Files
pytorch/torch/_inductor/kernel/mm.py
Ruben Rodriguez Buchillon 031d79cb51 [inductor] move max-autotune logic inside V.choices.get_mm_configs (#161344)
# why

- heuristics providers know decide whether to (or which choices to add)
  in the max-autotune case
- enables an eventual override point to gracefully fallback to the
  standard behavior

# what

- max-autotune is determined inside V.choices.get_mm_configs
  because it's mm only right now, we can just do
  `config.max_autotune or config.max_autotune_gemm`
  a TODO indicates that this can change in the future when this
  expands to more templates

# testing

```
python3 -bb -m pytest test/inductor/test_max_autotune.py -v
```

Differential Revision: [D81520573](https://our.internmc.facebook.com/intern/diff/D81520573)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161344
Approved by: https://github.com/jansel
ghstack dependencies: #162075, #161340, #161341, #161342, #161343
2025-09-05 18:02:30 +00:00

1406 lines
45 KiB
Python

# mypy: allow-untyped-defs
import functools
import logging
from typing import Any, Optional
import torch
from torch._dynamo.utils import counters
from torch._inductor.autoheuristic.autoheuristic import AutoHeuristicSelectAlgorithm
from torch._inductor.autoheuristic.autoheuristic_utils import (
AHContext,
context_add_strides,
context_add_using_tf32,
mm_operations,
)
from torch._inductor.codegen.cpp_gemm_template import CppGemmTemplate
from torch._inductor.remote_gemm_autotune_cache import gen_best_config
from torch._inductor.virtualized import V
from torch.fx.experimental.proxy_tensor import make_fx
from torch.torch_version import TorchVersion
from .. import config as inductor_config
from ..codegen.cuda.gemm_template import CUTLASS2xGemmTemplate, CUTLASS3xGemmTemplate
from ..codegen.rocm.ck_tile_universal_gemm_template import CKTileGemmTemplate
from ..codegen.rocm.ck_universal_gemm_template import CKGemmTemplate
from ..codegen.subgraph import SubgraphChoiceCaller, SubgraphTemplate
from ..ir import Buffer, ChoiceCaller, FlexibleLayout, is_triton, Layout
from ..kernel_inputs import MMKernelInputs
from ..lowering import add_layout_constraint, constrain_to_fx_strides, register_lowering
from ..select_algorithm import (
autotune_select_algorithm,
ExternKernelChoice,
realize_inputs,
TritonTemplate,
)
from ..utils import (
_use_cutlass_for_op,
use_aten_gemm_kernels,
use_ck_gemm_template,
use_ck_tile_gemm_template,
use_cpp_gemm_template,
use_cutlass_template,
use_decompose_k_choice,
use_triton_template,
use_triton_tma_template,
)
from .mm_common import _is_static_problem, mm_args, mm_grid, persistent_mm_grid
try:
import triton
triton_version = TorchVersion(triton.__version__)
has_triton = True
except ImportError:
triton_version = TorchVersion("0.0.0")
has_triton = False
log = logging.getLogger(__name__)
aten = torch.ops.aten
prims = torch.ops.prims
mm_template = TritonTemplate(
name="mm",
grid=mm_grid,
source=(
r"""
{{def_kernel("A", "B")}}
M = {{size("A", 0)}}
N = {{size("B", 1)}}
K = {{size("A", 1)}}
if M * N == 0:
# early exit due to zero-size input(s)
return
stride_am = {{stride("A", 0)}}
stride_ak = {{stride("A", 1)}}
stride_bk = {{stride("B", 0)}}
stride_bn = {{stride("B", 1)}}
# based on triton.ops.matmul
pid = tl.program_id(0)
grid_m = (M + BLOCK_M - 1) // BLOCK_M
grid_n = (N + BLOCK_N - 1) // BLOCK_N
# re-order program ID for better L2 performance
width = GROUP_M * grid_n
group_id = pid // width
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
pid_m = group_id * GROUP_M + (pid % group_size)
pid_n = (pid % width) // (group_size)
tl.assume(pid_m >= 0)
tl.assume(pid_n >= 0)
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
if ((stride_am == 1 and stride_ak == M) or (stride_am == K and stride_ak == 1)) and (M >= BLOCK_M and K > 1):
offs_a_m = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
else:
offs_a_m = rm % M
if ((stride_bk == 1 and stride_bn == K) or (stride_bk == N and stride_bn == 1)) and (N >= BLOCK_N and K > 1):
offs_b_n = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
else:
offs_b_n = rn % N
offs_k = tl.arange(0, BLOCK_K)
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
for k_idx in range(0, tl.cdiv(K, BLOCK_K)):
{% if not EVEN_K %}
a_mask = offs_k[None, :] < (K - k_idx * BLOCK_K)
b_mask = offs_k[:, None] < (K - k_idx * BLOCK_K)
{% endif %}
a_k_idx_vals = offs_k[None, :] + (k_idx * BLOCK_K)
b_k_idx_vals = offs_k[:, None] + (k_idx * BLOCK_K)
idx_m = offs_a_m[:, None]
idx_n = a_k_idx_vals
{{load_input("A", "a", ("idx_m", "idx_n"), mask=None if EVEN_K else "a_mask", indent_width=8)}}
idx_m = b_k_idx_vals
idx_n = offs_b_n[None, :]
{{load_input("B", "b", ("idx_m", "idx_n"), mask=None if EVEN_K else "b_mask", indent_width=8)}}
{% if USE_FAST_ACCUM %}
acc = tl.dot(a, b, acc, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE)
{% else %}
acc += tl.dot(a, b, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE)
{% endif %}
# rematerialize rm and rn to save registers
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
idx_m = rm[:, None]
idx_n = rn[None, :]
mask = (idx_m < M) & (idx_n < N)
# inductor generates a suffix
{{store_output(("idx_m", "idx_n"), "acc", "mask")}}
"""
if (torch.version.hip is None) or triton_version >= "3.3.0"
