptr<SugaredValue> call(
|
|
SourceRange loc,
|
|
Method & m,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
size_t n_binders) override;
|
|
};
|
|
|
|
using Resolver = std::function<std::shared_ptr<SugaredValue>(const std::string& name)>;
|
|
TORCH_API void defineMethodsInModule(
|
|
Module & m,
|
|
const std::vector<TypedDef>& definitions,
|
|
const std::vector<Resolver>& resolvers, /* determines how we handle free variables in each definition*/
|
|
std::shared_ptr<SugaredValue> self /* if non-null, the first argument to each def, is bound to this value */
|
|
);
|
|
|
|
// same as above but parse the definitions from source
|
|
TORCH_API void defineMethodsInModule(Module & m, const std::string& source, const Resolver& resolver, std::shared_ptr<SugaredValue> self);
|
|
TORCH_API std::shared_ptr<Graph> compileFunction(TypedDef def, const Resolver& resolver);
|
|
|
|
// pack outputs of a function following python rules. If there is a single value return
|
|
// a SimpleValue, otherwise pack all the values into a Tuple.
|
|
TORCH_API std::shared_ptr<SugaredValue> packOutputs(Graph& g, at::ArrayRef<Value*> values);
|
|
TORCH_API std::vector<Value*> inlineCallTo(Graph& g, Graph& callee, ArrayRef<Value*> inputs);
|
|
TORCH_API void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what);
|
|
TORCH_API void ensureTensors(const SourceRange& range, at::ArrayRef<Value*> values);
|
|
|
|
// try to match a list if inputs and keyword 'attributes' to this schema,
|
|
// if it works return the flat list of positional inputs to the call
|
|
// if it returns nullopt, then failure_messages contains a good error report
|
|
TORCH_API at::optional<std::vector<Value*>> tryMatchSchema(
|
|
const FunctionSchema& schema,
|
|
const SourceRange& loc,
|
|
Graph& graph,
|
|
at::ArrayRef<NamedValue> inputs,
|
|
at::ArrayRef<NamedValue> attributes,
|
|
std::ostream& failure_messages);
|
|
|
|
|
|
} // namespace script
|
|
} // namespace jit
|
|
} // namespace torch
|