mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Notable new features for SDPA operators on AMD systems from AOTriton 0.8b: 1. Nestedtensor support; 2. MQA/GQA support; 3. Restore Efficient attention support for causal=True and seqlen_q != seqlen_k cases; + The kernel should use top-left alignment, bottom right alignment will be added later 4. Move gfx1100 (RX7900/W7800/W7900) out of experimental support status. However, users are strongly recommended to update to ROCM 6.2.4, notably for its firmware updates. Related unit tests are enabled as well. Notable related changes from AOTriton 0.8b: 1. AOTriton 0.8b moves the GPU kernel out of libaotriton.so to a separate directory `aotriton.images`; 2. LZMA replaces ZSTD as GPU kernel compression algorithm for better compression ratio: aotriton0.8b (.so + aotriton.images take 350MB) compared to aotriton0.7b .so: 800MB 3. The compression cannot be disabled now, and `liblzma` is hard run-time dependency. + Should not be a problem, since `lzma` is part of Python Standard Library Pull Request resolved: https://github.com/pytorch/pytorch/pull/140172 Approved by: https://github.com/jithunnair-amd, https://github.com/jeffdaily Co-authored-by: Jithun Nair <37884920+jithunnair-amd@users.noreply.github.com>
337 lines
14 KiB
Python
337 lines
14 KiB
Python
# Owner(s): ["module: nn"]
|
|
import math
|
|
import copy
|
|
|
|
import torch
|
|
from torch.testing._internal.common_device_type import (
|
|
dtypes,
|
|
dtypesIfCUDA,
|
|
instantiate_device_type_tests,
|
|
onlyCUDA,
|
|
skipMeta,
|
|
)
|
|
from torch.testing._internal.common_utils import parametrize, run_tests, TestCase, TEST_WITH_ROCM
|
|
|
|
class TestMHADeviceType(TestCase):
|
|
@torch.no_grad()
|
|
def _test_transform_bias_rescale_qkv_impl(
|
|
self, device, dtype, use_nt, use_padding=False
|
|
):
|
|
tests = [
|
|
(64, 4, 16, 8),
|
|
# dim_per_head = 12 does not divide evenly by CPU vectorization length of 8
|
|
(24, 2, 4, 2),
|
|
# Make sure CUDA can handle small input sizes
|
|
(2, 2, 2, 2),
|
|
# dim_per_head = 6 does not divide evenly by CUDA vectorization length of 4,
|
|
# causes alignment issues
|
|
(24, 4, 4, 2),
|
|
(48, 4, 16, 8),
|
|
]
|
|
for (embed_dim, num_heads, bs, sl) in tests:
|
|
with self.subTest(embed_dim=embed_dim, num_heads=num_heads, bs=bs, sl=sl):
|
|
torch.manual_seed(9343)
|
|
dense_x = x = (
|
|
torch.randn(bs, sl, 3 * embed_dim, device=device, dtype=dtype) * 10
|
|
)
|
|
if use_padding:
|
|
x[0][-1] = torch.full(x[0][-1].shape, float("-Inf"))
|
|
if use_nt:
|
|
xs = list(torch.unbind(x))
|
|
if use_padding:
|
|
xs[0] = xs[0][:-1]
|
|
x = torch.nested.nested_tensor(xs, device=device, dtype=dtype)
|
|
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype)
