mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55163 Test Plan: Sandcastle Reviewed By: ngimel Differential Revision: D27448156 fbshipit-source-id: 585da57d4de91c692b6360d65f7b8a66deb0f8c1
400 lines
13 KiB
C++
400 lines
13 KiB
C++
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
|
|
|
|
#include <torch/csrc/jit/passes/canonicalize.h>
|
|
|
|
#include <c10/util/irange.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace SubgraphUtils {
|
|
namespace {
|
|
|
|
bool hasSubgraph(Node* n) {
|
|
return n->hasAttribute(attr::Subgraph);
|
|
}
|
|
|
|
std::vector<c10::optional<const Use>> gatherLastUses(
|
|
at::ArrayRef<Value*> values) {
|
|
return fmap(values, [&](Value* v) -> c10::optional<const Use> {
|
|
return firstOrLastUse(v, /*find_first*/ false);
|
|
});
|
|
}
|
|
|
|
// When merging a node into a subgraph, we wish to preserve all of the
|
|
// aliasing properties of the node's outputs. It is difficult to track
|
|
// the node or its contained nodes through all of the ir manipulation
|
|
// involved in merging; it is pretty easy to uniquely identify the value
|
|
// based on its uses. We can identify the value by its last use in the graph.
|
|
// Values which do not have uses or which do not have a last use
|
|
// outside of the subgraph to be merged into we do not need to track.
|
|
struct ValueMapper {
|
|
// `to_merge` is the node we're merginginto a subgraph, `existing_subgraph` is
|
|
// the subgraph node that we're merging into if it exists
|
|
ValueMapper(
|
|
Node* to_merge,
|
|
AliasDb& db,
|
|
c10::optional<Node*> existing_subgraph) {
|
|
last_uses_ = gatherLastUses(to_merge->outputs());
|
|
if (existing_subgraph) {
|
|
existing_last_uses_ = gatherLastUses((*existing_subgraph)->outputs());
|
|
}
|
|
WithInsertPoint guard(to_merge);
|
|
auto g = to_merge->owningGraph();
|
|
// temporary node to put the aliasing properties of the node before its
|
|
// merged and destroyed
|
|
placeholder_node_ = g->insertNode(g->create(prim::Uninitialized, 0));
|
|
for (size_t i = 0; i < to_merge->outputs().size(); ++i) {
|
|
Value* existing = to_merge->outputs().at(i);
|
|
Value* new_value = placeholder_node_->insertOutput(i)->copyMetadata(
|
|
to_merge->outputs().at(i));
|
|
db.replaceWithNewValue(existing, new_value);
|
|
}
|
|
}
|
|
|
|
bool usesEqual(const Use& a, const Use& b) {
|
|
return a.user == b.user && a.offset == b.offset;
|
|
}
|
|
|
|
void copyAliasing(Node* merged_node, AliasDb& db) {
|
|
auto new_outputs = merged_node->outputs();
|
|
for (Value* v : new_outputs) {
|
|
auto maybe_last_use = firstOrLastUse(v, /*find_first*/ false);
|
|
// if it doesnt have a use it shouldnt have been added as output
|
|
TORCH_INTERNAL_ASSERT(maybe_last_use);
|
|
const Use last_use = *maybe_last_use;
|
|
|
|
// existing outputs of the subgraph do not need to have alias db mappings
|
|
// updated
|
|
bool is_existing_value = false;
|
|
for (size_t i = 0; i < existing_last_uses_.size() && !is_existing_value;
|
|
++i) {
|
|
is_existing_value = existing_last_uses_[i].has_value() &&
|
|
usesEqual(*existing_last_uses_[i], last_use);
|
|
}
|
|
if (is_existing_value) {
|
|
continue;
|
|
}
|
|
|
|
size_t i = 0;
|
|
while (i < last_uses_.size() && last_uses_.at(i).has_value() &&
|
|
!usesEqual(*last_uses_.at(i), last_use)) {
|
|
++i;
|
|
}
|
|
TORCH_INTERNAL_ASSERT(i != last_uses_.size());
|
|
db.replaceWithNewValue(placeholder_node_->outputs().at(i), v);
|
|
}
|
|
placeholder_node_->destroy();
|
|
}
|
|
|
|
std::vector<c10::optional<const Use>> last_uses_;
|
|
std::vector<c10::optional<const Use>> existing_last_uses_;
|
|
Node* placeholder_node_;
|
|
};
|
|
|
|
Node* executeSubgraphMergeAndUpdateAliasing(
|
|
Node* to_merge,
|
|
c10::optional<Node*> existing,
|
|
AliasDb& db,
|
|
const std::function<Node*(void)>& merge_fn) {
|
|
// When we merge a node into a subgraph, the new subgraph outputs
|
|
// have the same aliasing properties as the original node's outputs.
