Files
pytorch/torch/csrc/jit/mobile/import.cpp
cyy 03e35efbf7 replace torch::make_unique with std::make_unique (#108866)
It should be safe to remove the old torch::make_unique functions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108866
Approved by: https://github.com/albanD
2023-09-14 20:52:26 +00:00

738 lines
26 KiB
C++

#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/parse_bytecode.h>
#include <torch/csrc/jit/mobile/parse_operators.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/qualified_name.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <c10/util/ScopeExit.h>
#include <c10/util/irange.h>
#include <caffe2/serialize/in_memory_adapter.h>
#include <caffe2/serialize/inline_container.h>
#include <caffe2/serialize/read_adapter_interface.h>
#include <caffe2/serialize/versions.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <torch/csrc/jit/mobile/file_format.h>
#include <torch/csrc/jit/mobile/flatbuffer_loader.h>
#include <torch/csrc/jit/mobile/interpreter.h>
#include <torch/csrc/jit/mobile/observer.h>
#include <torch/csrc/jit/mobile/type_parser.h>
#include <torch/csrc/jit/mobile/upgrader_mobile.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/csrc/jit/serialization/import_export_constants.h>
#include <torch/csrc/jit/serialization/import_export_functions.h>
#include <torch/csrc/jit/serialization/import_read.h>
#include <torch/custom_class.h>
#include <exception>
#include <fstream>
#include <string>
#include <vector>
// The import process to serialize the bytecode package.
// An example for bytecode.pkl of a small mobile_module looks like:
// (4, # model version number (caffe2::serialize::kProducedBytecodeVersion)
// # first method
// (
// # function name
// '__torch__.m.forward',
// # code
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::Int', 'Tensor'),)),
// ('constants', ()),
// ('types', ()),
// ('register_size', 2)),
// # schema -- optional (forward-compatible addition to version 4)
// (('arguments',
// ((('name', 'x'), ('type', 'Tensor'), ('default_value', 13)),
// ...)), # more args follow here
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value', None)),
// ...)), # more return values follow here
// )),
// # more methods follow here
// ...)
// In addition, the module debugging information can be saved
// in mobile_debug_handles.pkl. An example for it looks like:
// (4,
// ('__torch__.m.forward',
// (('module_debug_handles', 10))))
// Here 10 is the debug handle.
// We also store separately and optionally callstack_debug_map.
// This serializes inlined callstack (InlinedCallStack data structure)
// corresponding to the debug handles.
// Callstack_debug_map serializes tuples of
// (int64_t(debug_handle), int64_t(source_range_tag), InlinedCallStack)
// source_range_tag maps to .debug_pkl files where this tag maps it to
// source range.
// InlinedCallStack is serialized as:
// IValue(InlinedCallStack) = {IValue(ModuleInstanceInfo),
// int64_t(source_range_tag), IValue(InlinedCallStack)} ModuleInstanceInfo is
// serialized as a tuple of (class_type_name, instance_name)
// Note that currently the backward compatibility is not supported by bytecode.
// This format and process need to be revisited and redesigned if we want to
// support backward compatibility in future.
// Note that the following function-schema fields are not supported:
// - Argument::{known_length_,kwarg_only_}
// - FunctionSchema::{overload_name_, is_vararg_, is_varret_}
namespace torch {
namespace jit {
using caffe2::serialize::MemoryReadAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
OpCode parseOpCode(const char* str);
TypePtr resolveTypeNameMobile(
const c10::QualifiedName& qn,
std::shared_ptr<CompilationUnit> compilation_unit) {
// HACK: first we check whether the name starts with special prefix to
// tell if it's a supported pytorch class type. There are two special
// prefixes. "__torch__" for nn module, and "torch.jit" from to_backend.
