Files
pytorch/torch/_inductor/loop_body.py
2025-06-11 19:44:18 +00:00

703 lines
24 KiB
Python

# mypy: allow-untyped-defs
from __future__ import annotations
import collections
import functools
import itertools
import re
from enum import auto, Enum
from typing import Any, Callable, NamedTuple, Optional, TYPE_CHECKING, TypeVar
import sympy
import torch.fx
from torch._dynamo.utils import identity
from torch.fx.proxy import Scope, TracerBase
from torch.utils._sympy.symbol import SymT
from . import config, dependencies
from .codegen.common import index_prevent_reordering
from .ops_handler import DefaultHandler, OpsHandler, WrapperHandler
from .utils import (
cache_on_self,
reduction_num_outputs,
sympy_index_symbol_with_prefix,
sympy_subs,
)
from .virtualized import ops, V
if TYPE_CHECKING:
from collections.abc import Sequence
T = TypeVar("T")
class InterpreterShim(torch.fx.Interpreter):
@staticmethod
@functools.cache
def _dummy_gm():
return torch.fx.symbolic_trace(identity)
def __init__(self, graph, submodules):
# call super() with a placeholder to avoid constructing a
# GraphModule which is very expensive (it does codegen).
super().__init__(self._dummy_gm(), garbage_collect_values=False)
self.module = self # type: ignore[assignment]
self.graph = graph
self.submodules = submodules
self.extra_traceback = False
self.fetch_attr = submodules.__getitem__ # type: ignore[method-assign]
self.current_node = None
def run_node(self, n: torch.fx.Node) -> Any:
self.current_node = n
return super().run_node(n)
def run(self, *args, **kwargs):
with V.set_interpreter_handler(self):
return super().run(*args, **kwargs)
# We don't need the nn.Module and constant handling in Tracer
class LightTracer(TracerBase):
def __init__(self):
super().__init__()
self.graph = torch.fx.Graph(tracer_cls=self.__class__) # type: ignore[arg-type]
self.scope = Scope("", None)
self.module_stack = {} # type: ignore[assignment]
self.node_name_to_scope = {}
class MemoryEntry(NamedTuple):
index_name: str # LoopBody.indexing_exprs[index_name]
buffer_name: Optional[str]
mode: Optional[str] # V.ops.store(..., mode=mode)
class MemoryUsageType(Enum):
# These are 1:1 with the opcode generating the usage
LOAD = auto()
LOAD_SEED = auto()
STORE = auto()
STORE_REDUCTION = auto()
INDEX_EXPR = auto()
CHECK_BOUNDS = auto()
BUCKETIZE = auto()
class LoopBody:
"""
Captures the body of a Loops subclass into an FX graph. Persists any
indexing simplifications and makes it easier to analyze loop bodies.
"""
indexing_exprs: dict[str, sympy.Expr]
indexing_exprs_name: dict[sympy.Expr, str]
submodules: dict[str, Any]
subblocks: dict[str, LoopBodyBlock]
indirect_vars: list[sympy.Symbol]
indirect_var_ranges: dict[sympy.Symbol, sympy.Expr]
root_block: LoopBodyBlock
memory_usage: dict[MemoryUsageType, list[MemoryEntry]]
op_counts: collections.Counter[str]
def __init__(self, fn, args, var_ranges, iter_vars, reduce_vars):
super().__init__()
_flat_sizes = tuple(var_ranges.values())
self.sizes = (
_flat_sizes[: len(iter_vars)],
_flat_sizes[len(iter_vars) :],
)
self.iter_vars = iter_vars
self.reduce_vars = reduce_vars
self.var_ranges = var_ranges
if isinstance(fn, LoopBody):
self._init_with_copy(fn, args)
else:
self._init_with_tracing(fn, args)
self.indexing = None
def _init_with_tracing(self, fn, args):
"""Do an FX trace of an arbitrary callable to construct self"""
self.indexing_exprs = {}
self.indexing_exprs_name = {}
self.submodules = {"get_index": self.get_index}
self.subblocks = {}
self.indirect_vars = []
self.indirect_var_ranges: dict[sympy.Symbol, sympy.Expr] = {}
self.memory_usage = {t: [] for t in MemoryUsageType}
self.op_counts = collections.Counter()
self.root_block = LoopBodyBlock(self, fn, args) # traces
del self.indexing_exprs_name # not used after _init_with_tracing
def _init_with_copy(self, other: LoopBody, args):
"""
_init_with_tracing() is slow, so this is a fast path in the case
where we are just reordering/merging/splitting the args of an
existing LoopBody.