# FIXME: To get around rocm failures like https://github.com/pytorch/pytorch/actions/runs/13123783322/job/36617154943
# The only difference between the two templates is M >= BLOCK_M and N >= BLOCK_N checking.
# See more details in https://github.com/pytorch/pytorch/pull/146293
else r"""
{{def_kernel("A", "B")}}
M = {{size("A", 0)}}
N = {{size("B", 1)}}
K = {{size("A", 1)}}
if M * N == 0:
# early exit due to zero-size input(s)
return
stride_am = {{stride("A", 0)}}
stride_ak = {{stride("A", 1)}}
stride_bk = {{stride("B", 0)}}
stride_bn = {{stride("B", 1)}}
# based on triton.ops.matmul
pid = tl.program_id(0)
grid_m = (M + BLOCK_M - 1) // BLOCK_M
grid_n = (N + BLOCK_N - 1) // BLOCK_N
# re-order program ID for better L2 performance
width = GROUP_M * grid_n
group_id = pid // width
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
pid_m = group_id * GROUP_M + (pid % group_size)
pid_n = (pid % width) // (group_size)
tl.assume(pid_m >= 0)
tl.assume(pid_n >= 0)
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
if (stride_am == 1 and stride_ak == M) or (stride_am == K and stride_ak == 1):
offs_a_m = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
else:
offs_a_m = rm % M
if (stride_bk == 1 and stride_bn == K) or (stride_bk == N and stride_bn == 1):
offs_b_n = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
else:
offs_b_n = rn % N
offs_k = tl.arange(0, BLOCK_K)
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
for k_idx in range(0, tl.cdiv(K, BLOCK_K)):
{% if not EVEN_K %}
a_mask = offs_k[None, :] < (K - k_idx * BLOCK_K)
b_mask = offs_k[:, None] < (K - k_idx * BLOCK_K)
{% endif %}
a_k_idx_vals = offs_k[None, :] + (k_idx * BLOCK_K)
b_k_idx_vals = offs_k[:, None] + (k_idx * BLOCK_K)
idx_m = offs_a_m[:, None]
idx_n = a_k_idx_vals
{{load_input("A", "a", ("idx_m", "idx_n"), mask=None if EVEN_K else "a_mask", indent_width=8)}}
idx_m = b_k_idx_vals
idx_n = offs_b_n[None, :]
{{load_input("B", "b", ("idx_m", "idx_n"), mask=None if EVEN_K else "b_mask", indent_width=8)}}
{% if USE_FAST_ACCUM %}
acc = tl.dot(a, b, acc, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE)
{% else %}
acc += tl.dot(a, b, allow_tf32=ALLOW_TF32, out_dtype=ACC_TYPE)
{% endif %}
# rematerialize rm and rn to save registers
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
idx_m = rm[:, None]
idx_n = rn[None, :]
mask = (idx_m < M) & (idx_n < N)
# inductor generates a suffix
{{store_output(("idx_m", "idx_n"), "acc", "mask")}}
"""
),
cache_codegen_enabled_for_template=True,
prologue_loads_all_inputs=True,
)
persistent_tma_mm_template = TritonTemplate(
name="mm_persistent_tma",
grid=persistent_mm_grid,
source=r"""
{{def_kernel("A", "B")}}
M = {{size("A", 0)}}
N = {{size("B", 1)}}
K = {{size("A", 1)}}
if M * N == 0:
# early exit due to zero-size input(s)
return
start_pid = tl.program_id(0)
grid_m = tl.cdiv(M, BLOCK_M)
grid_n = tl.cdiv(N, BLOCK_N)
k_tiles = tl.cdiv(K, BLOCK_K)
num_tiles = grid_m * grid_n
tiles_per_SM = num_tiles // NUM_SMS
if start_pid < num_tiles % NUM_SMS:
tiles_per_SM += 1
tile_id = start_pid - NUM_SMS
ki = -1
width = GROUP_M * grid_n
rk_for_mask = tl.arange(0, BLOCK_K)
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
{%- if TMA_EXPERIMENTAL_API %}
workspace_base = ws_ptr + start_pid * 2 * TMA_SIZE
a_desc_ptr = workspace_base
b_desc_ptr = workspace_base + TMA_SIZE
triton.language.extra.cuda.experimental_device_tensormap_create2d(
desc_ptr=a_desc_ptr,
global_address=A,
load_size=[BLOCK_M, BLOCK_K] if A_ROW_MAJOR else [BLOCK_K, BLOCK_M],
global_size=[M, K] if A_ROW_MAJOR else [K, M],
element_ty=A.dtype.element_ty,
)
triton.language.extra.cuda.experimental_device_tensormap_create2d(
desc_ptr=b_desc_ptr,
global_address=B,
load_size=[BLOCK_K, BLOCK_N] if B_ROW_MAJOR else [BLOCK_N, BLOCK_K],
global_size=[K, N] if B_ROW_MAJOR else [N, K],
element_ty=B.dtype.element_ty,
)
tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(a_desc_ptr)
tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(b_desc_ptr)
{%- else %}
stride_am = {{stride("A", 0)}}
stride_ak = {{stride("A", 1)}}
stride_bk = {{stride("B", 0)}}
stride_bn = {{stride("B", 1)}}
a_desc = triton.language.make_tensor_descriptor(
base=A,
shape=[M, K] if A_ROW_MAJOR else [K, M],
strides=[stride_am, 1] if A_ROW_MAJOR else [stride_ak, 1],
block_shape=[BLOCK_M, BLOCK_K] if A_ROW_MAJOR else [BLOCK_K, BLOCK_M],
)
b_desc = triton.language.make_tensor_descriptor(
base=B,
shape=[K, N] if B_ROW_MAJOR else [N, K],
strides=[stride_bk, 1] if B_ROW_MAJOR else [stride_bn, 1],
block_shape=[BLOCK_K, BLOCK_N] if B_ROW_MAJOR else [BLOCK_N, BLOCK_K],
)
{%- endif %}
pid_m = 0
pid_n = 0
rm = 0
rn = 0
for _ in range(0, k_tiles * tiles_per_SM):
ki = tl.where(ki == k_tiles - 1, 0, ki + 1)
if ki == 0:
tile_id += NUM_SMS
# re-order program ID for better L2 performance
group_id = tile_id // width
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
pid_m = group_id * GROUP_M + (tile_id % group_size)
pid_n = (tile_id % width) // (group_size)
rm = pid_m * BLOCK_M
rn = pid_n * BLOCK_N
rk = ki * BLOCK_K
{%- if TMA_EXPERIMENTAL_API %}
a = tl._experimental_descriptor_load(
a_desc_ptr,
[rm, rk] if A_ROW_MAJOR else [rk, rm],
[BLOCK_M, BLOCK_K] if A_ROW_MAJOR else [BLOCK_K, BLOCK_M],
A.dtype.element_ty,
)
b = tl._experimental_descriptor_load(
b_desc_ptr,
[rk, rn] if B_ROW_MAJOR else [rn, rk],
[BLOCK_K, BLOCK_N] if B_ROW_MAJOR else [BLOCK_N, BLOCK_K],
B.dtype.element_ty,
)
{%- else %}
a = tl.load_tensor_descriptor(
a_desc,
[rm, rk] if A_ROW_MAJOR else [rk, rm],
)
b = tl.load_tensor_descriptor(
b_desc,
[rk, rn] if B_ROW_MAJOR else [rn, rk],
)
{%- endif %}
acc += tl.dot(
a if A_ROW_MAJOR else a.T,
b if B_ROW_MAJOR else b.T,
allow_tf32=ALLOW_TF32,
)
if ki == k_tiles - 1:
# rematerialize rm and rn to save registers
rcm = rm + tl.arange(0, BLOCK_M)
rcn = rn + tl.arange(0, BLOCK_N)
idx_m = rcm[:, None]
idx_n = rcn[None, :]
mask = (idx_m < M) & (idx_n < N)
# inductor generates a suffix
{{store_output(("idx_m", "idx_n"), "acc", "mask", indent_width=12)}}
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
""",
)
load_scales = r"""
@triton.jit
def load_scales(a_scale_ptr, b_scale_ptr, SCALING_ROWWISE: tl.constexpr):
if SCALING_ROWWISE:
# For row-wise scaling, we'll return the pointers
return a_scale_ptr, b_scale_ptr
else:
# For per-tensor scaling, we'll load the scalar values
a_scale = tl.load(a_scale_ptr)
b_scale = tl.load(b_scale_ptr)
return a_scale, b_scale
"""
apply_scaling = r"""
@triton.jit
def apply_scaling(
accumulator,
a_scale,
b_scale,
SCALING_ROWWISE: tl.constexpr,
offs_cm,
offs_cn,
M,
N,
stride_a_scale_m,
stride_b_scale_n,
):
if SCALING_ROWWISE:
# For row-wise scaling, we need to load the scales for each row/column
a_scales = tl.load(
a_scale + (offs_cm * stride_a_scale_m),
mask=offs_cm < M,
other=0.0,
)
b_scales = tl.load(
b_scale + (offs_cn * stride_b_scale_n),
mask=offs_cn < N,
other=0.0,
)
acc_scale = a_scales[:, None] * b_scales[None, :]
else:
# For per-tensor scaling, we can directly use the loaded scalar values
acc_scale = a_scale * b_scale
return accumulator * acc_scale
"""
device_tma = r"""
{{def_kernel("A", "B", "A_inverse_scale", "B_inverse_scale")}}
M = {{size("A", 0)}}
N = {{size("B", 1)}}
K = {{size("A", 1)}}
if M * N == 0:
# early exit due to zero-size input(s)
return
stride_am = {{stride("A", 0)}}
stride_ak = {{stride("A", 1)}}
stride_bk = {{stride("B", 0)}}
stride_bn = {{stride("B", 1)}}
if SCALING_ROWWISE:
stride_a_scale_m = 1
stride_b_scale_n = 1
else:
stride_a_scale_m = 0
stride_b_scale_n = 0
start_pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_M)
num_pid_n = tl.cdiv(N, BLOCK_N)
k_tiles = tl.cdiv(K, BLOCK_K)
num_tiles = num_pid_m * num_pid_n
{%- if TMA_EXPERIMENTAL_API %}
workspace_base = ws_ptr + start_pid * 2 * TMA_SIZE
a_desc_ptr = workspace_base
