mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41077 This PR is a refactor that moves error messages into their callsites in `_vmap_internals.py`. Furthermore, because a little bird told me we've dropped python 3.5 support, this PR adopts f-string syntax to clean up the string replace logic. Together these changes make the error messages read better IMO. Test Plan: - `python test/test_vmap.py -v`. There exists tests that invoke each of the error messages. Differential Revision: D22420473 Pulled By: zou3519 fbshipit-source-id: cfd46b2141ac96f0a62864928a95f8eaa3052f4e
207 lines
10 KiB
Python
207 lines
10 KiB
Python
import torch
|
|
import functools
|
|
from torch import Tensor
|
|
from typing import Any, Callable, Optional, Tuple, Union
|
|
import warnings
|
|
|
|
in_dims_t = Union[int, Tuple[Optional[int], ...]]
|
|
out_dims_t = Union[int, Tuple[int, ...]]
|
|
|
|
# Checks that all args-to-be-batched have the same batch dim size
|
|
def _validate_and_get_batch_size(
|
|
in_dims_as_tuple: Tuple[Optional[int], ...],
|
|
args: Tuple) -> int:
|
|
batch_sizes = [arg.size(in_dim) for in_dim, arg in zip(in_dims_as_tuple, args)
|
|
if in_dim is not None]
|
|
if batch_sizes and any([size != batch_sizes[0] for size in batch_sizes]):
|
|
raise ValueError(
|
|
f'vmap: Expected all tensors to have the same size in the mapped '
|
|
f'dimension, got sizes {batch_sizes} for the mapped dimension')
|
|
return batch_sizes[0]
|
|
|
|
# Check compatibility of `in_dims` and `args`. More specifically, checks the following:
|
|
# Wherever an in_dim is not None, then the corresponding index in args must be
|
|
# a Tensor. Furthermore, tensor must have the `in_dim` (0 <= in_dim < tensor.dim())
|
|
def _check_args_can_be_mapped_with_in_dims(
|
|
in_dims_as_tuple: Tuple[Optional[int], ...],
|
|
args: Tuple,
|
|
fn_name: str,
|
|
in_dims: in_dims_t) -> None:
|
|
for idx, (in_dim, arg) in enumerate(zip(in_dims_as_tuple, args)):
|
|
if in_dim is None:
|
|
continue
|
|
if not isinstance(in_dim, int):
|
|
raise ValueError(
|
|
f'vmap({fn_name}, in_dims={in_dims}, ...)(<inputs>): in_dims '
|
|
f'must be a flat tuple containing ints and/or Nones. If you were '
|
|
f'trying to vmap over a Tensor inside a Python collection in '
|
|
f'`inputs`, we do not yet support that.')
|
|
if not isinstance(arg, Tensor):
|
|
raise ValueError(
|
|
f'vmap({fn_name}, in_dims={in_dims}, ...)(<inputs>): Got '
|
|
f'in_dim={in_dim} for input {idx}, but input {idx} is not a '
|
|
f'Tensor (got {type(arg)}) so it cannot be vmap\'ed over. '
|
|
f'If you were trying to vmap over a Tensor inside a Python '
|
|
f'collection in `inputs`, we do not yet support that; otherwise, '
|
|
f'use None as the respective in_dim for input {idx}.')
|
|
# NB: We don't do dimension wrapping here. Consider allowing it in the
|
|
# future if there is demand.
|
|
if in_dim >= 0 and in_dim < arg.dim():
|
|
continue
|
|
raise ValueError(
|
|
f'vmap({fn_name}, in_dims={in_dims}, ...)(<inputs>): Got in_dim={in_dim} '
|
|
f'for input {idx}, but input {idx} is a Tensor of dimensionality '
|
|
f'{arg.dim()} so expected in_dim to satisfy 0 <= in_dim < {arg.dim()}.')
