Files
pytorch/test/inductor/test_minifier.py
Shangdi Yu 02c509669a Aoti minifier flatten (#141156)
Flatten the inputs to minifier so AOTI Minifier can handle unflattened inputs and kwargs.

- flatten the inputs in minifier
- changed the "load_and_run" part of the minifier verification to run on the flattened inputs.
- refactored code to keep `torch._inductor.__init__.py` clean
- update doc

`python test/inductor/test_minifier.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141156
Approved by: https://github.com/desertfire
2024-12-06 07:12:45 +00:00

338 lines
12 KiB
Python

# Owner(s): ["module: inductor"]
import unittest
from unittest.mock import patch
import torch._dynamo.config as dynamo_config
import torch._inductor.config as inductor_config
from torch._dynamo.test_minifier_common import MinifierTestBase
from torch._inductor import config
from torch.export import load as export_load
from torch.testing._internal.common_utils import (
IS_JETSON,
IS_MACOS,
skipIfXpu,
TEST_WITH_ASAN,
)
from torch.testing._internal.inductor_utils import GPU_TYPE
from torch.testing._internal.triton_utils import requires_gpu
class MinifierTests(MinifierTestBase):
# Test that compile and accuracy errors after aot can be repro'd (both CPU and CUDA)
def _test_after_aot(self, device, expected_error):
# NB: The program is intentionally quite simple, just enough to
# trigger one minification step, no more (dedicated minifier tests
# should exercise minifier only)
run_code = f"""\
@torch.compile()
def inner(x):
x = torch.relu(x)
x = torch.cos(x)
return x
inner(torch.randn(20, 20).to("{device}"))
"""
self._run_full_test(run_code, "aot", expected_error, isolate=False)
@unittest.skipIf(IS_JETSON, "Fails on Jetson")
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "compile_error")
def test_after_aot_cpu_compile_error(self):
self._test_after_aot("cpu", "CppCompileError")
@unittest.skipIf(IS_JETSON, "Fails on Jetson")
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "accuracy")
def test_after_aot_cpu_accuracy_error(self):
self._test_after_aot("cpu", "AccuracyError")
@requires_gpu
@inductor_config.patch("triton.inject_relu_bug_TESTING_ONLY", "compile_error")
def test_after_aot_gpu_compile_error(self):
self._test_after_aot(GPU_TYPE, "SyntaxError")
@requires_gpu
@inductor_config.patch("triton.inject_relu_bug_TESTING_ONLY", "accuracy")
def test_after_aot_gpu_accuracy_error(self):
self._test_after_aot(GPU_TYPE, "AccuracyError")
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "accuracy")
def test_constant_in_graph(self):
run_code = """\
@torch.compile()
def inner(x):
return torch.tensor(2) + torch.relu(x)
inner(torch.randn(2))
"""
self._run_full_test(run_code, "aot", "AccuracyError", isolate=False)
@requires_gpu
@patch.object(config, "joint_graph_constant_folding", False)
def test_rmse_improves_over_atol(self):
# From https://twitter.com/itsclivetime/status/1651135821045719041?s=20
run_code = """
@torch.compile()
def inner(x):
return x - torch.tensor(655, dtype=torch.half, device='GPU_TYPE') * 100
inner(torch.tensor(655 * 100, dtype=torch.half, device='GPU_TYPE'))
""".replace(
"GPU_TYPE", GPU_TYPE
)
# If we disable RMSE against fp64, this triggers accuracy error,
# as the increased precision from torch.compile changes the result
# of 655 * 100
with dynamo_config.patch("same_two_models_use_fp64", False):
self._run_full_test(
run_code,
"aot",
"AccuracyError",
isolate=False,
# NB: need this to avoid refusing to minify when fp64 doesn't work
# (which it doesn't, due to the config patch above)
minifier_args=["--strict-accuracy"],
)
# But using fp64, we see that the intended semantics is the increased
# 655 * 100 precision, and so we report no problem
self._run_full_test(run_code, "aot", None, isolate=False)
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "accuracy")
@inductor_config.patch("cpp.inject_log1p_bug_TESTING_ONLY", "accuracy")
def test_accuracy_vs_strict_accuracy(self):
run_code = """
@torch.compile()
def inner(x):
y = torch.log1p(x)
b = y > 0
# Need to ensure suffix removal hits a boolean output
b = torch.logical_not(b)
b = torch.logical_not(b)
x = torch.relu(x)
return torch.where(b, x, x)
inner(torch.randn(20))
"""
# Strict accuracy gets hung up on the boolean mask difference, which
# will localize the error to sigmoid, even though it doesn't actually
# matter to the end result
res = self._run_full_test(
run_code,
"aot",
"AccuracyError",
isolate=False,
minifier_args=["--strict-accuracy"],
)
self.assertExpectedInline(
res.repro_module(),
"""\
class Repro(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, arg0_1):
log1p = torch.ops.aten.log1p.default(arg0_1); arg0_1 = None
return (log1p,)""",
)
# FP accuracy will refuse to promote the logical_not on the outputs,
# and so you'll get to the relu (unless the minifier somehow tries
# removing entire suffix except the log1p first!)
res = self._run_full_test(run_code, "aot", "AccuracyError", isolate=False)
self.assertExpectedInline(
res.repro_module(),
"""\
class Repro(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, arg0_1):