b_desc_ptr = workspace_base + TMA_SIZE
triton.language.extra.cuda.experimental_device_tensormap_create2d(
desc_ptr=a_desc_ptr,
global_address=A,
load_size=[BLOCK_M, BLOCK_K],
global_size=[M, K],
element_ty=A.dtype.element_ty,
)
triton.language.extra.cuda.experimental_device_tensormap_create2d(
desc_ptr=b_desc_ptr,
global_address=B,
load_size=[BLOCK_N, BLOCK_K],
global_size=[N, K],
element_ty=B.dtype.element_ty,
)
tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(a_desc_ptr)
tl.extra.cuda.experimental_tensormap_fenceproxy_acquire(b_desc_ptr)
{%- else %}
stride_am = {{stride("A", 0)}}
stride_bn = {{stride("B", 1)}}
a_desc = triton.language.make_tensor_descriptor(
base=A,
shape=[M, K],
strides=[stride_am, 1],
block_shape=[BLOCK_M, BLOCK_K],
)
b_desc = triton.language.make_tensor_descriptor(
base=B,
shape=[N, K],
strides=[stride_bn, 1],
block_shape=[BLOCK_N, BLOCK_K],
)
{%- endif %}
tiles_per_SM = num_tiles // NUM_SMS
if start_pid < num_tiles % NUM_SMS:
tiles_per_SM += 1
tile_id = start_pid - NUM_SMS
ki = -1
pid_m = 0
pid_n = 0
offs_am = 0
offs_bn = 0
num_pid_in_group = GROUP_M * num_pid_n
accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
a_scale, b_scale = load_scales(A_inverse_scale, B_inverse_scale, SCALING_ROWWISE)
for _ in range(0, k_tiles * tiles_per_SM):
ki = tl.where(ki == k_tiles - 1, 0, ki + 1)
if ki == 0:
tile_id += NUM_SMS
group_id = tile_id // num_pid_in_group
first_pid_m = group_id * GROUP_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_M)
pid_m = first_pid_m + (tile_id % group_size_m)
pid_n = (tile_id % num_pid_in_group) // group_size_m
offs_am = pid_m * BLOCK_M
offs_bn = pid_n * BLOCK_N
offs_k = ki * BLOCK_K
{%- if TMA_EXPERIMENTAL_API %}
a = tl._experimental_descriptor_load(
a_desc_ptr, [offs_am, offs_k], [BLOCK_M, BLOCK_K], A.dtype.element_ty
)
b = tl._experimental_descriptor_load(
b_desc_ptr, [offs_bn, offs_k], [BLOCK_N, BLOCK_K], B.dtype.element_ty
)
{%- else %}
a = tl.load_tensor_descriptor(a_desc, [offs_am, offs_k])
b = tl.load_tensor_descriptor(b_desc, [offs_bn, offs_k])
{%- endif %}
if USE_FAST_ACCUM:
accumulator = tl.dot(a, b.T, accumulator)
else:
accumulator += tl.dot(a, b.T)
if ki == k_tiles - 1:
# Apply inverse scaling
offs_cm = offs_am + tl.arange(0, BLOCK_M)
offs_cn = offs_bn + tl.arange(0, BLOCK_N)
# Apply scaling
accumulator = apply_scaling(
accumulator,
a_scale,
b_scale,
SCALING_ROWWISE,
offs_cm,
offs_cn,
M,
N,
stride_a_scale_m,
stride_b_scale_n,
)
idx_m = offs_cm[:, None]
idx_n = offs_cn[None, :]
mask = (idx_m < M) & (idx_n < N)
# inductor generates a suffix
{{store_output(("idx_m", "idx_n"), "accumulator", "mask", indent_width=12)}}
accumulator = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
"""
scaled_mm_device_tma_template = TritonTemplate(
name="scaled_mm_device_tma",
grid=persistent_mm_grid,
source=device_tma + load_scales + apply_scaling,
)
# prevent duplication registration of extern functions
@functools.cache
def lazy_register_extern_choice(fn):
return ExternKernelChoice(fn)
aten_mm = ExternKernelChoice(torch.mm, "at::mm_out", op_overload=aten.mm.out)
aten_addmm = ExternKernelChoice(
torch.addmm, "at::addmm_out", op_overload=aten.addmm.out
)
aten__int_mm = ExternKernelChoice(
torch._int_mm, "at::_int_mm_out", op_overload=aten._int_mm.out
)
aten__sparse_semi_structured_mm = ExternKernelChoice(
torch._sparse_semi_structured_mm,
"at::_sparse_semi_structured_mm",
has_out_variant=False,
op_overload=aten._sparse_semi_structured_mm.default,
)
aten__fp8_mm = ExternKernelChoice(
torch._scaled_mm, "at::_scaled_mm_out", op_overload=aten._scaled_mm.out
)
def _is_int8_mat(mat):
return mat.get_dtype() in (torch.int8, torch.uint8)
def bias_addmm(inp, mat1, mat2, *, out=None, alpha=1, beta=1):
"""
Giving torch.addmm a 1D tensor calls a different (faster) cublasLt
kernel under the hood. There are a few shapes where this is slower,
but they are rare.
