Files
pytorch/torch/csrc/jit/tensorexpr/loopnest.cpp
2024-10-29 04:33:40 +00:00

3383 lines
102 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <torch/csrc/jit/tensorexpr/loopnest.h>
#include <algorithm>
#include <iostream>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <c10/util/Logging.h>
#include <c10/util/irange.h>
#include <ATen/core/functional.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/tensorexpr/analysis.h>
#include <torch/csrc/jit/tensorexpr/bounds_inference.h>
#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/tensorexpr/expr.h>
#include <torch/csrc/jit/tensorexpr/ir.h>
#include <torch/csrc/jit/tensorexpr/ir_cloner.h>
#include <torch/csrc/jit/tensorexpr/ir_mutator.h>
#include <torch/csrc/jit/tensorexpr/ir_printer.h>
#include <torch/csrc/jit/tensorexpr/ir_simplifier.h>
#include <torch/csrc/jit/tensorexpr/ir_verifier.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>
namespace torch::jit::tensorexpr {
LoopNest::LoopNest(const LoopNest& other)
: root_stmt_(Stmt::clone(other.root_stmt_)),
output_bufs_(other.output_bufs_) {
GRAPH_DEBUG("Origin Stmt in LoopNest:\n", std::to_string(root_stmt_));
verify(root_stmt_);
}
LoopNest::LoopNest(StmtPtr stmt, std::unordered_set<BufPtr> output_bufs)
: root_stmt_(std::move(stmt)), output_bufs_(std::move(output_bufs)) {
GRAPH_DEBUG("Origin Stmt in LoopNest:\n", std::to_string(root_stmt_));
verify(root_stmt_);
}
LoopNest::LoopNest(
const std::vector<Tensor>& output_tensors,
const std::vector<Tensor>& tensors_to_compute) {
initialize(output_tensors, tensors_to_compute);
GRAPH_DEBUG("Origin Stmt in LoopNest:\n", std::to_string(root_stmt_));
verify(root_stmt_);
}
LoopNest::LoopNest(const std::vector<Tensor>& output_tensors) {
initialize(output_tensors, output_tensors);
GRAPH_DEBUG("Origin Stmt in LoopNest:\n", std::to_string(root_stmt_));
verify(root_stmt_);
}
std::vector<BufPtr> LoopNest::getIntermediateBufs() const {
std::vector<BufPtr> result;
std::unordered_set<BufPtr> result_set;
auto input_bufs = getInputBufs();
auto bufs = NodeFinder<Buf>::find(root_stmt_);
for (const auto& buf : bufs) {
if (!output_bufs_.count(buf) && !input_bufs.count(buf) &&
!result_set.count(buf)) {
result.push_back(buf);
result_set.insert(buf);
}
}
return result;
}
const std::unordered_set<BufPtr> LoopNest::getInputBufs() const {
std::unordered_set<BufPtr> result;
auto buf_load_store_uses = findLoadOrStoreUses(root_stmt_);
for (auto& kv : buf_load_store_uses) {
bool has_store = false;
for (auto& use : kv.second) {
if (use.isStore) {
has_store = true;
break;
}
}
if (!has_store) {
result.insert(kv.first);
}
}
return result;
}
class IndexFlattener : public IRMutator {
public:
StmtPtr flatten(const StmtPtr& s) {
return s->accept_mutator(this);
}
ExprPtr mutate(const LoadPtr& v) override {
if (v->indices().size() == 1) {
return v;
}
return alloc<Load>(
v->dtype(),
v->buf(),
std::vector<ExprPtr>({flatten_index(
v->buf()->dims(), v->indices(), v->buf()->strides())}));
}
StmtPtr mutate(const StorePtr& v) override {
ExprPtr value = v->value();
ExprPtr new_value = value->accept_mutator(this);
if (v->indices().size() == 1 && value == new_value) {
return v;
}
std::vector<ExprPtr> indices = {
flatten_index(v->buf()->dims(), v->indices(), v->buf()->strides())};
v->set_indices(indices);
v->set_value(new_value);
return v;
}
};
static bool isValidIdentifierChar(char c, size_t pos) {
return islower(c) || isupper(c) || c == '_' || (pos > 0 && isdigit(c));
}
// replaces all invalid characters with underscore
std::string sanitizeName(const std::string& input_name) {
std::stringstream sanitized_name;
for (size_t i = 0; i < input_name.size(); ++i) {
if (isValidIdentifierChar(input_name[i], i)) {
sanitized_name << input_name[i];
} else {
if (i == 0) {
// Don't start names with underscore
sanitized_name << "v";
}
sanitized_name << "_";
}
}
return sanitized_name.str();
}
class VarNameSanitizer : public IRMutator {
public:
ExprPtr mutate(const BufPtr& v) override {
if (seen_bufs_.count(v)) {
return v;
}
const std::string& name = v->name_hint();
auto new_name = sanitizeName(name);
if (taken_names_.count(new_name)) {
new_name = getNextAvailableName(new_name);
}
v->set_name_hint(new_name);
taken_names_.insert(new_name);
seen_bufs_.insert(v);
return v;
}
ExprPtr mutate(const VarPtr& v) override {
if (seen_vars_.count(v)) {
return v;
}
const std::string& name = v->name_hint();
auto new_name = sanitizeName(name);
if (taken_names_.count(new_name)) {
new_name = getNextAvailableName(new_name);
}
v->set_name_hint(new_name);
taken_names_.insert(new_name);
seen_vars_.insert(v);
return v;
}
StmtPtr mutate(const ForPtr& v) override {
auto new_name = getNextAvailableName(getIndexVarNameAtLevel(level_));
if (seen_index_vars_.count(v->var())) {
auto new_var = alloc<Var>("", v->var()->dtype());
Substitute(v, {{v->var(), new_var}});
}
v->var()->set_name_hint(new_name);
seen_index_vars_.insert(v->var());
seen_vars_.insert(v->var());
taken_names_.insert(new_name);
level_++;
v->body()->accept_mutator(this);
level_--;
v->start()->accept_mutator(this);
v->stop()->accept_mutator(this);
return v;
}
std::string getIndexVarNameAtLevel(int level_) {
auto names_num = index_var_names_.size();
auto counter = level_ / names_num;
if (counter == 0) {
return index_var_names_[level_ % names_num];
} else {
return index_var_names_[level_ % names_num] + std::to_string(counter);
}
}
std::string getNextAvailableName(const std::string& base_name) {
std::string name = base_name;
int counter = 0;
while (taken_names_.count(name)) {
counter++;
name = base_name + "_" + std::to_string(counter);
}
return name;
}
private:
std::vector<std::string> index_var_names_ =
{"i", "j", "k", "l", "m", "n", "o", "p"};
std::unordered_set<std::string> taken_names_;
std::unordered_set<VarPtr> seen_index_vars_;
std::unordered_set<VarPtr> seen_vars_;
std::unordered_set<BufPtr> seen_bufs_;
int level_ = 0;
};
StmtPtr LoopNest::sanitizeNames(StmtPtr s) {
VarNameSanitizer r;
s->accept_mutator(&r);
return s;
}
class Vectorizer : public IRMutator {
public:
StmtPtr vectorize(ForPtr v) {
StmtPtr body = v->body();
VarPtr var = v->var();
ExprPtr start = v->start();
ExprPtr stop = v->stop();
auto start_imm = intValue(start);
auto stop_imm = intValue(stop);
if (!start_imm) {
// Can't vectorize due to non-constant loop start!
success_ = false;
return v;
}
if (!stop_imm) {
// Can't vectorize due to non-constant loop stop!
success_ = false;
return v;
}
var_ = var;
start_ = immLike(start, *start_imm);
lanes_ = *stop_imm;
StmtPtr new_body = body->accept_mutator(this);
if (new_body == body) {
// Vectorization failed!
success_ = false;
return v;
}
return new_body;
}
bool success() const {
return success_;
}
ExprPtr mutate(const AddPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) + ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const SubPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) - ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const MulPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) * ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const DivPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) / ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const ModPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) % ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const AndPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) & ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const OrPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) | ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const XorPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) ^ ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const LshiftPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) << ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const RshiftPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return ExprHandle(inputs[0]) >> ExprHandle(inputs[1]);
});
}
ExprPtr mutate(const MaxPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return Max::make(
ExprHandle(inputs[0]), ExprHandle(inputs[1]), v->propagate_nans());
});
}
ExprPtr mutate(const MinPtr& v) override {
std::vector<ExprPtr> inputs = {v->lhs(), v->rhs()};
return try_vectorize(v, inputs, [&]() {
return Min::make(
ExprHandle(inputs[0]), ExprHandle(inputs[1]), v->propagate_nans());
});
}
ExprPtr mutate(const CompareSelectPtr& v) override {
std::vector<ExprPtr> inputs = {
v->lhs(), v->rhs(), v->ret_val1(), v->ret_val2()};
return try_vectorize(v, inputs, [&]() {
return CompareSelect::make(
ExprHandle(inputs[0]),
ExprHandle(inputs[1]),
ExprHandle(inputs[2]),
ExprHandle(inputs[3]),
v->compare_select_op(),
v->bias());
});
}
ExprPtr mutate(const BitCastPtr& v) override {
std::vector<ExprPtr> inputs = {v->src_value()};
return try_vectorize(v, inputs, [&]() {
return BitCast::make(
Dtype(v->dtype().scalar_type(), lanes_), ExprHandle(inputs[0]));
});
}
ExprPtr mutate(const CastPtr& v) override {
std::vector<ExprPtr> inputs = {v->src_value()};
return try_vectorize(v, inputs, [&]() {
return Cast::make(
Dtype(v->dtype().scalar_type(), lanes_), ExprHandle(inputs[0]));
});
}
ExprPtr mutate(const VarPtr& v) override {
if (v == var_) {
return Ramp::make(
ExprHandle(start_), ExprHandle(immLike(start_, 1)), lanes_)
.node();
}
return v;
}
ExprPtr mutate(const RampPtr& v) override {
ExprPtr base = v->base();
ExprPtr stride = v->stride();
ExprPtr base_new = base->accept_mutator(this);
ExprPtr stride_new = stride->accept_mutator(this);
if (base_new == base && stride_new == stride) {
return v;
}
// Can't vectorize a Ramp!