// This is a reliable
// check today, but there is no guarantee that this is the case. The
// real solution is to merge type parsers so we can share class
// resolution logic.
static const c10::QualifiedName torchPrefix = "__torch__";
static const c10::QualifiedName jitPrefix = "torch.jit";
if (torchPrefix.isPrefixOf(qn) || jitPrefix.isPrefixOf(qn)) {
if (compilation_unit->get_class(qn) == nullptr) {
auto typeptr = ClassType::create(qn, compilation_unit, true);
compilation_unit->register_type(typeptr);
}
return compilation_unit->get_class(qn);
} else {
return c10::parseType(qn.qualifiedName());
}
}
c10::StrongTypePtr typeResolverMobile(
const c10::QualifiedName& qn,
const std::shared_ptr<CompilationUnit>& compilation_unit) {
return c10::StrongTypePtr(
compilation_unit, resolveTypeNameMobile(qn, compilation_unit));
}
c10::intrusive_ptr<c10::ivalue::Object> objLoaderMobile(
const at::StrongTypePtr& type,
const IValue& input,
mobile::CompilationUnit& mobile_compilation_unit) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
c10::QualifiedName method_name(qn.value(), "__setstate__");
auto setstate = mobile_compilation_unit.find_function(method_name);
auto find_custom_class_with_setstate = [&qn]() -> c10::ClassTypePtr {
auto custom_class_type = torch::jit::getCustomClass(qn->qualifiedName());
if (custom_class_type && custom_class_type->findMethod("__setstate__")) {
return custom_class_type;
}
return nullptr;
};
if (setstate) {
auto obj = c10::ivalue::Object::create(type, 0);
Stack stack({obj, input});
setstate->run(stack);
return obj;
} else if (auto custom_class_type = find_custom_class_with_setstate()) {
auto obj = c10::ivalue::Object::create(
c10::StrongTypePtr(nullptr, custom_class_type), 1);
Stack stack({obj, input});
custom_class_type->getMethod("__setstate__").run(stack);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
size_t ndict = dict.size();
auto obj = c10::ivalue::Object::create(type, ndict);
auto it = dict.begin();
for (const auto i : c10::irange(ndict)) {
cls->addOrCheckAttribute(it->key().toStringRef(), it->key().type());
obj->setSlot(i, it->value());
++it;
}
return obj;
}
}
bool isTensorInBytecodeArchive(
caffe2::serialize::PyTorchStreamReader& stream_reader) {
auto records = stream_reader.getAllRecords();
for (const auto& record : records) {
if (record.find("bytecode/") != std::string::npos) {
return true;
}
}
return false;
}
namespace {
void tryRegisterMethod(const std::vector<c10::Argument>& args, Function& func) {
if (args.empty() || args[0].name() != "self") {
return;
}
if (auto cls = args[0].type()->castRaw<ClassType>()) {
if (C10_UNLIKELY(cls->findMethod(func.name()))) {
return;
}
cls->addMethod(&func);
}
}
// The deserializer class which loads the bytecode package from bc files.
class BytecodeDeserializer final {
public:
explicit BytecodeDeserializer(
std::unique_ptr<PyTorchStreamReader> reader,
uint64_t module_load_options = 0);
mobile::Module deserialize(c10::optional<at::Device> device);
mobile::Module deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files);
void deserialize_only_extra(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files);
private:
TypePtr resolveTypeName(const c10::QualifiedName& qn);
void init_upgrader(mobile::Function* function);
void parseMethods(
c10::ivalue::TupleElements&& vals,
c10::optional<c10::ivalue::TupleElements>&& debug_handles,
mobile::CompilationUnit& mcu);
c10::IValue readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu);
void parseFunctionSchema(
const std::string& function_name,
IValue* schemaTable,
const int64_t& model_version,
mobile::Function* function);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::unordered_set<std::string> imported_libs_;
std::unique_ptr<PyTorchStreamReader> reader_{};
c10::optional<at::Device> device_;
uint64_t module_load_options_;
// From `version` or `.data/version` in model.ptl and it's compute
// dynamically. It's used for finding the minimum required runtime to run all
// operators from the given model. If it's less than the current runtime,
// upgrader will be applied at loading stage.