|
|
|
|
# We have to use inference_mode here because q/k/v are
|
|
# all views of the same Tensor, which autograd doesn't
|
|
# like. This is fine because this function is only
|
|
# exposed to Python for purposes of writing this test.
|
|
with torch.inference_mode():
|
|
(q, k, v) = torch._transform_bias_rescale_qkv(
|
|
x, qkv.bias, num_heads=num_heads
|
|
)
|
|
|
|
def simple_transform_bias_rescale_qkv(qkv, bias):
|
|
(q, k, v) = torch.split(qkv, embed_dim, dim=-1)
|
|
(q_bias, k_bias, v_bias) = torch.split(bias, embed_dim, dim=-1)
|
|
|
|
def embiggen(x):
|
|
if not use_nt:
|
|
return x
|
|
b, t, d = x.size()
|
|
t = t + (8 - t % 8) % 8
|
|
newsize = (b, t, d)
|
|
new_x = torch.zeros(newsize, device=device, dtype=dtype)
|
|
new_x[:x.size()[0], :x.size()[1], :x.size()[2]] = x
|
|
return new_x
|
|
return tuple(
|
|
embiggen(x).reshape(
|
|
(bs, -1, num_heads, embed_dim // num_heads)
|
|
).transpose(2, 1)
|
|
for x in (
|
|
(q + q_bias) / math.sqrt(embed_dim // num_heads),
|
|
(k + k_bias),
|
|
(v + v_bias),
|
|
)
|
|
)
|
|
|
|
correct_q, correct_k, correct_v = simple_transform_bias_rescale_qkv(
|
|
dense_x, qkv.bias
|
|
)
|
|
if use_nt and use_padding:
|
|
for t in (correct_q, correct_k, correct_v):
|
|
t[t == float("-Inf")] = 0
|
|
|
|
self.assertEqual(q.size(), correct_q.size())
|
|
torch.testing.assert_close(q, correct_q)
|
|
torch.testing.assert_close(k, correct_k)
|
|
torch.testing.assert_close(v, correct_v)
|
|
|
|
@dtypesIfCUDA(torch.float)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
def test_transform_bias_rescale_qkv(self, device, dtype):
|
|
for use_padding in (False, True):
|
|
with self.subTest(use_padding=use_padding):
|
|
self._test_transform_bias_rescale_qkv_impl(
|
|
device, dtype, use_nt=False, use_padding=use_padding
|
|
)
|
|
|
|
@dtypesIfCUDA(torch.float)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
@onlyCUDA
|
|
def test_transform_bias_rescale_qkv_nested(self, device, dtype):
|
|
for use_padding in (False, True):
|
|
with self.subTest(use_padding=use_padding):
|
|
self._test_transform_bias_rescale_qkv_impl(
|
|
device, dtype, use_nt=True, use_padding=use_padding
|
|
)
|
|
|
|
def _test_multihead_attention_impl(
|
|
self, device, dtype, mode, use_nt, need_weights, average_attn_weights, use_padding=False, pad_all=False
|
|
):
|
|
embed_dim = 64
|
|
num_heads = 4
|
|
bs = 16
|
|
sl = 8
|
|
|
|
q = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
|
|
if use_padding:
|
|
if pad_all:
|
|
for q_i in q:
|
|
q_i[-1] = torch.zeros_like(q[0][-1], device=device, dtype=torch.float32)
|
|
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
|
|
for mask_i in mask:
|
|
mask_i[-1] = True
|
|
else:
|
|
q[0][-1] = torch.zeros_like(q[0][-1], device=device, dtype=torch.float32)
|
|
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
|
|
mask[0][-1] = True
|
|
if mode == "self":
|
|
k = q
|
|
v = q
|
|
elif mode == "encdec":
|
|
k = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
|
|
v = k
|
|
elif mode == "generic":
|
|
k = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
|
|
v = 6 * torch.rand(bs, sl, embed_dim, device=device, dtype=torch.float32) - 3
|
|
else:
|
|
self.fail(f"invalid mode `{mode}`!")