success_ = false;
return v;
}
ExprPtr mutate(const LoadPtr& v) override {
Dtype dtype(v->dtype().scalar_type(), lanes_);
BufPtr buf = v->buf();
std::vector<ExprPtr> inputs = {v->flat_index()};
return try_vectorize(v, inputs, [&]() {
return Load::make(dtype, BufHandle(buf), {ExprHandle(inputs[0])});
});
}
ExprPtr mutate(const ReduceOpPtr& v) override {
Dtype dtype(v->dtype().scalar_type(), lanes_);
std::vector<ExprPtr> inputs = {v->body()};
auto out = try_vectorize(v, inputs, [&]() {
return ExprHandle(
alloc<ReduceOp>(inputs[0], v->reduce_args(), v->reducer()));
});
return out;
}
ExprPtr mutate(const BroadcastPtr& v) override {
ExprPtr val = v->value();
ExprPtr new_val = val->accept_mutator(this);
if (new_val == val) {
return v;
}
// Can't vectorize a Broadcast!
success_ = false;
return v;
}
ExprPtr mutate(const IfThenElsePtr& v) override {
ExprPtr condition = v->condition();
ExprPtr new_condition = condition->accept_mutator(this);
if (new_condition != condition) {
// Can't vectorize an IfThenElse condition!
success_ = false;
return v;
}
std::vector<ExprPtr> inputs = {v->true_value(), v->false_value()};
return try_vectorize(v, inputs, [&]() {
return IfThenElse::make(
ExprHandle(condition), ExprHandle(inputs[0]), ExprHandle(inputs[1]));
});
}
ExprPtr mutate(const IntrinsicsPtr& v) override {
std::vector<ExprPtr> inputs = v->params();
return try_vectorize(v, inputs, [&]() {
return ExprHandle(alloc<Intrinsics>(v->op_type(), inputs));
});
}
StmtPtr mutate(const StorePtr& v) override {
BufPtr buf = v->buf();
std::vector<ExprPtr> inputs = {v->flat_index(), v->value()};
return try_vectorize(v, inputs, [&]() {
return Store::make(
BufHandle(buf), {ExprHandle(inputs[0])}, ExprHandle(inputs[1]));
});
}
StmtPtr mutate(const ForPtr& v) override {
VarPtr var = v->var();
ExprPtr start = v->start();
ExprPtr stop = v->stop();
LoopOptions loop_options = v->loop_options();
ExprPtr new_start = start->accept_mutator(this);
ExprPtr new_stop = stop->accept_mutator(this);
if (new_start != start || new_stop != stop) {
// Can't vectorize nested For with dependent loop bounds!
success_ = false;
return v;
}
StmtPtr body = v->body();
StmtPtr new_body = body->accept_mutator(this);
if (new_body == body) {
return (ForPtr)v;
}
return alloc<For>(var, new_start, new_stop, new_body, loop_options);
}
StmtPtr mutate(const BlockPtr& v) override {
// IRMutator does in-place mutations. But the logic in vectorization checks
// for success by looking for a new stmt. So, we override the in-place
// mutations and create a clone here if any of its statements change.
// TODO: Can we change the logic of vectorizer so that we don't need this?
bool any_change = false;
std::vector<StmtPtr> stmts;
for (const StmtPtr& stmt : *v) {
StmtPtr stmt_new = stmt->accept_mutator(this);
if (stmt != stmt_new) {
any_change = true;
} else {
stmt_new = Stmt::clone(stmt);
}
if (stmt_new) {
stmts.push_back(stmt_new);
}
}
if (any_change) {
return alloc<Block>(stmts);
}
return v;
}
template <typename T>
ExprPtr try_vectorize(ExprPtr e, std::vector<ExprPtr>& inputs, T&& vec_ctor) {
bool vectorize = vectorize_inputs(inputs);
if (vectorize) {
return vec_ctor().node();
}
return e;
}
template <typename T>
StmtPtr try_vectorize(StmtPtr s, std::vector<ExprPtr>& inputs, T&& vec_ctor) {
bool vectorize = vectorize_inputs(inputs);
if (vectorize) {
return vec_ctor();
}
return s;
}
bool vectorize_inputs(std::vector<ExprPtr>& inputs) {
bool any_vectorized = false;
std::vector<ExprPtr> new_inputs;
// Attempt to vectorize each input.
for (ExprPtr& in : inputs) {
ExprPtr new_in = in->accept_mutator(this);
new_inputs.push_back(new_in);
if (new_in != in) {
any_vectorized = true;
}
}
// If none of them vectorized, then don't vectorize this.
if (!any_vectorized) {
return false;
}
// Insert broadcasts for any inputs that weren't vectorized.
for (size_t i = 0; i < inputs.size(); ++i) {
if (inputs[i] == new_inputs[i]) {
inputs[i] = Broadcast::make(ExprHandle(inputs[i]), lanes_).node();
} else {
inputs[i] = new_inputs[i];
}
}
// And then vectorize this node.
return true;
}
VarPtr var_ = nullptr;
int64_t lanes_ = 0;
ExprPtr start_ = nullptr;
bool success_ = true;
};
bool LoopNest::vectorize(const ForPtr& f) {
BlockPtr b = to<Block>(f->get_parent());
if (!b) {
return false;
}
// Can't vectorize reduction axes.
auto reductions = NodeFinder<ReduceOp>::find(f);
for (const auto& r : reductions) {
if (std::find(r->reduce_args().begin(), r->reduce_args().end(), f->var()) !=
r->reduce_args().end()) {
return false;
}
}
Vectorizer v;
StmtPtr new_f = nullptr;
new_f = Stmt::clone(f);
normalize(to<For>(new_f));
new_f = FlattenIndexes(new_f);
new_f = v.vectorize(to<For>(new_f));
if (!v.success()) {
// We clone f before vectorizing. So, any partial vectorization will
// have modified the clone. In case of an exception, we can continue
// using f.
new_f = f;
}
if (new_f != f) {
b->replace_stmt(f, IRSimplifier::simplify(new_f));
return true;
}
// Vectorization was not successful.
return false;
}
void LoopNest::initialize(
const std::vector<Tensor>& output_tensors,
const std::vector<Tensor>& tensors_to_compute) {
for (const auto& t : output_tensors) {
output_bufs_.insert(t.buf());
}
std::vector<StmtPtr> loops;
for (const Tensor& t : tensors_to_compute) {
StmtPtr loop = t.stmt();
if (loop->get_parent()) {
std::cerr << "Error: creating a loopnest from already used Tensors\n";
loops = {};
break;
}
// Flatten initializers.
if (BlockPtr block = to<Block>(loop)) {
for (const auto& s : block->stmts()) {
block->remove_stmt(s);
loops.push_back(s);
}
} else {
loops.push_back(loop);
}
}
root_stmt_ = alloc<Block>(loops);
}
class FunctionInliner : public IRMutator {
public:
FunctionInliner(StorePtr producer, std::unordered_set<BufPtr> outputs)
: buf_(producer->buf()),
producer_(std::move(producer)),
outputs_(std::move(outputs)) {
for (const auto& i : producer_->indices()) {
if (auto index_var = to<Var>(i)) {
index_vars_.insert(index_var);
producer_index_vars_.push_back(index_var);
} else {
// If the index can be a constant, then that dimension must have size 1
// (since we don't support in-place writes). Resolves issue 52581.
auto index_val = evalInt(i);
if (!index_val || *index_val != 0) {
success_ = false;
break;
}
producer_index_vars_.push_back(nullptr);
}
}
}
bool success() const {
return success_;
}
private:
ExprPtr mutate_loads(const BufPtr& buf, std::vector<ExprPtr> dims) {
std::vector<VarPtr> index_vars;
if (buf->ndim() != producer_index_vars_.size()) {
// Dimensions of producer and consumer expressions do not match in inliner
// in the fuser
success_ = false;
return nullptr;
}
for (const auto i : c10::irange(buf->ndim())) {
VarPtr func_callee_arg = producer_index_vars_.at(i);
ExprPtr func_caller_param = dims.at(i);
if (func_callee_arg == nullptr) {
continue;
}
auto iter = inline_mapping_.find(func_callee_arg);
if (iter != inline_mapping_.end()) {
// Duplicated variables
success_ = false;
return nullptr;
}
// Add a mapping for each function parameter to it's source name.
inline_mapping_[func_callee_arg] = func_caller_param;
GRAPH_DEBUG(
"ComputeInline: Inline mapping: ",
std::to_string(func_callee_arg),
" -> ",
std::to_string(func_caller_param));
index_vars.push_back(func_callee_arg);
}
// Call the actual replacement.