"""
if (inp.stride(0) == 0 and inp.size(0) != 0) or inp.size(0) == 1:
return torch.addmm(inp[0], mat1, mat2, out=out, alpha=alpha, beta=beta)
return torch.addmm(inp, mat1, mat2, out=out, alpha=alpha, beta=beta)
def check_supported_striding(mat_a, mat_b) -> None:
def is_row_major(stride) -> bool:
return V.graph.sizevars.statically_known_equals(stride[1], 1)
def is_col_major(stride) -> bool:
return V.graph.sizevars.statically_known_equals(stride[0], 1)
def has_zero_dim(size) -> bool:
return bool(
V.graph.sizevars.statically_known_equals(size[0], 0)
or V.graph.sizevars.statically_known_equals(size[1], 0)
)
# Check mat_a (self) stride requirements
torch._check(
is_row_major(mat_a.get_stride()) or has_zero_dim(mat_a.get_size()),
lambda: f"mat_a must be row_major, got stride {mat_a.get_stride()}",
)
# Check mat_b stride requirements
torch._check(
is_col_major(mat_b.get_stride()) or has_zero_dim(mat_b.get_size()),
lambda: f"mat_b must be col_major, got stride {mat_b.get_stride()}",
)
aten_bias_addmm = ExternKernelChoice(bias_addmm, None)
def decomposeK(a, b, k_splits):
m = a.shape[0]
n = b.shape[1]
k = a.shape[1]
k_parts = k // k_splits
B = k_splits
a_reshaped = torch.permute(a.reshape(m, B, k_parts), (1, 0, 2))
b_reshaped = b.reshape(B, k_parts, n)
result = torch.bmm(a_reshaped, b_reshaped, out_dtype=torch.float32)
reduced_buf = torch.sum(result, 0)
return reduced_buf.to(a.dtype)
class DecomposeKSugraphTemplate(SubgraphTemplate):
def __init__(self):
super().__init__(
name="decompose_k",
)
def generate( # type: ignore[override]
self,
input_nodes: list[Buffer],
layout: Layout,
k_split: int,
) -> SubgraphChoiceCaller:
from torch._dispatch.python import enable_python_dispatcher
from ..decomposition import select_decomp_table
name = f"decompose_k_mm_{k_split}_split"
description = f"{k_split=}"
with enable_python_dispatcher():
decompositions = select_decomp_table()
fn = make_fx(
functools.partial(decomposeK, k_splits=k_split),
decompositions,
)
return super().generate(
name=name,
input_nodes=input_nodes,
layout=layout,
make_fx_graph=fn,
description=description,
)
decompose_k_subgraph_template = DecomposeKSugraphTemplate()
class ContiguousTemplate(SubgraphTemplate):
def __init__(self, name: str, description: str, fn: Any):
self.name = name
self.description = description
self.fn = fn
super().__init__(
name=name,
)
def generate( # type: ignore[override]
self,
input_nodes: list[Buffer],
layout: Layout,
) -> SubgraphChoiceCaller:
from torch._dispatch.python import enable_python_dispatcher
from ..decomposition import select_decomp_table
with enable_python_dispatcher():
decompositions = select_decomp_table()
fn = make_fx(
self.fn,
decompositions,
)
return super().generate(
name=self.name,
input_nodes=input_nodes,
layout=layout,
make_fx_graph=fn,
description=self.description,
)
def contiguous_mm(a, b):
return torch.mm(a, b.contiguous())
def contiguous_addmm(inp, a, b):
return torch.addmm(inp, a, b.contiguous())
mm_contiguous_subgraph_template = ContiguousTemplate(
"contiguous_mm", "contiguous mm", contiguous_mm
)
addmm_contiguous_subgraph_template = ContiguousTemplate(
"contiguous_addmm", "contiguous addmm", contiguous_addmm
)
@register_lowering(aten.mm, type_promotion_kind=None)
def tuned_mm(mat1, mat2, *, layout=None):
"""
Lowering for autotuning aten.mm with different backends (Aten, Triton, CUTLASS, etc.)
"""
# TODO(coconutruben): integrate into MMKernelInputs when all callsites use that
m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2, layout=layout)
static_shape, is_nonzero = _is_static_problem(layout)
name = "mm"
# Create MMKernelInputs for standard MM at the top
kernel_inputs = MMKernelInputs([mat1, mat2])
# below is for getting an overview logging info of inductor mms
counters["aten_mm_info"][f"aten.mm_{m}_{n}_{k}"] += 1
log.info(
"Tuned aten.mm: m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, output_layout=%s",
m,
n,
k,
mat1.get_dtype(),
mat2.get_dtype(),
layout,
)
aten_layout = layout
if not (inductor_config.max_autotune or inductor_config.max_autotune_gemm):
aten_layout = FlexibleLayout(
device=layout.device, dtype=layout.dtype, size=layout.size
)
choices: list[ChoiceCaller] = []
if use_aten_gemm_kernels():
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs, aten_layout, aten_mm, "mm"
):
aten_mm.maybe_append_choice(
choices=choices,
**kwargs,
**extra_kwargs,
)
static_shape, is_nonzero = _is_static_problem(layout)
if is_nonzero and use_triton_template(layout, check_max_autotune=False):
# Get template params using the new unified function
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs, layout, mm_template, "mm"
):
mm_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
if use_triton_tma_template(mat1, mat2):
# Get TMA template params using the new unified function
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs, layout, persistent_tma_mm_template, "mm"
):
persistent_tma_mm_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
# Only do split-k optimization if K is much larger than m, n and m, n are small
if use_decompose_k_choice(m, n, k):
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs, layout, decompose_k_subgraph_template, "mm"
):
decompose_k_subgraph_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs, layout, mm_contiguous_subgraph_template, "mm"