|
|
// Here we create a placeholder node, transfer the aliasing properties
|
|
// to the placeholder, execute the merge, and transfer the aliasing
|
|
// properties to the appropriate fusion group outputs
|
|
ValueMapper vm(to_merge, db, existing);
|
|
Node* fusion_group = merge_fn();
|
|
vm.copyAliasing(fusion_group, db);
|
|
return fusion_group;
|
|
}
|
|
|
|
// Combine the nodes in two subgraph together. The nodes will end up in
|
|
// `mergeTo`, and `mergeFrom` is destroyed.
|
|
void mergeSubgraph(Node* mergeTo, Node* mergeFrom) {
|
|
bool merge_from_is_after = mergeFrom->isAfter(mergeTo);
|
|
Node* nodeBeforeMergeFrom = mergeFrom->prev();
|
|
Node* nodeAfterMergeFrom = mergeFrom->next();
|
|
|
|
unmergeSubgraph(mergeFrom);
|
|
|
|
graph_node_list_iterator end_it;
|
|
graph_node_list_iterator it;
|
|
|
|
if (merge_from_is_after) {
|
|
it = nodeBeforeMergeFrom->iterator();
|
|
end_it = nodeAfterMergeFrom->iterator();
|
|
} else {
|
|
end_it = nodeBeforeMergeFrom->reverseIterator();
|
|
it = nodeAfterMergeFrom->reverseIterator();
|
|
}
|
|
++it;
|
|
|
|
std::vector<Node*> merged_nodes;
|
|
while (it != end_it) {
|
|
Node* node = *it;
|
|
++it;
|
|
mergeNodeIntoSubgraph(node, mergeTo);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::shared_ptr<Graph> getSubgraph(Node* n) {
|
|
return n->g(attr::Subgraph);
|
|
}
|
|
|
|
void unmergeSubgraph(Node* subgraphNode) {
|
|
// Inline the graph, replace uses of node outputs and destroy the node
|
|
auto outerGraph = subgraphNode->owningGraph();
|
|
WithInsertPoint guard(subgraphNode);
|
|
const auto subgraphOutputs = insertGraph(
|
|
*outerGraph, *getSubgraph(subgraphNode), subgraphNode->inputs());
|
|
AT_ASSERT(subgraphOutputs.size() >= subgraphNode->outputs().size());
|
|
for (size_t i = 0; i < subgraphNode->outputs().size(); ++i) {
|
|
subgraphNode->outputs()[i]->replaceAllUsesWith(subgraphOutputs[i]);
|
|
}
|
|
subgraphNode->destroy();
|
|
}
|
|
|
|
void collectNestedUses(
|
|
std::unordered_set<Value*>& closed_over_values,
|
|
std::unordered_set<Value*>& new_values,
|
|
std::unordered_map<Value*, Value*>& externalValuesMap,
|
|
Node* input_node) {
|
|
for (auto input : input_node->inputs()) {
|
|
if (externalValuesMap.count(input) == 0 && new_values.count(input) == 0) {
|
|
closed_over_values.insert(input);
|
|
}
|
|
}
|
|
if (input_node->kind() == prim::If) {
|
|
for (Block* block : input_node->blocks()) {
|
|
for (Node* node : block->nodes()) {
|
|
collectNestedUses(
|
|
closed_over_values, new_values, externalValuesMap, node);
|
|
}
|
|
for (Value* v : block->outputs()) {
|
|
if (externalValuesMap.count(v) == 0 && new_values.count(v) == 0) {
|
|
closed_over_values.insert(v);
|
|
}
|
|
}
|
|
}
|
|
} else if (input_node->kind() == prim::Loop) {
|
|
for (Value* v : input_node->inputs()) {
|
|
if (externalValuesMap.count(v) == 0 && new_values.count(v) == 0) {
|
|
closed_over_values.insert(v);
|
|
}
|
|
}
|
|
Block* block = input_node->blocks().at(0);
|
|
for (Value* v : block->inputs()) {
|
|
new_values.insert(v);
|
|
}
|
|
for (Node* node : block->nodes()) {
|
|
collectNestedUses(
|
|
closed_over_values, new_values, externalValuesMap, node);
|
|
}
|
|
} else if (input_node->blocks().size() != 0) {
|
|
TORCH_INTERNAL_ASSERT(false, input_node, " kind not handled yet");
|
|
}
|
|
for (Value* output : input_node->outputs()) {