ExprPtr body = producer_->value();
GRAPH_DEBUG("ComputeInline: Before rewriting body: ", std::to_string(body));
ExprPtr result = Expr::clone(body)->accept_mutator(this);
GRAPH_DEBUG(
"ComputeInline: After rewriting body: ", std::to_string(result));
// Remove the mappings we created for this function parameters.
for (const auto& v : index_vars) {
for (auto& pair : random_bindings_) {
if (pair.second.erase(v)) {
ExprPtr inlined = inline_mapping_[v];
for (const auto& nv : VarFinder::find(inlined)) {
pair.second.insert(nv);
}
}
}
GRAPH_DEBUG("ComputeInline: Inline mapping: erasing", std::to_string(v));
inline_mapping_.erase(v);
}
return result;
}
ExprPtr mutate(const LoadPtr& v) override {
if (!success()) {
return v;
}
BufPtr buf = v->buf();
if (buf != buf_) {
return IRMutator::mutate(v);
}
if (v->indices().size() != buf->ndim()) {
// Number of indices doesn't match buf rank in the fuser
success_ = false;
return v;
}
auto result = mutate_loads(buf, v->indices());
if (!result) {
// If we don't inline successfully return the given load.
success_ = false;
return v;
}
return result;
}
// Replace the target variable with the caller expressions.
ExprPtr mutate(const VarPtr& v) override {
if (!success()) {
return v;
}
auto iter = inline_mapping_.find(v);
if (iter == inline_mapping_.end()) {
return v;
} else {
ExprPtr expr = iter->second;
// Continue to transform the value from the lookup table.
return expr->accept_mutator(this);
}
}
// Handle random intrinsics which should be cached.
ExprPtr mutate(const IntrinsicsPtr& v) override {
if (!success()) {
return v;
}
if (!in_producer_ || v->op_type() != kRand) {
return IRMutator::mutate(v);
}
// Create a new Let Statement for the random variable, which we can refer
// to multiple times and resolve the same value (ie. store it in a scalar
// rather than the Tensor).
const std::string& name = buf_->name_hint();
VarPtr new_var = alloc<Var>(name, v->dtype());
random_bindings_[alloc<Let>(new_var, v)] = index_vars_;
GRAPH_DEBUG(
"ComputeInline: created random bindings for ", std::to_string(new_var));
return new_var;
}
// Remove the buffer write from the inlined function.
StmtPtr mutate(const StorePtr& v) override {
if (!success()) {
return v;
}
// If the buf_ is in the outputs set, keep its statement intact. Otherwise,
// remove it.
if (v == producer_ && !outputs_.count(buf_)) {
in_producer_ = true;
producer_ = to<Store>(IRMutator::mutate(v));
if (!producer_) {
// Producer statement for output buf should remain non-null in the fuser
success_ = false;
return v;
}
in_producer_ = false;
return nullptr;
} else {
return IRMutator::mutate(v);
}
}
// Any Random Intrinsics that were turned into vars must be inserted here.
StmtPtr mutate(const BlockPtr& v) override {
if (!success()) {
return v;
}
std::vector<StmtPtr> stmts;
for (const StmtPtr& stmt : *v) {
StmtPtr stmt_new = stmt->accept_mutator(this);
if (!stmt_new) {
continue;
}
if (stmt == stmt_new) {
stmt_new = Stmt::clone(stmt);
}
stmts.push_back(stmt_new);
}
return Block::make(stmts);
}
StmtPtr mutate(const ForPtr& v) override {
if (!success()) {
return v;
}
ForPtr res = to<For>(IRMutator::mutate(v));
if (!res) {
return nullptr;
}
// Find any random bindings that should be defined in this loops body.
std::vector<LetPtr> bindings_this_loop;
VarPtr fv = v->var();
for (auto& pair : random_bindings_) {
auto& index_var = pair.second;
if (index_var.erase(fv)) {
bindings_this_loop.push_back(pair.first);
}
}
for (const auto& l : bindings_this_loop) {
res->body()->prepend_stmt(l);
random_bindings_.erase(l);
}
return res;
}
private:
BufPtr buf_;
StorePtr producer_;
// Index Vars present in the producer.
std::unordered_set<VarPtr> index_vars_;
std::vector<VarPtr> producer_index_vars_;
std::unordered_map<VarPtr, ExprPtr> inline_mapping_;
// In the producer's scope - we need to bind any calls to rand().
bool in_producer_ = false;
std::unordered_map<LetPtr, std::unordered_set<VarPtr>> random_bindings_;
std::unordered_set<BufPtr> outputs_;
bool success_ = true;
};
static StmtPtr computeInlineImpl(
const BufPtr& b,
const StmtPtr& stmt,
const std::unordered_set<BufPtr>& output_bufs) {
// If buf is used or defined in an ExternalCall, we cannot inline it
auto buf_load_store_uses = findLoadOrStoreUses(stmt);
if (!buf_load_store_uses.count(b)) {
return nullptr;
}
for (auto& use : buf_load_store_uses.at(b)) {
StmtPtr s = use.s;
if (to<ExternalCall>(s) || to<ExternalCallWithAlloc>(s)) {
return nullptr;
}
}
// Find producers.
StorePtr relevant_store{nullptr};
auto stores = NodeFinder<Store>::find(stmt);
for (const auto& s : stores) {
if (s->buf() == b) {
auto reductions = NodeFinder<ReduceOp>::find(s);
if (!reductions.empty()) {
// Cannot inline a reduction computation
return nullptr;
}
if (relevant_store != nullptr) {
// Cannot inline Buf with multiple Tensors
return nullptr;
}
relevant_store = s;
}
}
if (!relevant_store) {
// Cannot find a relevant store to inline a buf in the fuser
return nullptr;
}
GRAPH_DEBUG("ComputeInline: Def: ", std::to_string(relevant_store));
FunctionInliner inliner(relevant_store, output_bufs);
auto result = stmt->accept_mutator(&inliner);
if (inliner.success()) {
return result;
}
return nullptr;
}
bool LoopNest::computeInline(const BufPtr& b) {
// Inlining may not always be successful. Since all mutations now happen
// in-place, an unsuccessful inlining transformation might leave the IR
// in an invalid state. To get around this problem, we clone the root stmt,
// try inlining on the clone, and if it succeeds, we proceed to perform
// inlining on the actual root stmt. This way the root stmt will always be
// in a valid state.
auto stmt_copy = Stmt::clone(root_stmt_);
auto try_inline = computeInlineImpl(b, stmt_copy, output_bufs_);
if (!try_inline) {
return false;
}
root_stmt_ = computeInlineImpl(b, root_stmt_, output_bufs_);
return true;
}
bool LoopNest::computeInline(const StmtPtr& s) {
auto s_store = to<Store>(s);
if (s_store == nullptr) {
// Could not find buffer producer to inline
return false;
}
return computeInline(s_store->buf());
}
// inlining buffers with multiple uses can create duplicated work, which can
// slow down cpu code generation but is enabled on gpu because it avoids
// difficult synchronization logic across blocks. Inlining trivial reads does
// not duplicate work
void LoopNest::inlineIntermediateBufs(bool allow_duplicated_work) {
std::unordered_set<BufPtr> bufs_to_inline;
auto intermediate_bufs = getIntermediateBufs();
if (allow_duplicated_work) {
bufs_to_inline.insert(intermediate_bufs.begin(), intermediate_bufs.end());
} else {
auto buf_load_store_uses = findLoadOrStoreUses(root_stmt_);
auto input_bufs = getInputBufs();
for (const auto& buf : intermediate_bufs) {
TORCH_INTERNAL_ASSERT(
buf_load_store_uses.count(buf),
buildErrorMessage(
"Could not find uses of buf '" + buf->name_hint() +
"' in the fuser."));
std::vector<BufLoadOrStoreUse>& uses = buf_load_store_uses[buf];
auto stores = c10::filter(
uses, [](const BufLoadOrStoreUse& use) { return use.isStore; });
// if the intermediate is the buffer formed from reading in the input
// tensors, always inline, bc we are not duplicating any work
// and avoiding an intermediary buffer
if (stores.size() == 1) {
if (auto store = to<Store>(stores[0].s)) {
auto input_as_load = to<Load>(store->value());
if (input_as_load && input_bufs.count(input_as_load->buf())) {
bufs_to_inline.insert(buf);
continue;
}
} else {
// If S is not a store, it must be an ExternalCall.