uint64_t operator_version_;
uint64_t bytecode_version_;
};
BytecodeDeserializer::BytecodeDeserializer(
std::unique_ptr<PyTorchStreamReader> reader,
uint64_t module_load_options)
: compilation_unit_(std::make_shared<CompilationUnit>()),
reader_(std::move(reader)),
module_load_options_(module_load_options) {}
TypePtr BytecodeDeserializer::resolveTypeName(const c10::QualifiedName& qn) {
return resolveTypeNameMobile(qn, compilation_unit_);
}
// It requires compilation_unit_ when parsing function schema. Keep it in
// BytecodeDeserializer. It may be refacotred later to make it independent
// of the specific BytecodeDeserializer, like parsing other tables
void BytecodeDeserializer::parseFunctionSchema(
const std::string& function_name,
IValue* schemaTable,
const int64_t& model_version,
mobile::Function* function) {
// function schema
if (schemaTable) { // (schema is optional for back compat)
auto parseArgList = [this,
function](c10::ivalue::TupleElements&& argTables) {
std::vector<c10::Argument> args;
for (auto& argTable : argTables) {
auto argTableElements = std::move(argTable.toTupleRef()).elements();
auto name =
expect_field(argTableElements, "name", BYTECODE_INDEX_ARGUMENT_NAME)
.toStringRef();
c10::TypePtr type = resolveTypeName(
(expect_field(
argTableElements, "type", BYTECODE_INDEX_ARGUMENT_TYPE))
.toStringRef());
IValue default_value = expect_field(
argTableElements,
"default_value",
BYTECODE_INDEX_ARGUMENT_DEFAULT_VALUE);
args.emplace_back(
name,
std::move(type),
c10::nullopt /*N*/,
std::move(default_value));
}
tryRegisterMethod(args, *function);
return args;
};
auto schemaTableElements = std::move(schemaTable->toTupleRef()).elements();
auto arg_list = std::move(expect_field(
schemaTableElements,
"arguments",
BYTECODE_INDEX_SCHEMA_ARGUMENTS)
.toTupleRef())
.elements();
auto ret_list =
std::move(
expect_field(
schemaTableElements, "returns", BYTECODE_INDEX_SCHEMA_RETURNS)
.toTupleRef())
.elements();
c10::FunctionSchema schema(
function_name,
"" /*overload_name*/,
parseArgList(std::move(arg_list)),
parseArgList(std::move(ret_list)),
false /*is_varargs*/,
false /*is_varret*/);
function->setSchema(std::move(schema));
}
}
void BytecodeDeserializer::init_upgrader(mobile::Function* function) {
for (auto& byteCodeFunctionWithOperator : getUpgraderBytecodeList()) {
function->append_function(byteCodeFunctionWithOperator.function);
}
}
void BytecodeDeserializer::parseMethods(
c10::ivalue::TupleElements&& vals,
c10::optional<c10::ivalue::TupleElements>&& debug_handles,
mobile::CompilationUnit& mcu) {
TORCH_CHECK(!vals.empty(), "Bytecode has no elements. ");
// Initialized with the version number when kProducedBytecodeVersion was
// introduced. The old models (some of them already in production) without
// version number are seen as version 3 (deprecated).
constexpr uint64_t default_version = 0x3L;
bytecode_version_ = default_version;
size_t method_i_start = 0;
if (vals[0].isInt()) {
bytecode_version_ = vals[0].toInt();
method_i_start = 1;
}
TORCH_CHECK(
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
caffe2::serialize::kMinSupportedBytecodeVersion <= bytecode_version_ &&
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
bytecode_version_ <= caffe2::serialize::kMaxSupportedBytecodeVersion,
"Lite Interpreter version number does not match. ",
"The model version must be between ",
caffe2::serialize::kMinSupportedBytecodeVersion,
" and ",
caffe2::serialize::kMaxSupportedBytecodeVersion,
" but the model version is ",
bytecode_version_);
if (debug_handles) {
TORCH_CHECK(
debug_handles->size() == vals.size(),
"The numbers of bytecode values and debug info values do not match.");
}
// Process all methods in this mobile module.