|
|
new_values.insert(output);
|
|
}
|
|
}
|
|
|
|
std::unordered_set<Value*> closedOverValues(
|
|
Node* toMerge,
|
|
std::unordered_map<Value*, Value*>& externalValuesMap) {
|
|
std::unordered_set<Value*> closed_over_values;
|
|
std::unordered_set<Value*> new_values;
|
|
collectNestedUses(closed_over_values, new_values, externalValuesMap, toMerge);
|
|
return closed_over_values;
|
|
}
|
|
|
|
void mergeNodeIntoSubgraph(
|
|
Node* toMerge,
|
|
Node* subgraphNode,
|
|
bool destroyNode) {
|
|
AT_ASSERT(hasSubgraph(subgraphNode) && toMerge != subgraphNode);
|
|
if (hasSubgraph(toMerge)) {
|
|
return mergeSubgraph(subgraphNode, toMerge);
|
|
}
|
|
|
|
auto subgraph = getSubgraph(subgraphNode);
|
|
|
|
// Map from values in the surrounding graph to inputs/outputs in the subgraph
|
|
std::unordered_map<Value*, Value*> externalValuesMap;
|
|
|
|
AT_ASSERT(subgraphNode->inputs().size() == subgraph->inputs().size());
|
|
size_t idx = 0;
|
|
for (auto input : subgraphNode->inputs()) {
|
|
externalValuesMap[input] = subgraph->inputs()[idx];
|
|
idx++;
|
|
}
|
|
|
|
for (size_t i = 0; i < subgraphNode->outputs().size(); ++i) {
|
|
externalValuesMap[subgraphNode->outputs().at(i)] =
|
|
subgraph->outputs().at(i);
|
|
}
|
|
|
|
// Add n's inputs to the group's input list if we don't already have them
|
|
|
|
bool merging_node_after_subgraph = toMerge->isAfter(subgraphNode);
|
|
Node* guard_node = merging_node_after_subgraph ? *subgraph->nodes().end()
|
|
: *subgraph->nodes().begin();
|
|
WithInsertPoint guard(guard_node);
|
|
|
|
std::unordered_set<Value*> closedValues =
|
|
closedOverValues(toMerge, externalValuesMap);
|
|
|
|
// There are currently downstream usage that relies on a fixed ordering
|
|
// of graph inputs. TODO: remove
|
|
std::vector<Value*> orderedClosedValues;
|
|
std::unordered_set<Value*> orderedSeenValues;
|
|
for (Value* input : toMerge->inputs()) {
|
|
orderedClosedValues.push_back(input);
|
|
orderedSeenValues.insert(input);
|
|
}
|
|
for (Value* closedValue : closedValues) {
|
|
if (!orderedSeenValues.count(closedValue)) {
|
|
orderedClosedValues.push_back(closedValue);
|
|
orderedSeenValues.insert(closedValue);
|
|
}
|
|
}
|
|
|
|
for (auto input : orderedClosedValues) {
|
|
if (externalValuesMap.count(input) == 0) {
|
|
// Clone constants inside the subgraph instead of referencing them, to
|
|
// enable more optimizations
|
|
if (auto value = toIValue(input)) {
|
|
auto nv = subgraph->insertConstant(*value);
|
|
nv->copyMetadata(input);
|
|
externalValuesMap[input] = nv;
|
|
} else {
|
|
// The common case: this is a regular input, so just register it with
|
|
// the group node and inner subgraph
|
|
subgraphNode->addInput(input);
|
|
auto inputToGraph = subgraph->addInput();
|
|
inputToGraph->copyMetadata(input);
|
|
externalValuesMap[input] = inputToGraph;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Merge the node into the graph
|
|
auto mergedNode = subgraph->insertNode(subgraph->createClone(
|
|
toMerge, [&](Value* v) { return externalValuesMap[v]; }));
|
|
|
|
if (!merging_node_after_subgraph) {
|
|
// If n's outputs were inputs to `group`, remove them since we just merged
|
|
// n in.
|
|
//
|
|
// i.e.,
|
|
// x = f(w); group(x, y, z) becomes group(w, y, z).
|
|
// x, y, z = f(w); group(x, y, z) becomes group(w).