TORCH_INTERNAL_ASSERT(
to<ExternalCall>(stores[0].s) ||
to<ExternalCallWithAlloc>(stores[0].s),
buildErrorMessage(
"Expected stmt: " + std::to_string(stores[0].s) +
"\nto be either a Store or an ExternalCall in the fuser."));
}
}
// all bufs will have at least one store (if they have > 1 they cant be
// inlined anyway)
size_t reads = uses.size() - 1;
// if only one read, we can inline it without duplicating work
if (reads <= 1) {
bufs_to_inline.insert(buf);
}
}
}
if (allow_duplicated_work) {
bufs_to_inline.insert(output_bufs_.begin(), output_bufs_.end());
}
for (const auto& b : bufs_to_inline) {
computeInline(b);
}
}
// TODO: Unify with DepTracker
class LoadOrStoreUseFinder : public IRVisitor {
public:
std::unordered_map<BufPtr, std::vector<BufLoadOrStoreUse>> findUses(
const StmtPtr& s) {
uses_.clear();
s->accept(this);
return uses_;
}
private:
void visit(const StorePtr& v) override {
if (stores_[v->buf()].insert(last_stmt_).second) {
uses_[v->buf()].push_back({(StmtPtr)v, true});
}
last_stmt_ = (StmtPtr)v;
IRVisitor::visit(v);
}
void visit(const ExternalCallPtr& v) override {
if (stores_[v->buf()].insert(last_stmt_).second) {
uses_[v->buf()].push_back({(StmtPtr)v, true});
}
last_stmt_ = (StmtPtr)v;
for (const BufPtr& input_buf : v->buf_args()) {
if (loads_[input_buf].insert(last_stmt_).second) {
uses_[input_buf].push_back({last_stmt_, false});
}
}
IRVisitor::visit(v);
}
void visit(const ExternalCallWithAllocPtr& v) override {
for (const auto& out_buf : v->buf_out_args()) {
if (stores_[out_buf].insert(last_stmt_).second) {
uses_[out_buf].push_back({(StmtPtr)v, true});
}
}
last_stmt_ = (StmtPtr)v;
for (const auto& input_buf : v->buf_args()) {
if (loads_[input_buf].insert(last_stmt_).second) {
uses_[input_buf].push_back({last_stmt_, false});
}
}
IRVisitor::visit(v);
}
void visit(const LoadPtr& v) override {
if (loads_[v->buf()].insert(last_stmt_).second) {
uses_[v->buf()].push_back({last_stmt_, false});
}
IRVisitor::visit(v);
}
StmtPtr last_stmt_ = nullptr;
std::unordered_map<BufPtr, std::vector<BufLoadOrStoreUse>> uses_;
// Sets of loads and stores in order to keep the results unique
std::unordered_map<BufPtr, std::unordered_set<StmtPtr>> loads_;
std::unordered_map<BufPtr, std::unordered_set<StmtPtr>> stores_;
};
std::unordered_map<BufPtr, std::vector<BufLoadOrStoreUse>> findLoadOrStoreUses(
const StmtPtr& s) {
LoadOrStoreUseFinder uf;
return uf.findUses(s);
}
class ContainedStmtsFinder : public IRVisitor {
public:
// Simply list all Stores and Block that are children of the given stmt
const std::unordered_set<StmtPtr>& findContainedStmts(const StmtPtr& s) {
contained_.clear();
s->accept(this);
return contained_;
}
private:
void visit(const StorePtr& v) override {
contained_.insert((StmtPtr)v);
IRVisitor::visit(v);
}
void visit(const ExternalCallPtr& v) override {
contained_.insert((StmtPtr)v);
IRVisitor::visit(v);
}
void visit(const ExternalCallWithAllocPtr& v) override {
contained_.insert((StmtPtr)v);
IRVisitor::visit(v);
}
void visit(const BlockPtr& v) override {
contained_.insert((StmtPtr)v);
IRVisitor::visit(v);
}
std::unordered_set<StmtPtr> contained_;
};
class StmtDeleter : public IRMutator {
public:
StmtDeleter(const std::unordered_set<StmtPtr>& targets) : targets_(targets) {}
private:
StmtPtr mutate(const BlockPtr& v) override {
std::vector<StmtPtr> stmts;
for (const auto& s : v->stmts()) {
if (targets_.count(s) == 0) {
StmtPtr ns = s->accept_mutator(this);
if (ns) {
stmts.push_back(Stmt::clone(ns));
}
}
}
return Block::make(stmts);
}
const std::unordered_set<StmtPtr>& targets_;
};
void LoopNest::eliminateDeadStores() {
using namespace analysis;
MemDependencyChecker checker(getInputBufs(), getOutputBufs());
root_stmt_->accept(&checker);
std::unordered_set<StmtPtr> deadStores;
std::vector<std::shared_ptr<AccessInfo>> outputAccesses;
for (const auto& o : getOutputBufs()) {
outputAccesses.push_back(checker.output(o));
}
for (auto& info : checker.getHistory()) {
if (!info->isWrite()) {
continue;
}
bool found = false;
for (auto& output : outputAccesses) {
if (checker.dependsIndirectly(output, info)) {
found = true;
break;
}
}
if (!found) {
deadStores.insert(info->stmt());
}
}
StmtDeleter deleter(deadStores);
root_stmt_ = root_stmt_->accept_mutator(&deleter);
}
void LoopNest::prepareForCodegen() {
// Expand reduction ops.
ReductionExpander reduceExpander;
root_stmt_ = reduceExpander.expand(root_stmt_);
root_stmt_ = FlattenIndexes(root_stmt_);
}
namespace {
// This is extended from IRCloner instead of IRMutator because we want all
// the rest of the IR nodes (the ones not touched directly) to be cloned.
class IfThenElseReplacer : public IRCloner {
public:
IfThenElseReplacer(IfThenElsePtr to_replace, ExprPtr new_expr)
: to_replace_(std::move(to_replace)), new_expr_(std::move(new_expr)) {}
ExprPtr mutate(const IfThenElsePtr& i) override {
if (i == to_replace_) {
return new_expr_;
}
return IRCloner::mutate(i);
}
private:
IfThenElsePtr to_replace_;
ExprPtr new_expr_;
};
// Check if the given condition is optimizable.
// Specifically, this function looks for the following pattern:
// "var < expr"
//
// If this pattern is found, then this function:
// * sets `cond_var` to `var`,
// * sets `compared_value` to `expr`, and
// * returns true.
bool isConditionOptimizable(
const ExprPtr& condition,
VarPtr* cond_var,
ExprPtr* compared_value) {
auto cs = to<CompareSelect>(condition);
if (cs && cs->compare_select_op() == kLT) {
auto var = to<Var>(cs->lhs());
if (var) {
*cond_var = var;
*compared_value = cs->rhs();
return true;
}
}
return false;
}
// Checks if the given if-then-else expression is a conditional that is
// generated from `aten::cat`.
//
// The expected format of conditionals is:
// IfThenElse(var < val1? 1 : 0,
// IfThenElse (var < val2? 1 : 0,
// IfThenElse (var < val3? 1 : 0,
// sub-expr1,
// sub-expr2),
// sub-expr3),
// sub-expr4)
//
// If such a conditional is found, this function also sets:
// * cond_var to the condition variable found in this expression.
// * comp_values to the list of compared values in the condition expressions.
// * sub_exprs to the list of sub-expressions that are the result of this
// if-then-else expression.
bool isConditionalFromCat(
const IfThenElsePtr& ite,
VarPtr* cond_var,
std::vector<ExprPtr>* comp_values,
std::vector<ExprPtr>* sub_exprs) {
VarPtr var = nullptr;
ExprPtr comp_value;
if (isConditionOptimizable(ite->condition(), &var, &comp_value)) {
if (*cond_var == nullptr) {
*cond_var = var;
} else if (*cond_var != var) {
// Different condition variables found in nested if-then-else
// expressions. Can not optimize such cases.
return false;
}
auto true_ite = to<IfThenElse>(ite->true_value());
if (true_ite) {
if (!isConditionalFromCat(true_ite, cond_var, comp_values, sub_exprs)) {
return false;
}
} else {
sub_exprs->push_back(ite->true_value());
}
auto false_ite = to<IfThenElse>(ite->false_value());
if (false_ite) {
return false;
}
comp_values->push_back(comp_value);
sub_exprs->push_back(ite->false_value());
return true;
}
return false;
}
bool areConstantsAndSorted(const std::vector<ExprPtr>& comp_values) {
std::vector<int> comp_consts;
comp_consts.reserve(comp_values.size());
for (const auto& c : comp_values) {
if (!c->isConstant()) {
return false;
}
comp_consts.push_back(immediateAs<int>(c));
}
return std::is_sorted(comp_consts.begin(), comp_consts.end());
}
} // namespace
bool LoopNest::optimizeConditionals() {
// Consider every store in the root_stmt_ and try to optimize the
// conditionals in that store.
auto stores = NodeFinder<Store>::find(root_stmt_);
std::unordered_set<ForPtr> split_fors;
for (const auto& store : stores) {
VarPtr cond_var = nullptr;
// `comp_values` represent the list of compared values that will be
// collected as we check for the expected pattern. Since that will
// only include the RHS of the conditions in the if-then-else expressions
// we need to start with `0` which is the initial bound, given that we
// only handle normalized loops (check for this is done below).
std::vector<ExprPtr> comp_values;
std::vector<ExprPtr> sub_exprs;
auto ifthenelse_exprs = NodeFinder<IfThenElse>::find(store);
if (ifthenelse_exprs.empty()) {
continue;
}
// We only check if the first if-then-else expression in this store
// corresponds to a conditional of the required format. If there are more
// than one such conditional, optimizing them requires checking if the
// conditions are exactly the same across them and handling all of them
// together. Currently, this is not handled.
if (!isConditionalFromCat(
ifthenelse_exprs.front(), &cond_var, &comp_values, &sub_exprs)) {
continue;
}
TORCH_INTERNAL_ASSERT(
!comp_values.empty(),
buildErrorMessage(
"Expected at least one expression in optimizeConditional in the fuser."));
comp_values.insert(comp_values.begin(), immLike(comp_values[0], 0));
auto fors = getLoopStmtsFor(store);
if (cond_var != fors.back()->var()) {
// Currently, we only handle the case where the condition variable
// is the same as the inner-most loop variable.