for (const auto i : c10::irange(method_i_start, vals.size())) {
auto element = std::move(vals[i]);
auto m_tuple = std::move(element.toTupleRef()).elements();
const std::string& function_name = m_tuple[0].toStringRef();
auto codeTableElements =
std::move(std::move(m_tuple[1]).toTupleRef()).elements();
IValue* schemaTable = // older files do not store function schema
(bytecode_version_ > 0x4L ||
(bytecode_version_ == 0x4L && m_tuple.size() >= 3))
? &m_tuple[2]
: nullptr;
auto function =
std::make_unique<mobile::Function>(c10::QualifiedName(function_name));
auto ins_list =
std::move(
expect_field(
codeTableElements, "instructions", BYTECODE_INDEX_INSTRUCTION)
.toTupleRef())
.elements();
auto ops_list =
std::move(expect_field(
codeTableElements, "operators", BYTECODE_INDEX_OPERATOR)
.toTupleRef())
.elements();
auto consts_list =
std::move(expect_field(
codeTableElements, "constants", BYTECODE_INDEX_CONSTANT)
.toTupleRef())
.elements();
auto types_list =
std::move(expect_field(codeTableElements, "types", BYTECODE_INDEX_TYPE)
.toTupleRef())
.elements();
int64_t register_size =
expect_field(
codeTableElements, "register_size", BYTECODE_INDEX_REGISTER_SIZE)
.toInt();
c10::ivalue::TupleElements debug_handles_m_tuple;
if (debug_handles) {
debug_handles_m_tuple =
std::move(std::move((*debug_handles)[i]).toTupleRef()).elements();
}
init_upgrader(function.get());
// 1. First pass all operators from models
parseOperators(std::move(ops_list), module_load_options_, function.get());
// 2. Decides if upgrader is needed
bool use_upgrader =
(operator_version_ < caffe2::serialize::kProducedFileFormatVersion);
parseInstructions(
function_name,
std::move(ins_list),
debug_handles_m_tuple,
function.get());
// 3. If upgrader is needed, change change the OP instrunction to CALL
// instruction (In next PR, use_upgrader will be parsed to parseInstruction
// function and do the actual change)
if (use_upgrader) {
applyUpgrader(function.get(), operator_version_);
}
parseConstants(consts_list, function.get());
parseTypes(types_list, function.get());
function->set_register_size(register_size);
parseFunctionSchema(
function_name, schemaTable, bytecode_version_, function.get());
mcu.register_function(std::move(function));
}
}
void BytecodeDeserializer::deserialize_only_extra(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
device_ = device;
for (const auto& kv : extra_files) {
const std::string& key = "extra/" + kv.first;
if (reader_->hasRecord(key)) {
auto [meta_ptr, meta_size] = reader_->getRecord(key);
extra_files[kv.first] =
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
}
}
}
mobile::Module BytecodeDeserializer::deserialize(
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
deserialize_only_extra(device, extra_files);
return deserialize(device);
}
mobile::Module BytecodeDeserializer::deserialize(
c10::optional<at::Device> device) {
device_ = device;
auto mcu = std::make_shared<mobile::CompilationUnit>();
// bvals can have 2 possible formats:
//
// 1. Old format: bvals is an array (Tuple) of N elements, each element being
// itself a Tuple(method_name, method_table).
//
// 2. New format: bvals is an array (Tuple) of 1+N elements. The first element
// being a Tuple (int, table), and the integer stands for the bytecode version
// number. The rest of the elements are the same as before.