"""
indexing_exprs = other.indexing_from_args(args)
self.indexing_exprs = {
name: V.graph.sizevars.simplify_with_ranges(expr, self.var_ranges)
for name, expr in indexing_exprs.items()
}
self.subblocks = {k: v.clone(self) for k, v in other.subblocks.items()}
self.indirect_vars = other.indirect_vars
self.indirect_var_ranges = other.indirect_var_ranges
self.memory_usage = other.memory_usage
self.op_counts = other.op_counts
self.root_block = other.root_block.clone(self)
submodules = {**other.submodules}
submodules.pop("get_index")
self.submodules = {
"get_index": self.get_index,
**{k: v.clone(self) for k, v in submodules.items()}, # type: ignore[attr-defined]
}
def has_op(self, name: str):
return self.op_counts.get(name, 0) > 0
def merge_loops(self) -> LoopBody:
"""
Merge both iteration and reduction loops and return a new LoopBody.
"""
old_body = self
old_sizes = self.sizes
old_iter_vars, old_reduce_vars = old_body.vars
old_iter_sizes, old_reduce_sizes = old_sizes
index_exprs = [*old_body.indexing_exprs.values()]
iter_sizes, iter_reindex, _ = V.graph.sizevars._simplify_loops(
old_iter_vars,
old_iter_sizes,
index_prevent_reordering(index_exprs, old_iter_vars, old_iter_sizes),
)
reduce_sizes, reduce_reindex, _ = V.graph.sizevars._simplify_loops(
old_reduce_vars,
old_reduce_sizes,
index_prevent_reordering(index_exprs, old_reduce_vars, old_reduce_sizes),
)
# if iter_sizes == old_iter_sizes:
# # no dimensions get merged.
# return old_sizes, old_body
# Note: if no dimension get merges, the symbol prefix will
# remain 'y'. But if we merge dimensions, we change prefix to
# 'z'. If this is an issue, we can always retrace the LoopBody
# to change symbol prefix to 'z'.
#
# There is indeed an issue due to symbol name conflicting.
# y0 maybe reused for the y dimension later.
(
(
iter_vars,
reduce_vars,
),
var_ranges,
) = dependencies.index_vars_no_squeeze(iter_sizes, reduce_sizes, prefix="t")
new_body = LoopBody(
old_body,
[iter_reindex(iter_vars), reduce_reindex(reduce_vars)],
var_ranges,
iter_vars,
reduce_vars,
)
# use the original symbol prefix
# Can try to optimize if this is a bottleneck for compilation time
(iter_vars2, reduce_vars2), var_ranges2 = dependencies.index_vars_no_squeeze(
iter_sizes, reduce_sizes, prefix="p"
)
new_body2 = LoopBody(
new_body, (iter_vars2, reduce_vars2), var_ranges2, iter_vars2, reduce_vars2
)
return new_body2
def reorder_iter_loops(self, new_order) -> LoopBody:
"""
Reorder iteration loops and return a new LoopBody.
"""
from .ir import same_reorder
old_body = self
old_sizes = self.sizes
assert len(old_sizes[0]) == len(new_order)
reorder_fn = same_reorder(new_order)
iter_size, reduce_size = old_sizes
new_iter_size = reorder_fn(iter_size)
new_sizes = (new_iter_size, reduce_size)
(iter_vars, reduce_vars), var_ranges = dependencies.index_vars_no_squeeze(
*new_sizes,
prefix="t", # type: ignore[arg-type]
)
inverse_order = {b: a for a, b in enumerate(new_order)}
inverse_order = [inverse_order[i] for i in range(len(new_order))]
def new_body(*indices: Sequence[sympy.Expr]) -> Any:
index = [*itertools.chain.from_iterable(indices)]
assert len(index) == len(iter_size) + len(reduce_size)
iter_idx = index[: len(iter_size)]
reduce_idx = index[len(iter_size) :]
iter_idx = [iter_idx[i] for i in inverse_order]
return old_body(iter_idx, reduce_idx)
loop_body = LoopBody(
new_body, (iter_vars, reduce_vars), var_ranges, iter_vars, reduce_vars
)
# use the original symbol prefix so we can do multiple round of reordering
(iter_vars2, reduce_vars2), var_ranges2 = dependencies.index_vars_no_squeeze(
*new_sizes,
prefix="p", # type: ignore[arg-type]
)
new_body = LoopBody(
loop_body, (iter_vars2, reduce_vars2), var_ranges2, iter_vars2, reduce_vars2
)
return new_body
@property
def vars(self):
assert self.iter_vars is not None
assert self.reduce_vars is not None
return self.iter_vars, self.reduce_vars
@cache_on_self