// TODO: Handle all other cases here.
//
// In order to handle all other cases, the method `clone_and_replace`
// called below to clone the body of the loop with a new store needs
// to recursively handle cloning of the loops and other blocks it
// contains.
continue;
}
auto for_to_split = fors.back();
if (!LoopNest::isNormalized(for_to_split)) {
// Do not optimize this conditional since the condition variable
// refers to a loop that is not normalized.
continue;
}
if (split_fors.count(for_to_split)) {
// This loop has already been split while optimizing conditionals
// earlier.
//
// Optimizing multiple conditionals that require splitting the same loop
// is tricky. It requires checking if the conditions are exactly the same
// across them and handling all of them together by splitting the loop
// exactly once.
//
// Currently, this case is not supported.
continue;
}
split_fors.insert(for_to_split);
// `comp_values` needs to include the end bound, which is `for_to_split`
// stop value.
comp_values.push_back(for_to_split->stop());
// Check if all `comp_values` are constants and they are sorted.
if (!areConstantsAndSorted(comp_values)) {
continue;
}
// Remove all the if-then-else expressions from this store and create
// one loop per sub-expression.
std::vector<StmtPtr> split_loops;
auto cond_to_replace = ifthenelse_exprs.front();
for (size_t i = 0; i < sub_exprs.size(); ++i) {
IfThenElseReplacer ifthenelseReplacer(cond_to_replace, sub_exprs[i]);
auto new_store = store->accept_mutator(&ifthenelseReplacer);
auto new_for_body =
for_to_split->body()->clone_and_replace(store, new_store);
auto new_for = alloc<For>(
for_to_split->var(),
comp_values[i],
comp_values[i + 1],
new_for_body);
LoopNest::normalize(new_for);
split_loops.push_back(new_for);
}
auto par = to<Block>(for_to_split->get_parent());
par->replace_stmt(for_to_split, alloc<Block>(split_loops));
}
root_stmt_ = IRSimplifier::simplify(root_stmt_);
return true;
}
void LoopNest::vectorizeInnerLoops() {
std::vector<ForPtr> innerLoops;
std::vector<ForPtr> worklist;
// Find outer-most For loops
if (ForPtr rootF = to<For>(root_stmt_)) {
worklist.push_back(rootF);
} else if (BlockPtr body = to<Block>(root_stmt_)) {
std::vector<BlockPtr> blocks = {body};
while (!blocks.empty()) {
BlockPtr b = blocks.back();
blocks.pop_back();
for (const StmtPtr& s : *b) {
if (const ForPtr& f = to<For>(s)) {
worklist.push_back(f);
} else if (BlockPtr b2 = to<Block>(s)) {
blocks.push_back(b2);
}
}
}
}
// Traverse the For loop nest find inner-most loops, which are
// vectorization candidates.
while (!worklist.empty()) {
ForPtr f = worklist.back();
worklist.pop_back();
bool containsSubLoops = false;
if (BlockPtr body = to<Block>(f->body())) {
for (const StmtPtr& s2 : *body) {
if (const ForPtr& f2 = to<For>(s2)) {
containsSubLoops = true;
worklist.push_back(f2);
}
}
}
if (!containsSubLoops) {
innerLoops.push_back(f);
}
}
// vectorize inner loops.
for (const ForPtr& loop : innerLoops) {
ForPtr split1;
ForPtr tail1;
static const int kBodyVectorWidth = 8;
splitWithTail(loop, kBodyVectorWidth, &split1, &tail1);
vectorize(split1);
if (tail1) {
ForPtr split2;
ForPtr tail2;
static const int kTailVectorWidth = 4;
splitWithTail(tail1, kTailVectorWidth, &split2, &tail2);
vectorize(split2);
}
}
}
void LoopNest::sliceHead(
const ForPtr& f,
int factor,
ForPtr* head,
ForPtr* tail) {
if (intValue(f->start()) && intValue(f->stop())) {
auto start_val = *intValue(f->start());
auto stop_val = *intValue(f->stop());
auto size_val = stop_val - start_val;
if (factor >= size_val) {
*head = f;
*tail = nullptr;
return;
}
}
if (!f) {
throw malformed_input("sliceHead attempted on null loop");
}
BlockPtr p = to<Block>(f->get_parent());
if (!p) {
throw malformed_input("sliceHead attempted on loop with no parent");
}
ExprPtr head_end = alloc<Min>(
alloc<Add>(f->start(), immLike(f->stop(), factor)), f->stop(), true);
*head = alloc<For>(f->var(), f->start(), head_end, Stmt::clone(f->body()));
p->insert_stmt_before(*head, f);
f->set_start(head_end);
*tail = f;
if (f->loop_options().is_gpu_block_index() ||
f->loop_options().is_gpu_thread_index()) {
LoopNest::normalize(*tail);
}
}
void LoopNest::sliceHead(const ForPtr& f, int factor) {
ForPtr head, tail;
sliceHead(f, factor, &head, &tail);
}
void LoopNest::sliceTail(
const ForPtr& f,
int factor,
ForPtr* head,
ForPtr* tail) {
if (intValue(f->start()) && intValue(f->stop())) {
auto start_val = *intValue(f->start());
auto stop_val = *intValue(f->stop());
auto size_val = stop_val - start_val;
if (factor >= size_val) {
*head = nullptr;
*tail = f;
return;
}
}
if (!f) {
throw malformed_input("sliceTail attempted on null loop");
}
BlockPtr p = to<Block>(f->get_parent());
if (!p) {
throw malformed_input("sliceTail attempted on loop with no parent");
}
ExprPtr tail_start = alloc<Max>(
f->start(), alloc<Sub>(f->stop(), immLike(f->stop(), factor)), true);
*tail = alloc<For>(f->var(), tail_start, f->stop(), Stmt::clone(f->body()));
p->insert_stmt_after(*tail, f);
f->set_stop(tail_start);
*head = f;
if (f->loop_options().is_gpu_block_index() ||
f->loop_options().is_gpu_thread_index()) {
LoopNest::normalize(*head);
}
}
void LoopNest::sliceTail(const ForPtr& f, int factor) {
ForPtr head, tail;
sliceTail(f, factor, &head, &tail);
}
void LoopNest::splitWithTail(const ForPtr& f, int factor) {
ForPtr inner, tail;
splitWithTail(f, factor, &inner, &tail);
}
void LoopNest::splitWithTail(
const ForPtr& f,
int factor,
ForPtr* inner,
ForPtr* tail) {
if (!f) {
throw malformed_input("splitWithTail attempted on null loop");
}
BlockPtr p = to<Block>(f->get_parent());
if (!p) {
throw malformed_input("splitWithTail attempted on loop with no parent");
}
// Normalize the loop to simplify start and stop bound computation
normalize(f);
bool tail_is_needed = true;
if (intValue(f->start()) && intValue(f->stop())) {
auto const start_val = *intValue(f->start());
auto const stop_val = *intValue(f->stop());
auto const size_val = stop_val - start_val;
auto const tail_size = size_val % factor;
if (tail_size == 0) {
tail_is_needed = false;
}
}
ExprPtr factor_expr = immLike(f->stop(), factor);
ExprPtr size = alloc<Sub>(f->stop(), f->start());
ExprPtr split_count = alloc<Div>(size, factor_expr);
ExprPtr tail_size = alloc<Mod>(size, factor_expr);
const std::string& loop_var_name = f->var()->name_hint();
Dtype loop_var_dtype = f->var()->dtype();
VarPtr i_inner = alloc<Var>(loop_var_name + "_inner", loop_var_dtype);
VarPtr i_outer = alloc<Var>(loop_var_name + "_outer", loop_var_dtype);
// x -> x.outer * inner.size + x.inner
ExprPtr combined_index1 =
alloc<Add>(alloc<Mul>(i_outer, factor_expr), i_inner);
if (tail_is_needed) {
VarPtr i_tail = alloc<Var>(loop_var_name + "_tail", loop_var_dtype);
// x -> x.tail + outer.size * inner.size
ExprPtr combined_index2 =
alloc<Add>(i_tail, alloc<Mul>(split_count, factor_expr));
StmtPtr body_tail =
SubstituteInClone(f->body(), {{f->var(), combined_index2}});
*tail = alloc<For>(i_tail, immLike(tail_size, 0), tail_size, body_tail);
p->insert_stmt_after(*tail, f);
} else {
*tail = nullptr;
}
StmtPtr body_inner =
Substitute(f->removeBody(), {{f->var(), combined_index1}});
*inner =
alloc<For>(i_inner, immLike(factor_expr, 0), factor_expr, body_inner);
// The input loop `f` will be the outer loop after split.
