mirror of
https://github.com/pytorch/pytorch.git
synced 2025-11-06 17:24:59 +08:00
Summary: We need to properly fakify torchbind objects, including the ones in graph module attributes, so the resgitered fake implementation works properly. - _fakify_script_objects in `compile_fx` - Allow fake torchbind objects in `torchbind_constants` Remove `node.meta["unbacked_bindings"]` for `aot_compile` in `compile_fx`. Otherwise `ShapeProp` will fail when trying to resolve the `unbacked_bindings` of `with_effect` tokens. Update `sigrid_transforms_test` to use the latest `torch._inductor.aot_compile` API. Add a test for `Fakify torchbind objects in compile_fx and add tests for SigridTransformsInstanceTorchBind` in `e2e_test`. Test Plan: ``` buck run //caffe2/torch/fb/sparsenn:sigrid_test -- -r test_transform_torch_bind buck run //sigmoid/inference/test:e2e_test_cpu -- -r SigridTransforms buck2 run mode/dev-nosan sigmoid/inference/ts_migration:pt2i_readiness_main -- --model_id 545017754 --test_suite ads_all --mode test_preproc ``` Differential Revision: D70013257 Pull Request resolved: https://github.com/pytorch/pytorch/pull/149529 Approved by: https://github.com/angelayi
181 lines
5.1 KiB
Python
181 lines
5.1 KiB
Python
# mypy: allow-untyped-defs
|
|
import contextlib
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import torch
|
|
|
|
|
|
_TORCHBIND_IMPLS_INITIALIZED = False
|
|
|
|
_TENSOR_QUEUE_GLOBAL_TEST: Optional[torch.ScriptObject] = None
|
|
|
|
|
|
def init_torchbind_implementations():
|
|
global _TORCHBIND_IMPLS_INITIALIZED
|
|
global _TENSOR_QUEUE_GLOBAL_TEST
|
|
if _TORCHBIND_IMPLS_INITIALIZED:
|
|
return
|
|
|
|
load_torchbind_test_lib()
|
|
register_fake_operators()
|
|
register_fake_classes()
|
|
_TENSOR_QUEUE_GLOBAL_TEST = _empty_tensor_queue()
|
|
_TORCHBIND_IMPLS_INITIALIZED = True
|
|
|
|
|
|
def _empty_tensor_queue() -> torch.ScriptObject:
|
|
return torch.classes._TorchScriptTesting._TensorQueue(
|
|
torch.empty(
|
|
0,
|
|
).fill_(-1)
|
|
)
|
|
|
|
|
|
# put these under a function because the corresponding library might not be loaded yet.
|
|
def register_fake_operators():
|
|
@torch.library.register_fake("_TorchScriptTesting::takes_foo_python_meta")
|
|
def fake_takes_foo(foo, z):
|
|
return foo.add_tensor(z)
|
|
|
|
@torch.library.register_fake("_TorchScriptTesting::queue_pop")
|
|
def fake_queue_pop(tq):
|
|
return tq.pop()
|
|
|
|
@torch.library.register_fake("_TorchScriptTesting::queue_push")
|
|
def fake_queue_push(tq, x):
|
|
return tq.push(x)
|
|
|
|
@torch.library.register_fake("_TorchScriptTesting::queue_size")
|
|
def fake_queue_size(tq):
|
|
return tq.size()
|
|
|
|
def meta_takes_foo_list_return(foo, x):
|
|
a = foo.add_tensor(x)
|
|
b = foo.add_tensor(a)
|
|
c = foo.add_tensor(b)
|
|
return [a, b, c]
|
|
|
|
def meta_takes_foo_tuple_return(foo, x):
|
|
a = foo.add_tensor(x)
|
|
b = foo.add_tensor(a)
|
|
return (a, b)
|
|
|
|
@torch.library.register_fake("_TorchScriptTesting::takes_foo_tensor_return")
|
|
def meta_takes_foo_tensor_return(foo, x):
|
|
# This implementation deliberately creates unbacked symint for testing
|
|
ctx = torch.library.get_ctx()
|