def get_nodes(self):
all_graphs = itertools.chain(
(self.root_block.graph,),
(block.graph for block in self.subblocks.values()),
)
return [node for graph in all_graphs for node in graph.nodes]
@cache_on_self
def bounds(self):
# Doing a local import to avoid dumping all the code here
from .bounds import BoundVars
return BoundVars(self)
def get_read_expr(self, buffer_name):
# reversed to match old behavior
for entry in reversed(self.memory_usage[MemoryUsageType.LOAD]):
if entry.buffer_name == buffer_name:
return self.indexing_exprs[entry.index_name]
raise KeyError(buffer_name)
def get_write_expr(self, buffer_name):
for entry in itertools.chain(
self.memory_usage[MemoryUsageType.STORE],
self.memory_usage[MemoryUsageType.STORE_REDUCTION],
):
if entry.buffer_name == buffer_name:
return self.indexing_exprs[entry.index_name]
raise KeyError(buffer_name)
def get_read_exprs(self):
return [
self.indexing_exprs[entry.index_name]
for entry in self.memory_usage[MemoryUsageType.LOAD]
]
def get_all_read_expr(self, buffer_name):
# reversed to match old behavior
out = []
for entry in reversed(self.memory_usage[MemoryUsageType.LOAD]):
if entry.buffer_name == buffer_name:
out.append(self.indexing_exprs[entry.index_name])
return out
def get_write_exprs(self):
return [
self.indexing_exprs[entry.index_name]
for entry in itertools.chain(
self.memory_usage[MemoryUsageType.STORE],
self.memory_usage[MemoryUsageType.STORE_REDUCTION],
)
]
def get_all_write_expr(self, buffer_name):
out = []
for entry in itertools.chain(
self.memory_usage[MemoryUsageType.STORE],
self.memory_usage[MemoryUsageType.STORE_REDUCTION],
):
if entry.buffer_name == buffer_name:
out.append(self.indexing_exprs[entry.index_name])
return out
def debug_str(self):
lines = [f"var_ranges = {dict(self.var_ranges)}"]
lines.extend([f"{name} = {val}" for name, val in self.indexing_exprs.items()])
lines.extend(
[
block.debug_str(name)
for name, block in itertools.chain(
[("body", self.root_block)], self.subblocks.items()
)
]
)
return "\n".join(lines)
def is_memory_copy(self) -> bool:
"""
True of this contains only a single loads and store.
Note, this could involve a layout change.
"""
return (
len(self.memory_usage[MemoryUsageType.LOAD]) == 1
and len(self.memory_usage[MemoryUsageType.STORE]) == 1
and len(self.submodules) == 1 # get_index
and self.root_block.contains_only_ops(("load", "store"))
)
__repr__ = debug_str
def add_index_expr(
self,
expr: sympy.Expr,
mtype: MemoryUsageType,
buffer_name: Optional[str] = None,
mode: Optional[str] = None,
):
name = self.indexing_exprs_name.get(expr)
if not name:
name = f"index{len(self.indexing_exprs)}"
self.indexing_exprs_name[expr] = name
self.indexing_exprs[name] = expr
self.memory_usage[mtype].append(MemoryEntry(name, buffer_name, mode))
return name
def add_submodule(self, block, prefix):
"""Not actually for nn.Modules, but subblocks in generated code are mapped to FX call_module opcodes"""
if prefix[-1].isnumeric() and prefix not in self.submodules:
name = prefix
else:
name = f"{prefix}{len(self.submodules)}"
self.submodules[name] = block
return name
def add_indirect(self, size):
var = sympy_index_symbol_with_prefix(SymT.INDIRECT, len(self.indirect_vars))
assert var not in self.indirect_var_ranges
self.indirect_vars.append(var)
self.indirect_var_ranges[var] = size
return var
def replace_indirect(self, old, new):
"""Swap in a variable used in indirect indexing"""
if str(old) == str(new):
return
assert self.indexing is not None
self.indexing = {k: sympy_subs(v, {old: new}) for k, v in self.indexing.items()}
def get_index(self, name):
assert self.indexing is not None
return self.indexing[name]
def indexing_from_args(self, indices):
index = [*itertools.chain.from_iterable(indices)]
assert len(index) == len(self.var_ranges), (index, self.var_ranges)
assert all(v not in self.var_ranges for v in index), (
f"{self.var_ranges=}, {indices=}"