f->set_var(i_outer);
f->set_start(immLike(split_count, 0));
f->set_stop(split_count);
f->set_body(*inner);
}
void LoopNest::splitWithMask(const ForPtr& f, int factor) {
ForPtr inner;
splitWithMask(f, factor, &inner);
}
void LoopNest::splitWithMask(const ForPtr& f, int factor, ForPtr* inner) {
BlockPtr p = to<Block>(f->get_parent());
if (!p) {
std::cerr << "Parent is not a Block!\n";
return;
}
bool tail_is_needed = true;
ExprPtr start = IRSimplifier::simplify(f->start());
ExprPtr stop = IRSimplifier::simplify(f->stop());
if (start->isConstant() && stop->isConstant()) {
auto start_val = *intValue(start);
auto stop_val = *intValue(stop);
auto size_val = stop_val - start_val;
auto tail_size = size_val % factor;
if (tail_size == 0) {
tail_is_needed = false;
}
}
auto factor_expr = immLike(f->stop(), factor);
ExprPtr size = alloc<Sub>(f->stop(), f->start());
// split_count = (size + factor - 1) / factor
ExprPtr split_count = alloc<Div>(
alloc<Sub>(alloc<Add>(size, factor_expr), immLike(size, 1)), factor_expr);
const std::string& loop_var_name = f->var()->name_hint();
Dtype loop_var_dtype = f->var()->dtype();
VarPtr i_inner = alloc<Var>(loop_var_name + "_inner", loop_var_dtype);
VarPtr i_outer = alloc<Var>(loop_var_name + "_outer", loop_var_dtype);
// x -> x.outer * inner.size + x.inner
ExprPtr combined_index =
alloc<Add>(alloc<Mul>(i_outer, factor_expr), i_inner);
StmtPtr body_inner = f->removeBody();
// TODO: is it ok that we're doing it eagerly? In the other implementation we
// are only materializing predicates at the last, lowering, step.
if (tail_is_needed) {
auto start = intValue(f->start());
if (!start || *start != 0) {
throw unimplemented_lowering();
}
ExprPtr predicate =
CompareSelect::make(ExprHandle(f->var()), ExprHandle(f->stop()), kLT)
.node();
body_inner = Cond::make(ExprHandle(predicate), body_inner, nullptr);
}
body_inner = Substitute(body_inner, {{f->var(), combined_index}});
*inner =
alloc<For>(i_inner, immLike(factor_expr, 0), factor_expr, body_inner);
// The input loop `f` will be the outer loop after split.
f->set_var(i_outer);
f->set_start(immLike(split_count, 0));
f->set_stop(split_count);
f->set_body(*inner);
}
std::vector<ForPtr> LoopNest::distributeLoop(
const ForPtr& loop,
const std::unordered_set<StmtPtr>& pivots) {
TORCH_INTERNAL_ASSERT(
loop,
buildErrorMessage(
"Expected non-null loop in distributeLoop in the fuser."));
auto root = loop->get_parent();
if (root == nullptr) {
throw malformed_input("Loop without parent: ", loop);
}
auto root_block = to<Block>(root);
if (root_block == nullptr) {
throw malformed_input(
"Loop's parent must be a Block, instead found ", root);
}
// Extract bodies for all the loops after distribution.
std::vector<BlockPtr> new_loop_bodies;
auto new_loop_body = alloc<Block>(std::vector<StmtPtr>({}));
while (!loop->body()->empty()) {
auto s = loop->body()->front();
loop->body()->remove_stmt(s);
new_loop_body->append_stmt(s);
if (pivots.count(s)) {
new_loop_bodies.push_back(new_loop_body);
new_loop_body = alloc<Block>(std::vector<StmtPtr>({}));
}
}
if (!new_loop_body->empty()) {
new_loop_bodies.push_back(new_loop_body);
}
// The first loop body has to be in the original loop.
loop->body()->splice(loop->body()->begin(), new_loop_bodies.front());
std::vector<ForPtr> new_loops = {loop};
// Create loops for all the remaining blocks.
// Add all the new loops to the parent block.
for (size_t i = 1; i < new_loop_bodies.size(); ++i) {
auto new_loop = loop->cloneWithNewBody(new_loop_bodies[i]);
root_block->insert_stmt_after(new_loop, new_loops.back());
new_loops.push_back(new_loop);
}
return new_loops;
}
std::vector<ForPtr> LoopNest::distributeLoop(const ForPtr& loop) {
std::unordered_set<StmtPtr> stmtsInBlock(
loop->body()->begin(), loop->body()->end());
return distributeLoop(loop, stmtsInBlock);
}
std::vector<ForPtr> LoopNest::distributeLoopAndParents(const ForPtr& loop) {
auto parentLoop = getParentLoop(loop);
auto result = distributeLoop(loop);
if (parentLoop) {
return distributeLoopAndParents(parentLoop);
}
return result;
}
std::vector<ForPtr> LoopNest::distributeLoopOverInnerLoops(const ForPtr& loop) {
auto loops = NodeFinder<For>::find(loop);
std::unordered_set<StmtPtr> loopsSet(loops.begin(), loops.end());
return distributeLoop(loop, loopsSet);
}
std::vector<ForPtr> LoopNest::distributeLoopAndParentsOverInnerLoops(
const ForPtr& loop) {
auto parentLoop = getParentLoop(loop);
auto result = distributeLoopOverInnerLoops(loop);
if (parentLoop) {
return distributeLoopAndParentsOverInnerLoops(parentLoop);
}
return result;
}
static bool areEqual(const ExprPtr& expr1, const ExprPtr& expr2) {
auto diff = IRSimplifier::simplify(alloc<Sub>(expr1, expr2));
return diff->isConstant() && (immediateAs<int>(diff) == 0);
};
static bool doesExprContainAnyVar(
const ExprPtr& expr,
const std::unordered_set<VarPtr>& vars) {
for (const auto& v : VarFinder::find(expr)) {
if (vars.count(v)) {
return true;
}
}
return false;
}
// Returns true if the given list of indices refer to two accesses
// that are loop-independent w.r.t. the given list of outer loop
// variables.
static bool areIndicesLoopIndependent(
const std::vector<ExprPtr>& expr_list1,
const std::vector<ExprPtr>& expr_list2,
const std::unordered_set<VarPtr>& outer_loop_vars) {
if (expr_list1.size() != expr_list2.size()) {
return false;
}
for (size_t i = 0; i < expr_list1.size(); ++i) {
const auto& expr1 = expr_list1[i];
const auto& expr2 = expr_list2[i];
if (doesExprContainAnyVar(expr1, outer_loop_vars) ||
doesExprContainAnyVar(expr2, outer_loop_vars)) {
if (!areEqual(expr1, expr2)) {
return false;
}
}
}
return true;
}
bool LoopNest::hasLoopCarriedDependence(const ForPtr& loop) {
analysis::MemDependencyChecker analyzer;
loop->accept(&analyzer);
std::unordered_set<VarPtr> outer_loop_vars = {loop->var()};
auto outer_loops = LoopNest::getEnclosingLoopNest(loop);
for (const auto& l : outer_loops) {
outer_loop_vars.insert(l->var());
}
// High-level algorithm to check if two accesses to a buffer, A and B, one of
// which is a Store, result in a loop-carried dependence:
// 1. For every pair of index expressions, Ai and Bi, that refer to a dim
// of A and B, if one of the following conditions are satisfied:
// a) Ai and Bi are equal (OR)
// b) Both Ai and Bi do not contain any outer-loop variables
// then, the dependence between A and B is a loop-independent
// dependence. This is because, in the case of b), those index
// expressions do not affect the ordering of accesses A and B.
// 2. If condition 1) is not satisfied:
// a) if the bounds on the accesses overlap, then this is a
// loop-carried dependence.
// b) if the bounds on the accesses do not overlap, then there is no
// dependence.
//
// NOTE: Since we check for equality of index expressions whenever outer
// loop variables are involved, this may incorrectly report some cases as
// having a loop-carried dependence. It is impractical to handle all
// possible cases here, so, we are being conservative and allow for
// some false positives. While this will prevent some loop fusion
// opportunities, that should be a small fraction of the cases that are
// allowed.
//
// Implementation:
//
// For every pair of statements, S1 and S2, in the loop:
// * Get the loads and stores in S1 and S2.
// * For every store in S1 and load in S2 to the same buffer, if the index
// expressions are not equal and there is an overlap in accesses, return
// true to indicate a loop-carried dependence.
// * For every load in S1 and store in S2 to the same buffer, if the index
// expressions are not equal and there is an overlap in accesses, return
// true to indicate a loop-carried dependence.