//
auto bvals = std::move(readArchive("bytecode", mcu).toTupleRef()).elements();
c10::optional<c10::ivalue::TupleElements> debug_handles;
bool has_debug_handles{false};
if (reader_->hasRecord("mobile_debug_handles.pkl")) {
debug_handles =
std::move(readArchive("mobile_debug_handles", mcu).toTupleRef())
.elements();
has_debug_handles = true;
}
operator_version_ = reader_->version();
parseMethods(std::move(bvals), std::move(debug_handles), *mcu);
auto m = mobile::Module(readArchive("data", mcu).toObject(), mcu);
m.set_min_operator_version(operator_version_);
m.set_bytecode_version(bytecode_version_);
m.setHasDebugHandles(has_debug_handles);
#if defined(SYMBOLICATE_MOBILE_DEBUG_HANDLE)
MobileDebugTable debug_table = MobileDebugTable(reader_, compilation_unit_);
m.setDebugTable(std::move(debug_table));
#endif
return m;
}
c10::IValue BytecodeDeserializer::readArchive(
const std::string& archive_name,
std::shared_ptr<mobile::CompilationUnit> mcu) {
auto type_resolver = [this](const c10::QualifiedName& qn) {
return typeResolverMobile(qn, compilation_unit_);
};
auto obj_loader = [&](const at::StrongTypePtr& type, const IValue& input) {
return objLoaderMobile(type, input, *mcu);
};
bool bytecode_tensor_in_constants_archive =
(archive_name == "bytecode" &&
!isTensorInBytecodeArchive(*reader_.get()));
auto ivalues = torch::jit::readArchiveAndTensors(
archive_name,
/*pickle_prefix=*/"",
/*tensor_prefix=*/
bytecode_tensor_in_constants_archive ? "constants/" : "",
type_resolver,
obj_loader,
device_,
*reader_.get(),
nullptr);
return ivalues;
}
mobile::Module _load_for_mobile_impl(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
std::unordered_map<std::string, std::string> metadata_map;
if (observer) {
observer->onEnterLoadModel(instance_key);
auto defaultExtraFileList = observer->getDefaultExtraFiles();
// Add files in defaultExtraFileList to fail_extra_files and extra_files
for (const auto& fileName : defaultExtraFileList) {
extra_files.insert(std::make_pair(fileName, ""));
}
}
const size_t model_size = rai != nullptr ? rai->size() : 0;
auto reader = std::make_unique<PyTorchStreamReader>(std::move(rai));
if (module_load_options &
MobileModuleLoadOptions::PARSE_ALL_EXTRA_FILE_MAPS) {
// ExtraFilesMap is serialized with a "extra/", hence it is necessary to
// account for when we de-serialize de-serialized filemap key values contain
// prefix and we need to remove prior to construct the map. "extra/" string
// has a length of 6 characters, hence we need only sub-string 6th position
// of a string. Please refer to following link for a detail:
// https://www.internalfb.com/code/fbsource/[9996fcb7a6fb]/fbcode/caffe2/torch/csrc/jit/mobile/import.cpp?lines=427-434
std::vector<std::string> all_files = reader->getAllRecords();
for (auto& file_name : all_files) {
if (file_name.find("extra/") == 0) {
extra_files[file_name.substr(6)] = "";
}
}
}
BytecodeDeserializer deserializer(std::move(reader), module_load_options);
std::string error_message;
auto guard = c10::make_scope_exit([&]() {
if (!observer) {
return;
}
deserializer.deserialize_only_extra(device, extra_files);
metadata_map = observer->processMetadataFromExtra(extra_files);
observer->onFailLoadModel(
instance_key,
error_message.empty() ? "Unknown exception" : error_message.c_str(),
metadata_map);
});
try {
mobile::Module result = deserializer.deserialize(device, extra_files);
if (observer) {
// Add model_name and model_size to metadata_map
extra_files.insert(std::make_pair("model_name", result.name()));
extra_files.insert(
std::make_pair("model_size", std::to_string(model_size)));
metadata_map = observer->processMetadataFromExtra(extra_files);
observer->onExitLoadModel(instance_key, metadata_map);
}
result.setMetadata(metadata_map);
guard.release();
return result;
} catch (c10::Error& error) {
error_message = error.what();
TORCH_RETHROW(error);
}
}
mobile::Module _load_mobile_from_bytes(
const std::shared_ptr<char>& data,
size_t size,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
TORCH_CHECK(size >= kFileFormatHeaderSize, "Format error");
auto format = getFileFormat(data.get());
switch (format) {
case FileFormat::ZipFileFormat: {