)
replacements = dict(zip(self.var_ranges.keys(), index))
return {
name: sympy_subs(expr, replacements)
for name, expr in self.indexing_exprs.items()
}
def __call__(self, *indices):
self.indexing = self.indexing_from_args(indices)
result = self.root_block()
self.indexing = None
return result
def bind_set_indirect_shim(self, var, size, check, wrap_neg):
def set_indirect(new_var):
self.replace_indirect(
var, V.ops.indirect_indexing(new_var, size, check, wrap_neg)
)
set_indirect.clone = functools.partial( # type: ignore[attr-defined]
LoopBody.bind_set_indirect_shim,
var=var,
size=size,
check=check,
wrap_neg=wrap_neg,
)
return set_indirect
def bind_scan_shim(self, combine_fn):
def shim(dtypes, values):
return V.ops.scan(dtypes, combine_fn, values)
shim.clone = functools.partial(LoopBody.bind_scan_shim, combine_fn=combine_fn) # type: ignore[attr-defined]
return shim
def bind_masked_shim(self, name):
def shim(mask, other):
return V.ops.masked(mask, self.subblocks[name], other)
shim.clone = functools.partial(LoopBody.bind_masked_shim, name=name) # type: ignore[attr-defined]
return shim
class LoopBodyBlock:
"""
Captures the body of a Loops subclass into an FX graph.
In normal cases there will be a 1:1 mapping between LoopBody and
LoopBodyBlock, however in the case of ops.masked() the masked out
operations will manifest as an extra LoopBodyBlock.
"""
def __init__(self, body: LoopBody, fn: Callable[..., Any], args: list[Any]):
self.body = body
tracer = LightTracer()
proxy_ops = tracer.create_proxy("placeholder", "ops", (), {})
from .index_propagation import IndexPropagation
handler: Any = CountOps(
CaptureIndexing(proxy_ops, body, tracer),
body.op_counts,
)
if config.constant_and_index_propagation:
handler = IndexPropagation(
handler, self.body.var_ranges, self.body.indirect_var_ranges
)
with V.set_ops_handler(handler):
# This indirection is just a cute way to get IndexPropagation to
# unwrap the return value.
ops.output(fn(*args))
self.graph = tracer.graph
def __call__(self):
graph = self.graph
submodules = self.body.submodules
return InterpreterShim(graph, submodules).run(V.get_ops_handler())
def debug_str(self, name="block"):
code = torch.fx.GraphModule(self.body.submodules, self.graph).code
return re.sub(
# strip `; del var0` suffixes to make output prettier
r";[^\n]*",
"",
code.strip().replace("def forward(", f"def {name}("),
)
def contains_only_ops(self, allowed_ops) -> bool:
return all(
node.target in allowed_ops
for node in self.graph.find_nodes(op="call_method")
)
def clone(self, body: LoopBody):
"""Shallow copy with a new parent LoopBody"""
copy = LoopBodyBlock.__new__(LoopBodyBlock)
copy.__dict__.update({**self.__dict__, "body": body})
return copy
class CountOps(DefaultHandler):
def __init__(self, inner: OpsHandler[Any], counts: collections.Counter[str]):
self._inner = inner
self._counts = counts
def _default(self, name: str, args: tuple[Any, ...], kwargs: dict[str, Any]) -> Any:
self._counts[name] += 1
return getattr(self._inner, name)(*args, **kwargs)
class CaptureIndexing(WrapperHandler):
name = "CaptureIndexing"
def __init__(
self,
inner: OpsHandler[Any],
body: LoopBody,
tracer: LightTracer,
):
super().__init__(inner)
self.body = body
self.tracer = tracer
def _add_index(self, expr: sympy.Expr, mtype: MemoryUsageType, **kwargs: Any):
return self.tracer.create_proxy(
"call_module",
"get_index",
(self.body.add_index_expr(expr, mtype, **kwargs),),
{},
)
def _simplify(self, expr: sympy.Expr) -> sympy.Expr:
return V.graph.sizevars.simplify_with_ranges(expr, self.body.var_ranges)
def load(self, name: str, index: sympy.Expr):
index = self._simplify(index)
index = self._add_index(index, MemoryUsageType.LOAD, buffer_name=name)
return self._inner.load(name, index)
def load_seed(self, name: str, index: int):
assert isinstance(index, int)
self.body.add_index_expr(