// * For every store in S1 and store in S2 to the same buffer, if the index
// expressions are not equal and there is an overlap in accesses, return
// true to indicate a loop-carried dependence.
for (auto it1 = loop->body()->begin(); it1 != loop->body()->end(); ++it1) {
for (auto it2 = std::next(it1); it2 != loop->body()->end(); ++it2) {
auto aStores = NodeFinder<Store>::find(*it1);
auto aLoads = NodeFinder<Load>::find(*it1);
auto bStores = NodeFinder<Store>::find(*it2);
auto bLoads = NodeFinder<Load>::find(*it2);
// ReadAfterWrite
for (auto& aStore : aStores) {
for (auto& bLoad : bLoads) {
if (aStore->buf() == bLoad->buf()) {
if (!areIndicesLoopIndependent(
aStore->indices(), bLoad->indices(), outer_loop_vars)) {
if (isOverlapping(analyzer, aStore, bLoad)) {
return true;
}
}
}
}
}
// WriteAfterRead
for (auto& bStore : bStores) {
for (auto& aLoad : aLoads) {
if (bStore->buf() == aLoad->buf()) {
if (!areIndicesLoopIndependent(
bStore->indices(), aLoad->indices(), outer_loop_vars)) {
if (isOverlapping(analyzer, bStore, aLoad)) {
return true;
}
}
}
}
}
// WriteAfterWrite
for (auto& aStore : aStores) {
for (auto& bStore : bStores) {
if (aStore->buf() == bStore->buf()) {
if (!areIndicesLoopIndependent(
aStore->indices(), bStore->indices(), outer_loop_vars)) {
if (isOverlapping(analyzer, aStore, bStore)) {
return true;
}
}
}
}
}
}
}
return false;
}
bool LoopNest::unsafeFuseLoops(
const std::vector<ForPtr>& loops,
ForPtr* fused) {
if (loops.empty()) {
return false;
}
if (loops.size() == 1) {
*fused = loops.front();
return true;
}
// Check if all the loops have the same parent.
auto root = loops.front()->get_parent();
for (const auto& l : loops) {
auto par = l->get_parent();
if (par == nullptr) {
return false;
}
if (par != root) {
return false;
}
}
auto root_block = to<Block>(root);
if (root_block == nullptr) {
return false;
}
// Currently, we only handle cases where there are no statements between
// the given loops in their parents body. We can possibly relax this
// constraint by allowing statements that do not affect the loops being
// fused by performing some dependency analysis. TODO.
auto it = root_block->begin();
for (; it != root_block->end(); ++it) {
if (*it == loops.front()) {
break;
}
}
TORCH_INTERNAL_ASSERT(
it != root_block->end(),
buildErrorMessage(
"Could not find the given loop in the root stmt in unsafeFuseLoop the fuser."));
for (const auto& l : loops) {
if (*it != l) {
return false;
}
++it;
}
const auto& first_loop = loops.front();
// Fuse the loops by taking all the statements from the second loops
// onwards and moving them into the first loop's body.
// This way the final fused loop will be the same as the first loop.
for (size_t i = 1; i < loops.size(); ++i) {
auto body = to<Block>(SubstituteInClone(
loops[i]->body(), {{loops[i]->var(), first_loop->var()}}));
first_loop->body()->splice(first_loop->body()->end(), body);
root_block->remove_stmt(loops[i]);
}
*fused = loops.front();
return true;
}
bool LoopNest::fuseLoops(const std::vector<ForPtr>& loops, ForPtr* fused) {
if (loops.empty()) {
return false;
}
if (loops.size() == 1) {
*fused = loops.front();
return true;
}
// Check if bounds are the same for all the loops.
const auto& first_loop = loops.front();
auto first_loop_start = IRSimplifier::simplify(first_loop->start());
auto first_loop_stop = IRSimplifier::simplify(first_loop->stop());
for (size_t i = 1; i < loops.size(); ++i) {
const auto& curr_loop = loops[i];
auto curr_loop_start = IRSimplifier::simplify(curr_loop->start());
auto curr_loop_stop = IRSimplifier::simplify(curr_loop->stop());
if (!areEqual(curr_loop_start, first_loop_start)) {
return false;
}
if (!areEqual(curr_loop_stop, first_loop_stop)) {
return false;
}
}
// We need to check if fusing the loops results in a loop-carried dependence.
// This check can be done only after the loops are fused into one. But if the
// check is violated, we need to return the given loops in the original form.
// So, we create a clone of all the loops, fuse them and check for this.
std::vector<ForPtr> loops_copy;
loops_copy.reserve(loops.size());
BlockPtr parent = alloc<Block>(std::vector<StmtPtr>({}));
for (auto& l : loops) {
auto l_copy = Stmt::clone(l);
loops_copy.push_back(to<For>(l_copy));
parent->append_stmt(l_copy);
}
ForPtr fused_copy;
bool ret = unsafeFuseLoops(loops_copy, &fused_copy);
if (!ret || hasLoopCarriedDependence(fused_copy)) {
return false;
}
// Now that all conditions are satisfied, we fuse the given loops.
return unsafeFuseLoops(loops, fused);
}
ForPtr LoopNest::findOuterFor(ForPtr a, ForPtr b) {
StmtPtr s = b; // guess b is the latter.
while (s != nullptr) {
if (s == a) {
// yes, b is after a.
return a;
}
s = s->get_parent();
}
// check that the two are in the same loop nest.
s = a;
while (s != nullptr) {
if (s == b) {
// a is after b.
return b;
}
s = s->get_parent();
}
// a and b have no relationship.
return nullptr;
}
void LoopNest::reorderAxis(const ForPtr& a, const ForPtr& b) {
if (a == b) {
// nothing to do.
return;
}
// find inner and outer.
ForPtr outer = findOuterFor(a, b);
if (outer == nullptr) {
throw std::runtime_error("Reordered a loop not in LoopNest");
}
ForPtr inner = a == outer ? b : a;
std::deque<ForPtr> internal_axes;
// Find relevant axes, store reversed.
StmtPtr s = inner;
while (s != outer) {
if (const ForPtr& f = to<For>(s)) {
internal_axes.push_back(f);
}
s = s->get_parent();
}
internal_axes.push_back(outer);
BlockPtr root = to<Block>(outer->get_parent());
CHECK(root);
// Do a shallow copy of the inner blocks.
BlockPtr body = alloc<Block>(std::vector<StmtPtr>({}));
body->splice(body->end(), inner->body());
const ForPtr& before{outer};
ForPtr after{nullptr};
ForPtr last = internal_axes.front();
StmtPtr newInner = body;
s = inner;
while (s != outer) {
if (auto cond = to<Cond>(s->get_parent())) {
if (s == cond->true_stmt()) {
newInner = cond->cloneWithNewBody(newInner);
} else {
// s is the false branch of Cond
newInner = cond->cloneWithNewBodies(
alloc<Block>(std::vector<StmtPtr>({})), newInner);
}
}
s = s->get_parent();
}
// This is the major complexity in loop reordering: handling statements not in
// the straight line of the reorder. To handle this we partition the tree into
// the section before the critical path and after the critical path.
//
// An example of this pattern is:
// for i in ..
// Statement A
// for j in ..
// Statement B
// Statement C
//
// When reordering loop i and j we need to ensure that Statement A and C are
// still both executed with the loop extents of i, and that the three
// statements are not reordered (as much as possible).
for (const auto& loop : internal_axes) {
// If the inner loop had a component after the loop we must wrap it in a For
// loop matching this level of the tree.
if (after != nullptr) {
after = loop->cloneWithNewBody(after);
}
bool pastMidpoint = false;
bool hadBeforeStmts = false;
for (auto I = loop->body()->begin(), E = loop->body()->end(); I != E;) {
// Be careful not to invalidate the iterator.
StmtPtr s = *(I++);
if (s == last) {
// This is the midpoint.
loop->body()->remove_stmt(s);
if (!hadBeforeStmts) {
// If there were no existing statements this loop does not need to be
// preserved and we can roll it into the above loop.
last = loop;
}
pastMidpoint = true;
} else if (pastMidpoint) {
// Statements after the reordered path must be moved to a new tree after
// the reordered statement has occurred to preserve ordering.
loop->body()->remove_stmt(s);
if (after == nullptr) {
after = loop->cloneWithNewBody(s);
} else {
after->body()->append_stmt(s);
}
} else {
// We can leave any statements before the reordered loop alone, so long
// as we preserve the loop structure.
hadBeforeStmts = true;
}
}
}
// now we can actually reorder the chosen axes.
std::swap(internal_axes.front(), internal_axes.back());
// Create the reordered internals:
for (const auto& loop : internal_axes) {
newInner = loop->cloneWithNewBody(newInner);
}
// Append the new statements to the root of the tree.
if (before->body()->nstmts() == 0) {
// If the top level is now empty, eliminate it.
root->replace_stmt(before, newInner);
} else {
root->insert_stmt_after(newInner, before);
}
if (after) {
root->insert_stmt_after(after, newInner);
}
}
static bool isTrivialPermutation(const std::vector<size_t>& permutation) {
for (size_t i = 0; i < permutation.size(); ++i) {
if (permutation[i] != i) {
return false;
}
}
return true;
}
static bool isValidPermutation(std::vector<size_t> permutation) {
std::sort(permutation.begin(), permutation.end());
return isTrivialPermutation(permutation);
}
std::vector<ForPtr> LoopNest::reorder(
const std::vector<ForPtr>& loops,
const std::vector<size_t>& permutation) {
if (loops.size() != permutation.size()) {
throw malformed_input("invalid permutation size");
}
if (isTrivialPermutation(permutation)) {
return loops;
}
if (!isValidPermutation(permutation)) {
throw malformed_input("invalid permutation for reorder");
}
if (loops.size() < 2) {
return loops;
}
if (!areLoopsPerfectlyNested(loops)) {
throw malformed_input("reorder is only allowed on perfectly nested loops");
}
auto parent = to<Block>(loops.front()->get_parent());
if (parent == nullptr) {
throw malformed_input("parent of the loops must be a Block");
}
// Reorder the loops according to the permutation.
std::vector<ForPtr> result(loops.size());
for (size_t i = 0; i < loops.size(); ++i) {
result[i] = loops[permutation[i]];
}
// Remove the bodies from all the loops.
auto innermost_body = loops.back()->removeBody();
// We use an empty block statement to replace the outermost loop
// so that we know the position where the outermost reordered loop
// is to be inserted.