std::unique_ptr<ReadAdapterInterface> rai =
std::make_unique<MemoryReadAdapter>(data.get(), size);
return _load_for_mobile_impl(
std::move(rai), device, extra_files, module_load_options);
}
case FileFormat::FlatbufferFileFormat: {
return parse_and_initialize_mobile_module(
data, size, device, &extra_files);
}
default: {
TORCH_CHECK(false, "Format error");
}
}
}
} // namespace
mobile::Module _load_for_mobile(
std::istream& in,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return _load_for_mobile(in, device, extra_files);
}
mobile::Module _load_for_mobile(
const std::string& filename,
c10::optional<at::Device> device) {
ExtraFilesMap extra_files;
return _load_for_mobile(filename, device, extra_files);
}
mobile::Module _load_for_mobile(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device) {
ExtraFilesMap extra_files;
return _load_for_mobile(std::move(rai), device, extra_files);
}
mobile::Module _load_for_mobile(
std::istream& in,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
if (getFileFormat(in) == FileFormat::FlatbufferFileFormat) {
auto [data, size] = get_stream_content(in);
return _load_mobile_from_bytes(
data, size, device, extra_files, module_load_options);
}
std::unique_ptr<IStreamAdapter> rai = std::make_unique<IStreamAdapter>(&in);
auto module = _load_for_mobile_impl(
std::move(rai), device, extra_files, module_load_options);
return module;
}
mobile::Module _load_for_mobile(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
return _load_for_mobile(
filename, device, extra_files, kDefaultMobileLoadOptions);
}
mobile::Module _load_for_mobile(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
auto format = getFileFormat(filename);
if (format == FileFormat::FlatbufferFileFormat) {
auto [data, size] = get_file_content(filename.c_str());
return _load_mobile_from_bytes(
data, size, device, extra_files, module_load_options);
}
std::unique_ptr<FileAdapter> rai = std::make_unique<FileAdapter>(filename);
return _load_for_mobile_impl(
std::move(rai), device, extra_files, module_load_options);
}
TORCH_API mobile::Module _load_for_mobile(
std::unique_ptr<ReadAdapterInterface> rai,
c10::optional<c10::Device> device,
ExtraFilesMap& extra_files,
uint64_t module_load_options) {
// TODO optimize file read for non-flatbuffer models
auto [data, size] = get_rai_content(rai.get());
return _load_mobile_from_bytes(
data, size, device, extra_files, module_load_options);
}
void _load_extra_only_for_mobile(
const std::string& filename,
c10::optional<at::Device> device,
ExtraFilesMap& extra_files) {
auto observer = torch::observerConfig().getModuleObserver();
// NOLINTNEXTLINE(clang-analyzer-security.insecureAPI.rand)
auto instance_key = std::rand();
if (observer) {
observer->onEnterLoadModel(instance_key);
}
auto format = getFileFormat(filename);
switch (format) {
case FileFormat::ZipFileFormat: {
std::unique_ptr<FileAdapter> rai =
std::make_unique<FileAdapter>(filename);
auto reader = std::make_unique<PyTorchStreamReader>(std::move(rai));
BytecodeDeserializer deserializer(std::move(reader));
deserializer.deserialize_only_extra(device, extra_files);
break;
}
case FileFormat::FlatbufferFileFormat: {
// TODO: the current flatbuffers implementation will always load the
// whole module including the extra files. Ideally it should be
// possible to just get the extra files given data
load_mobile_module_from_file(filename, c10::nullopt, &extra_files);
break;
}
default: {
TORCH_CHECK(false, "Format error");
}
}
}
namespace mobile {
std::set<std::string> _export_operator_list(
torch::jit::mobile::Module& module) {
std::set<std::string> operator_list;
for (Method func : module.get_methods()) {
const Function& function = func.function();
const auto& code = function.get_code();
// op_names below isn't a list of unique operator names. In fact
// it can contain the same operator name many many times, so we need
// to de-dup the list by adding all the operator names into
// an std::set<std::string>.
std::vector<c10::OperatorName> const& op_names = code.op_names_;
for (auto& op_name : op_names) {
operator_list.insert(toString(op_name));
}
}
return operator_list;
}
} // namespace mobile
} // namespace jit
} // namespace torch