):
mm_contiguous_subgraph_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
if (
is_nonzero
and use_cutlass_template(layout, m, n, k)
and _use_cutlass_for_op("mm")
):
CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(
choices, layout, kernel_inputs.nodes()
)
if is_nonzero and use_ck_gemm_template(layout, m, n, k):
CKGemmTemplate.add_ck_gemm_choices(choices, layout, kernel_inputs.nodes())
if is_nonzero and use_ck_tile_gemm_template(layout, m, n, k):
CKTileGemmTemplate.add_choices(choices, layout, kernel_inputs.nodes())
if use_cpp_gemm_template(layout, mat1, mat2):
CppGemmTemplate.add_choices(
choices,
layout,
kernel_inputs.nodes(),
)
input_nodes = [mat1, mat2]
if (
is_nonzero
and use_triton_template(layout)
and torch._inductor.config.run_autoheuristic(name)
and is_triton(mat1)
):
always_included = []
if use_aten_gemm_kernels():
always_included.append("extern_mm")
num_choices_before_extra_configs = len(choices)
for kwargs, extra_kwargs in V.choices.get_mm_configs(
# TODO(coconutruben): remove once we deprecate ah
# mm-extra is a hack to keep the ah functionality alive
# while we transition to the unified kwargs retrieval
kernel_inputs,
layout,
mm_template,
"mm-ah",
):
assert not kwargs, "mm-ah should not have any extra kwargs"
mm_template.maybe_append_choice(
choices,
input_nodes=kernel_inputs.nodes(),
layout=layout,
**kwargs,
)
# using AutoHeuristic for ranking
ah_choices = mm_autoheuristic(
mat1,
mat2,
m,
n,
k,
choices,
name,
input_nodes,
mm_operations(),
None,
top_k=10,
always_included=always_included,
)
if not torch._inductor.config.collect_autoheuristic(name):
# if we are collecting data, we do not want to modify choices
if ah_choices is not None and len(ah_choices) > 0:
# the order in which autoheuristic returns choices is not the same as
# as the order of choices, which affects things like epilogue fusion.
# once epilogue fusion benchmarks choices in sorted order, I think we can
# just use the order returned by autoheuristic
choices = [choice for choice in choices if choice in ah_choices]
else:
choices = choices[:num_choices_before_extra_configs]
for k in inductor_config.external_matmul:
choices.append(
lazy_register_extern_choice(k).bind(kernel_inputs.nodes(), layout)
)
best_config_future = None
# Purposely not awaiting the future here - this kicks off the best config lookup at lowering time
# The future will be awaited at scheduling time in select_algorithm.py
if torch._inductor.config.remote_gemm_autotune_cache:
best_config_future = gen_best_config(mat1, mat2)
return autotune_select_algorithm(
name,
choices,
kernel_inputs.nodes(),
layout,
best_config_future=best_config_future,
)
@register_lowering(aten._int_mm, type_promotion_kind=None)
def tuned_int_mm(mat1, mat2, *, layout=None):
# TODO(coconutruben): integrate into MMKernelInputs when all callsites use that
m, n, k, layout, mat1, mat2 = mm_args(
mat1, mat2, layout=layout, out_dtype=torch.int32
)
name = "int_mm"
# below is for getting an overview logging info of inductor mms
counters["aten_mm_info"][f"aten._int_mm_{m}_{n}_{k}"] += 1
log.info(
"Tuned aten._int_mm: m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, output_layout=%s",
m,
n,
k,
mat1.get_dtype(),
mat2.get_dtype(),
layout,
)
static_shape, is_nonzero = _is_static_problem(layout)
use_cutlass = static_shape and is_nonzero and use_cutlass_template(layout, m, n, k)
choices: list[ChoiceCaller] = []
# Create MMKernelInputs for Int MM
kernel_inputs = MMKernelInputs([mat1, mat2])
if use_aten_gemm_kernels():
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
layout,
aten__int_mm,
name,
):
aten__int_mm.maybe_append_choice(
choices=choices,
**kwargs,
**extra_kwargs,
)
if use_cutlass and _use_cutlass_for_op(name):
CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(
choices, layout, kernel_inputs.nodes(), fuseable=True, non_fuseable=True
)
if is_nonzero and use_triton_template(
layout, enable_int32=True, check_max_autotune=False
):
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs, layout, mm_template, name
):
mm_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
return autotune_select_algorithm(name, choices, kernel_inputs.nodes(), layout)
@register_lowering(aten.addmm, type_promotion_kind=None)
def tuned_addmm(inp, mat1, mat2, *, alpha=1, beta=1, layout=None):
"""
Lowering for autotuning aten.addmm with different backends (Aten, Triton, CUTLASS, etc.)
"""
# TODO(coconutruben): integrate into MMKernelInputs when all callsites use that
m, n, k, layout, mat1, mat2, inp_expanded = mm_args(mat1, mat2, inp, layout=layout)
static_shape, is_nonzero = _is_static_problem(layout)
name = "addmm"
# Create MMKernelInputs for AddMM at the top
kernel_inputs = MMKernelInputs(
[inp_expanded, mat1, mat2], scalars=dict(alpha=alpha, beta=beta)
)
choices: list[ChoiceCaller] = []
# below is for getting an overview logging info of inductor mms
counters["aten_mm_info"][f"aten.addmm_{m}_{n}_{k}"] += 1
log.info(
"Tuned aten.addmm: m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, output_layout=%s",
m,
n,
k,
mat1.get_dtype(),
mat2.get_dtype(),
layout,
)
aten_layout = layout
if (not is_nonzero) or (
not (inductor_config.max_autotune or inductor_config.max_autotune_gemm)
):