|
|
auto inputs = subgraphNode->inputs();
|
|
for (size_t i = 0; i < toMerge->outputs().size(); ++i) {
|
|
auto it = std::find(inputs.begin(), inputs.end(), toMerge->outputs()[i]);
|
|
if (it != inputs.end()) {
|
|
size_t p = it - inputs.begin();
|
|
subgraphNode->removeInput(p);
|
|
subgraph->inputs()[p]->replaceAllUsesWith(mergedNode->outputs()[i]);
|
|
subgraph->eraseInput(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add n's outputs to the group node and inner subgraph outputs.
|
|
for (const auto i : c10::irange(toMerge->outputs().size())) {
|
|
auto oldOutput = toMerge->outputs()[i];
|
|
auto newOutput = mergedNode->outputs()[i];
|
|
subgraph->registerOutput(newOutput);
|
|
auto groupOutput = subgraphNode->addOutput();
|
|
groupOutput->copyMetadata(oldOutput);
|
|
oldOutput->replaceAllUsesWith(groupOutput);
|
|
}
|
|
// Remove the original node now that the merge is complete
|
|
if (destroyNode) {
|
|
toMerge->destroy();
|
|
}
|
|
|
|
// We wait till destroying `toMerge` before pruning subgraph outputs,
|
|
// since destroying `toMerge` could cause a subgraph output to no longer
|
|
// have any uses
|
|
const auto hasUsesOutsideSubgraph = [&](Value* v) {
|
|
return std::any_of(
|
|
v->uses().cbegin(), v->uses().cend(), [&](const Use& use) {
|
|
return use.user->isAfter(subgraphNode);
|
|
});
|
|
};
|
|
|
|
for (int64_t i = subgraphNode->outputs().size() - 1; i >= 0; i--) {
|
|
if (!hasUsesOutsideSubgraph(subgraphNode->outputs().at(i))) {
|
|
subgraphNode->eraseOutput(i);
|
|
subgraph->eraseOutput(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
Node* createSingletonSubgraph(Node* n, Symbol subgraphKind) {
|
|
auto graph = n->owningGraph();
|
|
auto subgraph = graph->create(subgraphKind, 0);
|
|
subgraph->g_(attr::Subgraph, std::make_shared<Graph>(graph->current_scope()));
|
|
subgraph->insertBefore(n);
|
|
mergeNodeIntoSubgraph(n, subgraph);
|
|
return subgraph;
|
|
}
|
|
|
|
void mergeNodeIntoSubgraphAndUpdateAliasing(
|
|
Node* to_merge,
|
|
Node* subgraphNode,
|
|
AliasDb& db) {
|
|
executeSubgraphMergeAndUpdateAliasing(to_merge, subgraphNode, db, [&]() {
|
|
mergeNodeIntoSubgraph(to_merge, subgraphNode);
|
|
return subgraphNode;
|
|
});
|
|
}
|
|
|
|
Node* createSingletonSubgraphAndUpdateAliasing(
|
|
Node* to_merge,
|
|
Symbol subgraphKind,
|
|
AliasDb& db) {
|
|
return executeSubgraphMergeAndUpdateAliasing(
|
|
to_merge, c10::nullopt, db, [&]() {
|
|
return createSingletonSubgraph(to_merge, subgraphKind);
|
|
});
|
|
}
|
|
|
|
std::string truncateStrWithHash(const std::string& s, size_t maxlen) {
|
|
if (s.size() <= maxlen) {
|
|
return s;
|
|
}
|
|
std::string hash_str = c10::to_string(c10::hash<std::string>{}(s));
|
|
// If hash-string plus '_' can fit into maxlen, then truncate the original
|
|
// string correspondingly so that the final string with the hash included fits
|
|
// into maxlen. If that's not possible, at least truncate the original string
|
|
// to maxlen (and appen the hash to it).
|
|
size_t trunc_len =
|
|
(maxlen > hash_str.size() + 1) ? (maxlen - hash_str.size() - 1) : maxlen;
|
|
std::stringstream truncated;
|
|
truncated << s.substr(0, trunc_len);
|
|
truncated << "_" << hash_str;
|
|
return truncated.str();
|
|
}
|
|
|
|
std::string generateNameForGraph(
|
|
const std::shared_ptr<Graph>& graph,
|
|
size_t maxlen,
|
|
const std::string& prefix) {
|
|
std::stringstream graph_name;
|
|
graph_name << prefix;
|
|
for (Node* node : graph->nodes()) {
|
|
if (!node->kind().is_aten()) {
|
|
continue;
|
|
}
|
|
graph_name << "_" << node->kind().toUnqualString();
|
|
}
|
|
return truncateStrWithHash(graph_name.str(), maxlen);
|
|
}
|
|
|
|
} // namespace SubgraphUtils
|
|
} // namespace jit
|
|
} // namespace torch
|