|
|
|
|
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=torch.float32)
|
|
native_qkv = copy.deepcopy(qkv).to(dtype=dtype)
|
|
|
|
proj = torch.nn.Linear(embed_dim, embed_dim, device=device, dtype=torch.float32)
|
|
native_proj = copy.deepcopy(proj).to(dtype=dtype)
|
|
|
|
pt = torch.nn.MultiheadAttention(
|
|
embed_dim, num_heads, batch_first=True, device=device, dtype=torch.float32
|
|
)
|
|
|
|
pt.in_proj_weight = qkv.weight
|
|
pt.in_proj_bias = qkv.bias
|
|
pt.out_proj.weight = proj.weight
|
|
pt.out_proj.bias = proj.bias
|
|
|
|
class NativeMHA(torch.nn.Module):
|
|
def __init__(self, embed_dim, num_heads, qkv, proj):
|
|
super().__init__()
|
|
self.qkv = qkv
|
|
self.proj = proj
|
|
self.embed_dim = embed_dim
|
|
self.num_heads = num_heads
|
|
|
|
def forward(self, q, k, v, key_padding_mask):
|
|
return torch._native_multi_head_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
self.embed_dim,
|
|
self.num_heads,
|
|
self.qkv.weight,
|
|
self.qkv.bias,
|
|
self.proj.weight,
|
|
self.proj.bias,
|
|
key_padding_mask,
|
|
need_weights=need_weights,
|
|
average_attn_weights=average_attn_weights,
|
|
mask_type=1, # mask_type = 1 => src_key_padding_mask, mask_type = 0 => src_mask
|
|
)
|
|
|
|
npt = NativeMHA(
|
|
embed_dim=embed_dim, num_heads=num_heads, qkv=native_qkv, proj=native_proj
|
|
).to(dtype)
|
|
|
|
if device == "cuda":
|
|
pt = pt.cuda()
|
|
npt = npt.cuda()
|
|
|
|
ypt, weight_pt = pt(
|
|
q,
|
|
k,
|
|
v,
|
|
need_weights=need_weights,
|
|
average_attn_weights=average_attn_weights,
|
|
key_padding_mask=mask if use_padding else None,
|
|
)
|
|
if use_nt:
|
|
qs = list(torch.unbind(q))
|
|
if use_padding:
|
|
if pad_all:
|
|
qs = [x[:-1] for x in qs]
|
|
else:
|
|
qs[0] = qs[0][:-1]
|
|
q = torch.nested.nested_tensor(qs, device=device, dtype=dtype)
|
|
if mode == "self":
|
|
k = v = q
|
|
elif mode == "encdec":
|
|
k = torch.nested.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
|
|
v = k
|
|
else:
|
|
k = torch.nested.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
|
|
v = torch.nested.nested_tensor(torch.unbind(v), device=device, dtype=dtype)
|
|
|
|
native_q = q.to(dtype=dtype)
|
|
native_k = k.to(dtype=dtype)
|
|
native_v = v.to(dtype=dtype)
|
|
|
|
ynpt, weight_npt = npt(
|
|
native_q, native_k, native_v, key_padding_mask=mask if use_padding and not use_nt else None
|
|
)
|
|
if use_nt:
|
|
ynpt = ynpt.to_padded_tensor(0)
|
|
if pad_all:
|
|
ynpt_final = torch.zeros_like(ypt)
|
|
ynpt_final[:, :ynpt.shape[1], :] = ynpt
|
|
ynpt = ynpt_final
|
|
|
|
def do_pad_all(tensors):
|
|
for t in tensors:
|
|
for t_i in t:
|
|
t_i[-1] = torch.zeros_like(t_i[-1], device=device, dtype=dtype)