# Use a FlexibleLayout if we are not autotuning.
# This allows padding strides for the output.
from torch._inductor.ir import FixedLayout, FlexibleLayout
if isinstance(layout, FixedLayout):
aten_layout = FlexibleLayout(
device=layout.device, dtype=layout.dtype, size=layout.size
)
# TODO(coconutruben): combine this with the main flow of addmm through
# a subgraph or something as inp vs inp_expanded causes some slight numeric
# differences
kernel_inputs = MMKernelInputs(
[inp, mat1, mat2], scalars=dict(alpha=alpha, beta=beta)
)
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
aten_layout,
aten_addmm,
name,
):
aten_addmm.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
return autotune_select_algorithm(name, choices, kernel_inputs.nodes(), layout)
if use_aten_gemm_kernels():
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
aten_layout,
aten_addmm,
name,
):
aten_addmm.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
aten_layout,
aten_bias_addmm,
name,
):
aten_bias_addmm.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
if is_nonzero and use_triton_template(layout, check_max_autotune=False):
# all the triton templates use the extra_kwargs
# Get template params using the new unified function
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
layout,
mm_template,
name,
):
mm_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
if use_triton_tma_template(mat1, mat2):
# Get TMA template params using the new unified function
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
layout,
persistent_tma_mm_template,
name,
):
persistent_tma_mm_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
layout,
addmm_contiguous_subgraph_template,
"addmm",
):
addmm_contiguous_subgraph_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
if (
is_nonzero
and use_cutlass_template(layout, m, n, k)
and _use_cutlass_for_op(name)
):
CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(
choices,
layout,
# reorder here because CUTLASS expects (x, w, bias) but torch
# is bias, x, w
kernel_inputs.nodes(reorder=[1, 2, 0]),
alpha=alpha,
beta=beta,
)
if is_nonzero and use_ck_gemm_template(layout, m, n, k):
CKGemmTemplate.add_ck_gemm_choices(
choices,
layout,
# reorder here because CK expects (x, w, bias) but torch
# is bias, x, w
kernel_inputs.nodes(reorder=[1, 2, 0]),
alpha=alpha,
beta=beta,
input_reorder=[2, 0, 1],
)
if use_cpp_gemm_template(layout, mat1, mat2):
CppGemmTemplate.add_choices(
choices,
layout,
kernel_inputs.nodes(),
alpha=alpha,
beta=beta,
has_bias=True,
)
return autotune_select_algorithm(name, choices, kernel_inputs.nodes(), layout)
@register_lowering(aten._sparse_semi_structured_mm, type_promotion_kind=None)
def tuned_sparse_semi_structured_mm(
mat1, mat1_meta, mat2, *, out_dtype=None, layout=None
):
from torch._inductor.select_algorithm import realize_inputs
# TODO(coconturuben): support V.choices.get_mm_configs for sparse_semi_structured_mm
mat1, mat1_meta, mat2 = realize_inputs(mat1, mat1_meta, mat2)
m1, k1 = mat1.get_size()
m2, _ = mat1_meta.get_size()
k2, n = mat2.get_size()
m = V.graph.sizevars.check_equals_and_simplify(m1, m2)
k = V.graph.sizevars.check_equals_and_simplify(2 * k1, k2)
if layout is None:
from torch._inductor.ir import FixedLayout
layout = FixedLayout(
mat2.get_device(),
out_dtype if out_dtype else mat2.get_dtype(),
[m, n],
[n, 1],
)
else:
assert out_dtype is None, "out_dtype is ignored if layout is specified."
choices = (
[
aten__sparse_semi_structured_mm.bind(
(mat1, mat1_meta, mat2), layout, out_dtype=out_dtype
)
]
if use_aten_gemm_kernels()
else []
)
if (
m * n != 0
and use_cutlass_template(layout, m, n, k)
and _use_cutlass_for_op("sparse_semi_structured_mm")
):
CUTLASS2xGemmTemplate.add_cutlass_gemm_choices(
choices, layout, [mat1, mat2, mat1_meta], fuseable=True, non_fuseable=True
)
return autotune_select_algorithm(
"sparse_semi_structured_mm", choices, (mat1, mat1_meta, mat2), layout
)
add_layout_constraint(aten._scaled_mm.default, constrain_to_fx_strides)
@register_lowering(aten._scaled_mm.default, type_promotion_kind=None) # type: ignore[misc]
def tuned_scaled_mm(
mat_a,
mat_b,
scale_a,
scale_b,
bias=None,
scale_result=None,
out_dtype=None,
use_fast_accum=False,
layout=None,
):
"""
Performs an optimized matrix multiplication where scaling factors are applied
to the inputs and/or output.