relu = torch.ops.aten.relu.default(arg0_1); arg0_1 = None
return (relu,)""",
)
@inductor_config.patch("cpp.inject_relu_bug_TESTING_ONLY", "accuracy")
def test_offload_to_disk(self):
# Just a smoketest, this doesn't actually test that memory
# usage went down. Test case is carefully constructed to hit
# delta debugging.
run_code = """\
@torch.compile()
def inner(x):
x = torch.sin(x)
x = torch.sin(x)
x = torch.cos(x)
x = torch.relu(x)
return x
inner(torch.randn(20, 20))
"""
self._run_full_test(
run_code,
"aot",
"AccuracyError",
isolate=False,
minifier_args=["--offload-to-disk"],
)
# Test that compile errors in AOTInductor can be repro'd (both CPU and CUDA)
def _test_aoti(self, device, expected_error):
# NB: The program is intentionally quite simple, just enough to
# trigger one minification step, no more (dedicated minifier tests
# should exercise minifier only)
run_code = f"""\
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 16)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.sigmoid(x)
return x
with torch.no_grad():
model = Model().to("{device}")
example_inputs = (torch.randn(8, 10).to("{device}"),)
ep = torch.export.export(
model, example_inputs
)
torch._inductor.aoti_compile_and_package(
ep
)
"""
return self._run_full_test(run_code, None, expected_error, isolate=True)
# Test that compile errors in AOTInductor can be repro'd (both CPU and CUDA)
def _test_aoti_unflattened_inputs(self, device, expected_error):
# NB: The program is intentionally quite simple, just enough to
# trigger one minification step, no more (dedicated minifier tests
# should exercise minifier only)
# It tests that the minifier can handle unflattened inputs and kwargs
run_code = f"""\
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 16)
self.relu = torch.nn.ReLU()
self.sigmoid = torch.nn.Sigmoid()
def forward(self, inp, *, k):
x = inp["x"]
y = inp["y"]
x = self.fc1(x)
y = self.fc1(y)
k = self.fc1(k)
x = self.relu(x)
x = self.sigmoid(x)
return x + y + k
with torch.no_grad():
model = Model().to("{device}")
val = torch.randn(8, 10).to("{device}")
example_inputs = ({{"x": val.clone(), "y": val.clone()}},)
kwargs = {{"k": val.clone()}}
ep = torch.export.export(
model, example_inputs, kwargs
)
torch._inductor.aoti_compile_and_package(
ep, example_inputs, kwargs
)
"""
return self._run_full_test(run_code, None, expected_error, isolate=True)
@unittest.skipIf(IS_JETSON, "Fails on Jetson")
@inductor_config.patch(
{
"cpp.inject_relu_bug_TESTING_ONLY": "compile_error",
"aot_inductor.dump_aoti_minifier": True,
}
)
def test_aoti_cpu_compile_error(self):
res = self._test_aoti("cpu", "CppCompileError")
ep_file_path = res.get_exported_program_path()
gm = export_load(ep_file_path).module()
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, linear):
linear, = fx_pytree.tree_flatten_spec(([linear], {}), self._in_spec)
relu = torch.ops.aten.relu.default(linear); linear = None
return pytree.tree_unflatten((relu,), self._out_spec)""",
)
@unittest.skipIf(IS_JETSON, "Fails on Jetson")
@inductor_config.patch(
{
"cpp.inject_relu_bug_TESTING_ONLY": "compile_error",
"aot_inductor.dump_aoti_minifier": True,
}
)
def test_aoti_cpu_compile_error_unflatten(self):
res = self._test_aoti_unflattened_inputs("cpu", "CppCompileError")
ep_file_path = res.get_exported_program_path()
gm = export_load(ep_file_path).module()
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, linear):
linear, = fx_pytree.tree_flatten_spec(([linear], {}), self._in_spec)
relu = torch.ops.aten.relu.default(linear); linear = None
return pytree.tree_unflatten((relu,), self._out_spec)""",
)
@requires_gpu
@skipIfXpu(msg="AOTI for XPU not enabled yet")
@inductor_config.patch(
{
"triton.inject_relu_bug_TESTING_ONLY": "compile_error",
"aot_inductor.dump_aoti_minifier": True,
}
)
def test_aoti_gpu_compile_error(self):
res = self._test_aoti(GPU_TYPE, "SyntaxError")
ep_file_path = res.get_exported_program_path()
gm = export_load(ep_file_path).module()
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, linear):
linear, = fx_pytree.tree_flatten_spec(([linear], {}), self._in_spec)
relu = torch.ops.aten.relu.default(linear); linear = None
return pytree.tree_unflatten((relu,), self._out_spec)""",
)
@requires_gpu
@skipIfXpu(msg="AOTI for XPU not enabled yet")
@inductor_config.patch(
{
"triton.inject_relu_bug_TESTING_ONLY": "compile_error",
"aot_inductor.dump_aoti_minifier": True,
}
)
def test_aoti_gpu_compile_error_unflatten(self):
res = self._test_aoti_unflattened_inputs(GPU_TYPE, "SyntaxError")
ep_file_path = res.get_exported_program_path()
gm = export_load(ep_file_path).module()
self.assertExpectedInline(
str(gm.code).strip(),
"""\
def forward(self, linear):
linear, = fx_pytree.tree_flatten_spec(([linear], {}), self._in_spec)
relu = torch.ops.aten.relu.default(linear); linear = None
return pytree.tree_unflatten((relu,), self._out_spec)""",
)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
# Skip CI tests on mac since CPU inductor does not seem to work due to C++ compile errors,
# also skip on ASAN due to https://github.com/pytorch/pytorch/issues/98262
if not IS_MACOS and not TEST_WITH_ASAN:
run_tests()