|
|
|
|
# PyTorch implementation returns non-zero junk in the padding
|
|
# locations; overwrite it so that the comparison works out.
|
|
if use_padding:
|
|
ypt[0][-1] = torch.zeros_like(ypt[0][-1], device=device, dtype=dtype)
|
|
ynpt[0][-1] = torch.zeros_like(ynpt[0][-1], device=device, dtype=dtype)
|
|
if pad_all:
|
|
do_pad_all((ypt, ynpt))
|
|
# Zero the last row of each TxT weight matrix
|
|
if need_weights:
|
|
if average_attn_weights:
|
|
weight_pt[0][-1] = torch.zeros_like(weight_pt[0][-1], device=device, dtype=dtype)
|
|
weight_npt[0][-1] = torch.zeros_like(weight_npt[0][-1], device=device, dtype=dtype)
|
|
if pad_all:
|
|
do_pad_all((weight_pt, weight_npt))
|
|
else:
|
|
for nh in range(num_heads):
|
|
weight_pt[0][nh][-1] = torch.zeros_like(weight_pt[0][nh][-1], device=device, dtype=dtype)
|
|
weight_npt[0][nh][-1] = torch.zeros_like(weight_npt[0][nh][-1], device=device, dtype=dtype)
|
|
|
|
if dtype == torch.half:
|
|
torch.testing.assert_close(ypt, ynpt.to(torch.float32), atol=1e-3, rtol=1e-3)
|
|
else:
|
|
# High rtol seems necessary for
|
|
# test_native_multihead_attention_cpu_float32 on Windows,
|
|
# otherwise 2e-4 would likely be fine.
|
|
torch.testing.assert_close(ypt, ynpt, atol=2e-5, rtol=2e-3)
|
|
|
|
if need_weights:
|
|
torch.testing.assert_close(weight_pt, weight_npt.to(torch.float32), atol=5e-4, rtol=5e-4)
|
|
else:
|
|
self.assertEqual(weight_pt, weight_npt)
|
|
|
|
@dtypesIfCUDA(torch.float, torch.half)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
@parametrize("use_nt", [False, True])
|
|
@parametrize("use_padding, pad_all", [(False, False), (True, False), (True, True)])
|
|
@parametrize("need_weights", [False])
|
|
@parametrize("average_attn_weights", [False, True])
|
|
@parametrize("fused", [False, True])
|
|
@torch.no_grad()
|
|
def test_native_multihead_self_attention(self, device, dtype, use_nt,
|
|
need_weights, average_attn_weights, use_padding, pad_all, fused):
|
|
if TEST_WITH_ROCM:
|
|
if use_nt and use_padding and pad_all:
|
|
self.skipTest("Large numerical errors on ROCM to investigate.")
|
|
if use_padding and not pad_all and fused:
|
|
self.skipTest("Large numerical errors on ROCM to investigate.")
|
|
for need_weights in (False, not pad_all):
|
|
with self.subTest(use_padding=use_padding, pad_all=pad_all,
|
|
use_nt=use_nt, need_weights=need_weights,
|
|
average_attn_weights=average_attn_weights):
|
|
with torch.backends.cuda.sdp_kernel(
|
|
enable_flash=False, enable_mem_efficient=False
|
|
) if not fused else torch.backends.cuda.sdp_kernel(
|
|
enable_flash=True, enable_mem_efficient=True
|
|
):
|
|
self._test_multihead_attention_impl(
|
|
device,
|
|
dtype,
|
|
"self",
|
|
use_nt=use_nt,
|
|
use_padding=use_padding,
|
|
pad_all=pad_all,
|
|
need_weights=need_weights,
|
|
average_attn_weights=average_attn_weights,
|
|
)
|
|
|
|
@dtypesIfCUDA(torch.float, torch.half)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
@torch.no_grad()
|
|
def test_native_multihead_encoder_decoder_attention(self, device, dtype):
|
|
self._test_multihead_attention_impl(
|
|
device,
|
|
dtype,
|
|
"encdec",
|
|
use_nt=False,
|
|
need_weights=False,
|
|
average_attn_weights=False,
|
|
)
|
|
|
|
@dtypesIfCUDA(torch.float, torch.half)
|
|
@dtypes(torch.float)
|
|
@skipMeta
|
|
@torch.no_grad()
|
|
def test_native_multihead_attention(self, device, dtype):
|
|
self._test_multihead_attention_impl(
|
|
device,
|
|
dtype,
|
|
"generic",
|
|
use_nt=False,
|
|
need_weights=False,
|
|
average_attn_weights=False,
|
|
)
|
|
|
|
|
|
instantiate_device_type_tests(TestMHADeviceType, globals())
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|