Args:
mat1 (Tensor): First input matrix
mat2 (Tensor): Second input matrix
scale1 (Tensor): Scale factor applied to mat1 (supports broadcasting)
scale2 (Tensor): Scale factor applied to mat2 (supports broadcasting)
bias (Tensor, optional): Optional bias tensor to add to the result
layout: Layout hint for optimization
Returns:
Tensor: The result of the scaled matrix multiplication
"""
# TODO(coconutruben): integrate into MMKernelInputs when all callsites use that
m, n, k, layout, mat_a, mat_b = mm_args(
mat_a, mat_b, layout=layout, out_dtype=out_dtype
)
# below is for getting an overview logging info of inductor mms
counters["aten_mm_info"][f"aten._scaled_mm.default_{m}_{n}_{k}"] += 1
log.info(
"Tuned aten._scaled_mm.default: m=%s, n=%s, k=%s, mat1_dtype=%s, mat2_dtype=%s, output_layout=%s",
m,
n,
k,
mat_a.get_dtype(),
mat_b.get_dtype(),
layout,
)
name = "scaled_mm"
check_supported_striding(mat_a, mat_b)
scale_a_real, scale_b_real = realize_inputs(scale_a, scale_b)
input_nodes: list[Any]
if not bias:
input_nodes = [mat_a, mat_b, scale_a_real, scale_b_real]
else:
bias_real = realize_inputs(bias)
input_nodes = [mat_a, mat_b, scale_a_real, scale_b_real, bias_real]
# Create MMKernelInputs for Scaled MM (matrices are at indices 0, 1)
kernel_inputs = MMKernelInputs(input_nodes, mat1_idx=0, mat2_idx=1)
choices: list[ChoiceCaller] = []
if use_aten_gemm_kernels():
aten_extra_kwargs = dict(out_dtype=out_dtype, use_fast_accum=use_fast_accum)
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
layout,
aten__fp8_mm,
name,
kwarg_overrides=aten_extra_kwargs,
):
aten__fp8_mm.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
# We dont have triton lowerings for the MX variants yet
if scale_a.dtype != torch.float32:
return autotune_select_algorithm(name, choices, input_nodes, layout)
_, is_nonzero = _is_static_problem(layout)
if is_nonzero and use_triton_template(
layout, enable_float8=True, check_max_autotune=False
):
overriders = dict(USE_FAST_ACCUM=use_fast_accum)
# TODO (paulzhan): There is no template that exists for bias and TMA
# Don't run tma template currently if bias exists
if use_triton_tma_template(mat_a, mat_b) and not bias:
# Get TMA template params using the new unified function
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
layout,
scaled_mm_device_tma_template,
name,
overriders,
):
scaled_mm_device_tma_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
# Get template params using the new unified function
for kwargs, extra_kwargs in V.choices.get_mm_configs(
kernel_inputs,
layout,
mm_template,
name,
overriders,
):
# possibly appends a TritonTemplateCaller to choices
mm_template.maybe_append_choice(
choices,
**kwargs,
**extra_kwargs,
)
if (
is_nonzero
and use_cutlass_template(layout, m, n, k)
and _use_cutlass_for_op(name)
):
CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(
choices,
layout,
kernel_inputs.nodes(), # type: ignore[arg-type]
use_fast_accum=use_fast_accum, # type: ignore[arg-type]
)
if is_nonzero and use_ck_gemm_template(layout, m, n, k):
CKGemmTemplate.add_ck_gemm_choices(choices, layout, kernel_inputs.nodes())
return autotune_select_algorithm(name, choices, kernel_inputs.nodes(), layout)
@functools.cache
def _is_sm7x_or_older_gpu(index: Optional[int]) -> bool:
props = torch.cuda.get_device_properties(index or 0)
return props.major <= 7
def dims_are_int(dims):
return all(isinstance(dim, int) for dim in dims)
def mm_autoheuristic(
mat1,
mat2,
m,
n,
k,
choices,
name,
input_nodes,
ops,
precondition,
top_k: Optional[int] = None,
always_included=None,
):
m, n, k = get_size_hints(mat1, mat2, m, n, k)
if not dims_are_int([m, n, k]):
return None
mat1_stride, mat2_stride = get_size_hints_strides(mat1, mat2)
def get_context(m, k, n, mat1, mat2, mat1_stride, mat2_stride):
context = AHContext()
context.add_feature("m", m)
context.add_feature("k", k)
context.add_feature("n", n)
context.add_feature("mat1_dtype", mat1.layout.dtype, is_categorical=True)
context.add_feature("mat2_dtype", mat2.layout.dtype, is_categorical=True)
context_add_strides(context, "mat1", mat1_stride)
context_add_strides(context, "mat2", mat2_stride)
context.add_feature(
"mat1_iscontig", mat1.layout.is_contiguous(), is_categorical=True
)
context.add_feature(
"mat2_iscontig", mat2.layout.is_contiguous(), is_categorical=True
)
if name == "mm":
context_add_using_tf32(context, mat1.layout.dtype)
return context
def fallback():
return None
context = get_context(m, k, n, mat1, mat2, mat1_stride, mat2_stride)
autoheuristic = AutoHeuristicSelectAlgorithm(
fallback=fallback,
choices=choices,
input_nodes=input_nodes,
context=context,
name=name,
augment_context=ops,
precondition=precondition,
)
if top_k is not None:
# TODO: is there a cleaner way to ensure aten.mm is always included?
return autoheuristic.get_top_k_choices_caller(
top_k, always_included=always_included
)
return autoheuristic.get_choice_caller()
def get_size_hints(mat1, mat2, m, n, k):
if not isinstance(m, int) or not isinstance(k, int):
(m, k) = V.graph.sizevars.size_hints(
mat1.get_size(),
fallback=torch._inductor.config.unbacked_symint_fallback,
)
if not isinstance(n, int) or not isinstance(k, int):
(k, n) = V.graph.sizevars.size_hints(
mat2.get_size(),
fallback=torch._inductor.config.unbacked_symint_fallback,
)
return m, n, k
def get_size_hints_strides(mat1, mat2):
mat1_stride = mat1.layout.stride
mat2_stride = mat2.layout.stride
strides = [mat1_stride, mat2_stride]
strides_hints = []
for stride in strides:
if not isinstance(stride, int):
stride = V.graph.sizevars.size_hints(
stride,
fallback=torch._inductor.config.unbacked_symint_fallback,
)
strides_hints.append(stride)
return strides_hints[0], strides_hints[1]