|
|
|
|
def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
|
|
if isinstance(batched_outputs, tuple):
|
|
return len(batched_outputs)
|
|
return 1
|
|
|
|
# If value is a tuple, check it has length `num_elements`.
|
|
# If value is not a tuple, make a tuple with `value` repeated `num_elements` times
|
|
def _as_tuple(value: Any, num_elements: int, error_message_lambda: Callable[[], str]) -> Tuple:
|
|
if not isinstance(value, tuple):
|
|
return (value,) * num_elements
|
|
if len(value) != num_elements:
|
|
raise ValueError(error_message_lambda())
|
|
return value
|
|
|
|
# Creates BatchedTensors for every Tensor in arg that should be batched.
|
|
# Returns the (potentially) batched arguments and the batch_size.
|
|
def _create_batched_inputs(
|
|
in_dims: in_dims_t, args: Tuple, vmap_level: int, fn_name: str) -> Tuple[Tuple, int]:
|
|
if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
|
|
raise ValueError(
|
|
f'vmap({fn_name}, in_dims={in_dims}, ...): expected `in_dims` to '
|
|
f'be int or tuple, got: {type(in_dims)}.')
|
|
|
|
# NB: Checks that len(in_dims) == len(args) (if in_dims is a tuple).
|
|
in_dims_as_tuple = _as_tuple(
|
|
in_dims, len(args),
|
|
lambda: f'vmap({fn_name}, in_dims={in_dims}, ...)(<inputs>): expected '
|
|
f'one `in_dim` per input (got {len(args)} inputs) of {fn_name}')
|
|
|
|
if len(args) == 0:
|
|
raise ValueError(
|
|
f'vmap({fn_name})(<inputs>): got no inputs. Maybe you forgot to add '
|
|
f'inputs, or you are trying to vmap over a function with no inputs. '
|
|
f'The latter is unsupported.')
|
|
|
|
_check_args_can_be_mapped_with_in_dims(in_dims_as_tuple, args, fn_name, in_dims)
|
|
batch_size = _validate_and_get_batch_size(in_dims_as_tuple, args)
|
|
# See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
|
|
batched_inputs = tuple(arg if in_dim is None else
|
|
torch._add_batch_dim(arg, in_dim, vmap_level) # type: ignore
|
|
for in_dim, arg in zip(in_dims_as_tuple, args))
|
|
return batched_inputs, batch_size
|
|
|
|
# Undos the batching (and any batch dimensions) associated with the `vmap_level`.
|
|
def _unwrap_batched(
|
|
batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
|
|
out_dims: out_dims_t,
|
|
vmap_level: int, batch_size: int, fn_name: str) -> Tuple:
|
|
num_outputs = _num_outputs(batched_outputs)
|
|
out_dims_as_tuple = _as_tuple(
|
|
out_dims, num_outputs,
|
|
lambda: f'vmap({fn_name}, ..., out_dims={out_dims}): `out_dims` must '
|
|
f'have one dim per output (got {num_outputs} outputs) of {fn_name}.')
|
|
|
|
# NOTE [Ignored _remove_batch_dim, _add_batch_dim]
|
|
# There is something wrong with our type bindings for functions that begin
|
|
# with '_', see #40397.
|
|
if isinstance(batched_outputs, Tensor):
|
|
out_dim = out_dims_as_tuple[0]
|
|
return torch._remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore
|
|
return tuple(torch._remove_batch_dim(out, vmap_level, batch_size, out_dim) # type: ignore
|
|
for out, out_dim in zip(batched_outputs, out_dims_as_tuple))
|
|
|
|
# Checks that `fn` returned one or more Tensors and nothing else.
|
|
# NB: A python function that return multiple arguments returns a single tuple,
|
|
# so we are effectively checking that `outputs` is a single Tensor or a tuple of
|
|
# Tensors.
|
|
def _validate_outputs(outputs: Any, fn_name: str) -> None:
|
|
if isinstance(outputs, Tensor):
|
|
return
|
|
if not isinstance(outputs, tuple):
|
|
raise ValueError(f'vmap({fn_name}, ...): `{fn_name}` must only return '
|
|
f'Tensors, got type {type(outputs)} as the return.')