sympy.Integer(index), MemoryUsageType.LOAD_SEED, buffer_name=name
)
return self._inner.load_seed(name, index)
def store(self, name, index, value, mode=None):
index = self._simplify(index)
index = self._add_index(
index, MemoryUsageType.STORE, buffer_name=name, mode=mode
)
return self._inner.store(name, index, value, mode)
def store_reduction(self, name, index, value):
index = self._simplify(index)
index = self._add_index(
index, MemoryUsageType.STORE_REDUCTION, buffer_name=name
)
return self._inner.store_reduction(name, index, value)
def reduction(self, dtype, src_dtype, reduction_type, value):
result = self._inner.reduction(dtype, src_dtype, reduction_type, value)
num_outputs = reduction_num_outputs(reduction_type)
if num_outputs > 1:
return tuple(result[i] for i in range(num_outputs))
return result
def index_expr(self, index, dtype):
index = self._simplify(index)
if isinstance(index, (int, sympy.Integer)):
return self._inner.constant(int(index), dtype)
index = self._add_index(index, MemoryUsageType.INDEX_EXPR)
return self._inner.index_expr(index, dtype)
def check_bounds(self, index, size, lower, upper):
index = self._simplify(index)
index = self._add_index(index, MemoryUsageType.CHECK_BOUNDS)
size = self._add_index(size, MemoryUsageType.CHECK_BOUNDS)
return self._inner.check_bounds(index, size, lower, upper)
def bucketize(
self,
values: T,
boundaries: tuple[str, sympy.Expr, sympy.Expr, sympy.Expr],
boundary_indices: T,
indexing_dtype: torch.dtype,
right: bool,
sorter: Optional[tuple[str, sympy.Expr]] = None,
sorter_indices: Optional[T] = None,
) -> T:
"""
See [Note: Inductor bucketize op]
"""
boundaries = (
boundaries[0],
self._add_index(
boundaries[1],
MemoryUsageType.BUCKETIZE,
buffer_name=boundaries[0],
),
self._add_index(
boundaries[2],
MemoryUsageType.BUCKETIZE,
buffer_name=boundaries[0],
),
self._add_index(
boundaries[3],
MemoryUsageType.BUCKETIZE,
buffer_name=boundaries[0],
),
)
if sorter is not None:
sorter = (
sorter[0],
self._add_index(
sorter[1], MemoryUsageType.BUCKETIZE, buffer_name=sorter[0]
),
)
return self._inner.bucketize(
values,
boundaries,
boundary_indices,
indexing_dtype,
right,
sorter,
sorter_indices,
)
def masked(self, mask_proxy, masked_body: Callable[..., Any], other_proxy):
"""
Recursively capture the masked out body in another LoopBodyBlock
"""
name = self.body.add_submodule(None, "masked_subblock")
self.body.submodules[name] = self.body.bind_masked_shim(name)
self.body.subblocks[name] = LoopBodyBlock(self.body, masked_body, [])
return self.tracer.create_proxy(
"call_module", name, (mask_proxy, other_proxy), {}
)
def scan(
self,
dtype_proxy,
combine_fn: Callable[[tuple[Any, ...], tuple[Any, ...]], tuple[Any, ...]],
value_proxy,
):
shim = self.body.bind_scan_shim(combine_fn)
name = self.body.add_submodule(shim, "scan")
result = self.tracer.create_proxy(
"call_module",
name,
(dtype_proxy, value_proxy),
{},
)
# Proxies are iterable, but some methods expect tuples/lists
return tuple(result[i] for i in range(len(value_proxy)))
def sort(self, dtypes, values, stable, descending):
result = self._inner.sort(dtypes, values, stable, descending)
# Proxies are iterable, but some methods expect tuples/lists
return tuple(result[i] for i in range(len(values)))
def frexp(self, value_proxy):
result = self._inner.frexp(value_proxy)
# Proxies are iterable, but some methods expect tuples/lists
return (result[0], result[1])
def indirect_indexing(self, index_proxy, size, check=True, wrap_neg=True):
"""
Flow data from tensors into indexing formulas.
Introduce a call_module to update the indexing.
"""
var = self.body.add_indirect(size)
set_indirect = self.body.bind_set_indirect_shim(var, size, check, wrap_neg)
self.tracer.create_proxy(
"call_module",
self.body.add_submodule(set_indirect, f"set_{var}"),
(index_proxy,),
{},
)
return var
def output(self, *result):
self.tracer.create_proxy("output", "output", result, {})