|
fake_shape = [ctx.new_dynamic_size() for _ in range(2)]
|
|
return torch.empty(fake_shape, dtype=torch.int, device="cpu")
|
|
|
|
torch.ops._TorchScriptTesting.takes_foo_list_return.default.py_impl(
|
|
torch._C.DispatchKey.Meta
|
|
)(meta_takes_foo_list_return)
|
|
|
|
torch.ops._TorchScriptTesting.takes_foo_tuple_return.default.py_impl(
|
|
torch._C.DispatchKey.Meta
|
|
)(meta_takes_foo_tuple_return)
|
|
|
|
torch.ops._TorchScriptTesting.takes_foo.default.py_impl(torch._C.DispatchKey.Meta)(
|
|
# make signature match original cpp implementation to support kwargs
|
|
lambda foo, x: foo.add_tensor(x)
|
|
)
|
|
|
|
|
|
def register_fake_classes():
|
|
# noqa: F841
|
|
@torch._library.register_fake_class("_TorchScriptTesting::_Foo")
|
|
class FakeFoo:
|
|
def __init__(self, x: int, y: int):
|
|
self.x = x
|
|
self.y = y
|
|
|
|
@classmethod
|
|
def __obj_unflatten__(cls, flattend_foo):
|
|
return cls(**dict(flattend_foo))
|
|
|
|
def add_tensor(self, z):
|
|
return (self.x + self.y) * z
|
|
|
|
@torch._library.register_fake_class("_TorchScriptTesting::_ContainsTensor")
|
|
class FakeContainsTensor:
|
|
def __init__(self, t: torch.Tensor):
|
|
self.t = t
|
|
|
|
@classmethod
|
|
def __obj_unflatten__(cls, flattend_foo):
|
|
return cls(**dict(flattend_foo))
|
|
|
|
def get(self):
|
|
return self.t
|
|
|
|
@torch._library.register_fake_class("_TorchScriptTesting::_TensorQueue")
|
|
class FakeTensorQueue:
|
|
def __init__(self, queue):
|
|
self.queue = queue
|
|
|
|
@classmethod
|
|
def __obj_unflatten__(cls, flattened_ctx):
|
|
return cls(**dict(flattened_ctx))
|
|
|
|
def push(self, x):
|
|
self.queue.append(x)
|
|
|
|
def pop(self):
|
|
if self.is_empty():
|
|
return torch.empty([])
|
|
return self.queue.pop(0)
|
|
|
|
def size(self):
|
|
return len(self.queue)
|
|
|
|
def is_empty(self):
|
|
return len(self.queue) == 0
|
|
|
|
def float_size(self):
|
|
return float(len(self.queue))
|
|
|
|
@torch._library.register_fake_class("_TorchScriptTesting::_FlattenWithTensorOp")
|
|
class FakeFlatten:
|
|
def __init__(self, t):
|
|
self.t = t
|
|
|
|
def get(self):
|
|
return self.t
|
|
|
|
@classmethod
|
|
def __obj_unflatten__(cls, flattened_ctx):
|
|
return cls(**dict(flattened_ctx))
|
|
|
|
|
|
def load_torchbind_test_lib():
|
|
import unittest
|
|
|
|
from torch.testing._internal.common_utils import ( # type: ignore[attr-defined]
|
|
find_library_location,
|
|
IS_FBCODE,
|
|
IS_MACOS,
|
|
IS_SANDCASTLE,
|
|
IS_WINDOWS,
|
|
)
|
|
|
|
if IS_MACOS:
|
|
raise unittest.SkipTest("non-portable load_library call used in test")
|
|
elif IS_SANDCASTLE or IS_FBCODE:
|
|
lib_file_path = Path("//caffe2/test/cpp/jit:test_custom_class_registrations")
|
|
elif IS_WINDOWS:
|
|
lib_file_path = find_library_location("torchbind_test.dll")
|
|
else:
|
|
lib_file_path = find_library_location("libtorchbind_test.so")
|
|
torch.ops.load_library(str(lib_file_path))
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def _register_py_impl_temporarily(op_overload, key, fn):
|
|
try:
|
|
op_overload.py_impl(key)(fn)
|
|
yield
|
|
finally:
|
|
del op_overload.py_kernels[key]
|
|
op_overload._dispatch_cache.clear()
|