|
|
for idx, output in enumerate(outputs):
|
|
if isinstance(output, Tensor):
|
|
continue
|
|
raise ValueError(f'vmap({fn_name}, ...): `{fn_name}` must only return '
|
|
f'Tensors, got type {type(output)} for return {idx}.')
|
|
|
|
def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, fn_name: str) -> None:
|
|
if isinstance(out_dims, int):
|
|
return
|
|
if not isinstance(out_dims, tuple) or \
|
|
not all([isinstance(out_dim, int) for out_dim in out_dims]):
|
|
raise ValueError(
|
|
f'vmap({fn_name}, ..., out_dims={out_dims}): `out_dims` must be '
|
|
f'an int or a tuple of int representing where in the outputs the '
|
|
f'vmapped dimension should appear.')
|
|
|
|
# This is the global tracker for how many nested vmaps we are currently inside.
|
|
VMAP_LEVEL: int = 0
|
|
|
|
# vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
|
|
# sends those into func, and then unwraps the output BatchedTensors. Operations
|
|
# on BatchedTensors perform the batched operations that the user is asking for.
|
|
def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
|
|
"""
|
|
vmap is the vectorizing map. Returns a new function that maps `func` over some
|
|
dimension of the inputs. Semantically, vmap pushes the map into PyTorch
|
|
operations called by `func`, effectively vectorizing those operations.
|
|
|
|
vmap is useful for handling batch dimensions: one can write a function `func`
|
|
that runs on examples and the lift it to a function that can take batches of
|
|
examples with `vmap(func)`. Furthermore, it is possible to use vmap to obtain
|
|
batched gradients when composed with autograd.
|
|
|
|
Args:
|
|
func (function): A Python function that takes one or more arguments.
|
|
Must return one or more Tensors.
|
|
in_dims (int or Tuple[Optional[int]]): Specifies which dimension of the
|
|
inputs should be mapped over. If `in_dims` is a Tuple, then it should have
|
|
one element per input. If the `in_dim` for a particular input is
|
|
None, then that indicates there is no map dimension. Default: 0.
|
|
out_dims (int or Tuple[int]): Specifies where the mapped dimension
|
|
should appear in the outputs. If `out_dims` is a Tuple, then it should
|
|
have one element per output. Default: 0.
|
|
|
|
Returns:
|
|
Returns a new "batched" function. It takes the same inputs as `func`,
|
|
except each input has an extra dimension at the index specified by `in_dims`.
|
|
It takes returns the same outputs as `func`, except each output has
|
|
an extra dimension at the index specified by `out_dims`.
|
|
|
|
.. warning:
|
|
vmap works best with functional-style code. Please do not perform any
|
|
side-effects in `func`, with the exception of in-place PyTorch operations.
|
|
Examples of side-effects include mutating Python data structures and
|
|
assigning values to variables not captured in `func`.
|
|
|
|
.. warning::
|
|
torch.vmap is an experimental prototype that is subject to
|
|
change and/or deletion. Please use at your own risk.
|
|
"""
|
|
warnings.warn(
|
|
'torch.vmap is an experimental prototype that is subject to '
|
|
'change and/or deletion. Please use at your own risk.')
|
|
|
|
@functools.wraps(func)
|
|
def wrapped(*args):
|
|
fn_name = func.__name__
|
|
_check_out_dims_is_int_or_int_tuple(out_dims, fn_name)
|
|
global VMAP_LEVEL
|
|
VMAP_LEVEL += 1
|
|
try:
|
|
batched_inputs, batch_size = _create_batched_inputs(in_dims, args, VMAP_LEVEL, fn_name)
|
|
batched_outputs = func(*batched_inputs)
|
|
_validate_outputs(batched_outputs, fn_name)
|
|
return _unwrap_batched(batched_outputs, out_dims, VMAP_LEVEL, batch_size, fn_name)
|
|
finally:
|
|
VMAP_LEVEL -= 1
|
|
return wrapped
|