auto empty_block = alloc<Block>(std::vector<StmtPtr>({}));
parent->replace_stmt(loops.front(), empty_block);
for (size_t i = 1; i < loops.size(); ++i) {
auto block = to<Block>(loops[i]->get_parent());
TORCH_INTERNAL_ASSERT(
block,
buildErrorMessage(
"Expected parent stmt to be a non-null Block in reorder transformation the fuser."));
block->remove_stmt(loops[i]);
}
// Set the new bodies after reorder for all the loops.
for (size_t i = 0; i < result.size() - 1; ++i) {
result[i]->set_body(result[i + 1]);
}
result.back()->set_body(innermost_body);
parent->replace_stmt(empty_block, result.front());
return result;
}
ForPtr LoopNest::getLoopAt(ForPtr root, const std::vector<int>& indices) const {
if (indices.empty()) {
return root;
}
if (root == nullptr) {
throw malformed_input("root loop is null");
}
ForPtr curr = std::move(root);
for (auto i : indices) {
if (i < 0 || curr->body()->nstmts() <= static_cast<size_t>(i)) {
return nullptr;
}
std::list<StmtPtr>::iterator stmtp = curr->body()->begin();
std::advance(stmtp, i);
curr = to<For>(*stmtp);
if (curr == nullptr) {
return nullptr;
}
}
return curr;
}
ForPtr LoopNest::tile(
const ForPtr& x,
const ForPtr& y,
int x_factor,
int y_factor) {
auto parent = to<Block>(x->get_parent());
if (parent == nullptr) {
throw malformed_input("parent of the loops must be a Block");
}
if (!areLoopsPerfectlyNested({x, y})) {
throw malformed_input("two loops must be perfectly nested");
}
// Split x, y axes by x_factor and y_factor
ForPtr yi, ytail;
splitWithTail(y, y_factor, &yi, &ytail);
ForPtr xi, xtail;
splitWithTail(x, x_factor, &xi, &xtail);
// Distribute xi over yo and ytail so we can manipulate the loop order of {xo,
// xi, yo, yi}
auto loops = distributeLoop(xi);
// For {xi, yo, yi}, reorder the axes to be yo, xi, yi
xi = loops.front();
ForPtr yo = to<For>(xi->body()->stmts().front());
CHECK(yo);
reorder({xi, yo}, {1, 0});
// For {xi, ytail}, reorder the axes to be ytail, xi
if (loops.size() == 2) {
xi = loops.back();
ytail = to<For>(xi->body()->stmts().front());
CHECK(ytail);
reorder({xi, ytail}, {1, 0});
}
return xtail;
}
bool LoopNest::areLoopsPerfectlyNested(const std::vector<ForPtr>& loops) {
if (loops.size() < 2) {
return true;
}
for (size_t i = 0; i < loops.size() - 1; ++i) {
auto loop_body = loops[i]->body();
if (loop_body->nstmts() != 1 || loop_body->front() != loops[i + 1]) {
return false;
}
}
return true;
}
void LoopNest::fullUnroll(const ForPtr& f, StmtPtr* unrolled) {
BlockPtr p = to<Block>(f->get_parent());
if (!f) {
throw malformed_input("unroll attempted on null loop");
} else if (!p) {
throw malformed_input("unroll attempted on loop with no parent");
}
auto start_expr = IRSimplifier::simplify(f->start());
auto stop_expr = IRSimplifier::simplify(f->stop());
if (!start_expr->isConstant()) {
throw std::runtime_error("Can't unroll due to non-constant loop start!");
}
if (!stop_expr->isConstant()) {
throw std::runtime_error("Can't unroll due to non-constant loop stop!");
}
std::vector<StmtPtr> unrolled_stmts;
int start_val = immediateAs<int>(start_expr);
int stop_val = immediateAs<int>(stop_expr);
for (int current = start_val; current < stop_val; ++current) {
for (const auto& stmt : f->body()->stmts()) {
unrolled_stmts.push_back(SubstituteInClone(
stmt, {{f->var(), getImmediateByType(f->var()->dtype(), current)}}));
}
}
*unrolled = alloc<Block>(unrolled_stmts);
*unrolled = IRSimplifier::simplify(*unrolled);
p->replace_stmt(f, *unrolled);
}
void LoopNest::fullUnroll(const ForPtr& f) {
StmtPtr unrolled;
fullUnroll(f, &unrolled);
}
void LoopNest::unroll(const ForPtr& f, int factor, ForPtr* tail) {
if (factor < 2) {
return;
}
ForPtr inner;
splitWithTail(f, factor, &inner, tail);
fullUnroll(inner);
}
void LoopNest::unroll(const ForPtr& f, int factor) {
ForPtr tail;
unroll(f, factor, &tail);
}
bool LoopNest::isNormalized(const ForPtr& f) {
if (f->start()->isConstant()) {
return immediateAs<int>(f->start()) == 0;
}
return false;
}
bool LoopNest::normalize(const ForPtr& f) {
if (!f) {
throw malformed_input("normalize attempted on null loop");
}
if (isNormalized(f)) {
// No need to normalize anymore here.
return false;
}
auto for_body_normalized = Substitute(
f->body(),
{{f->var(), (VarHandle(f->var()) + ExprHandle(f->start())).node()}});
f->set_body(IRSimplifier::simplify(for_body_normalized));
f->set_stop(IRSimplifier::simplify(alloc<Sub>(f->stop(), f->start())));
f->set_start(immLike(f->stop(), 0));
return true;
}
// This function expects that there are 'num' loops perfectly nested within
// and including 'f'.
std::vector<ForPtr> LoopNest::getLoopStmtsInLoopNest(
const ForPtr& f,
size_t num) {
std::vector<ForPtr> loops(num);
ForPtr curr_for = f;
loops[0] = curr_for;
for (size_t i = 1; i < num; ++i) {
TORCH_INTERNAL_ASSERT(
curr_for->body()->nstmts() == 1,
buildErrorMessage("Expected a single stmt in the loop body."));
curr_for = to<For>(curr_for->body()->front());
TORCH_INTERNAL_ASSERT(
curr_for,
buildErrorMessage("Expected the only child stmt to be a For loop."));
loops[i] = curr_for;
}
return loops;
}
bool LoopNest::flatten(const std::vector<ForPtr>& loops, ForPtr* flattened) {
if (loops.empty()) {
throw malformed_input("flatten attempted on empty set of loops");
}
BlockPtr p = to<Block>(loops[0]->get_parent());
if (!p) {
throw malformed_input("flatten attempted on loops with no parent");
}
if (loops.size() == 1) {
// This loop nest is already flattened.
*flattened = loops[0];
return false;
}
// Check if all the loops correspond to a perfect loopnest:
// * every loop except the inner-most should have only one stmt, the For.
// Do not flatten, otherwise.
// This check also ensures we do not flatten reduction loops.
for (size_t i = 0; i < loops.size() - 1; ++i) {
if ((loops[i]->body()->nstmts() != 1) ||
(loops[i]->body()->front() != loops[i + 1])) {
return false;
}
}
// Normalize the loops before flattening.
// We need to normalize them from inner-most to outer because once the outer
// loop is normalized, the given pointers to inner loops point to old code.
// For the same reason, we can't store the normalized inner loops until after
// the outer-most loop is normalized.
for (size_t i = 0; i < loops.size(); ++i) {
size_t idx = loops.size() - i - 1;
LoopNest::normalize(loops[idx]);
}
// 'normalized' points to the outer-most loop in the normalized loopnest.
// Collect all the normalized loops.
auto normalized_loops = getLoopStmtsInLoopNest(loops.front(), loops.size());
auto flat_var = alloc<Var>(
normalized_loops[0]->var()->name_hint() + "_flat",
normalized_loops[0]->var()->dtype());
VarMapping var_mapping;
ExprPtr stop = immLike(flat_var, 1);
for (size_t i = 0; i < normalized_loops.size(); ++i) {
size_t idx = normalized_loops.size() - i - 1;
auto curr_loop = normalized_loops[idx];
ExprPtr div = alloc<Div>(flat_var, stop);
ExprPtr sub_expr = idx == 0 ? div : alloc<Mod>(div, curr_loop->stop());
var_mapping.emplace_back(curr_loop->var(), sub_expr);
stop = alloc<Mul>(curr_loop->stop(), stop);
}
auto flattened_body =
Substitute(normalized_loops.back()->removeBody(), var_mapping);
normalized_loops.front()->set_var(flat_var);
normalized_loops.front()->set_start(immLike(stop, 0));
normalized_loops.front()->set_stop(stop);
normalized_loops.front()->set_body(flattened_body);
*flattened = normalized_loops.front();
return true;
}
bool LoopNest::flatten(const std::vector<ForPtr>& loops) {
ForPtr flattened;
return flatten(loops, &flattened);
}
void LoopNest::compressBuffer(const BufPtr& buf, const StmtPtr& stmt) {
// Loop iterations in NNC IR do not follow sequential semantics by default.
// In other words, the iterations of the loops could be executed in any
// random order without affecting correctness. This constraint in turn
// implies that there cant be any *inter-iteration* dependences
// (or *loop-carried* dependences) in NNC loops. So, any NNC IR with such
// dependences is considered invalid.
//
// Given the constraint above, for any pair of accesses to a buffer (where
// at least one of the access is a write), the accesses must be
// loop-independent on the innermost loop containing the accesses as well as
// all the loops above it. So, any dimension that uses only those loop
// variables to access the given buffer could be optimized away.
//
// Algorithm:
// * Find all the accesses to the given buf. (A)
// * Find the parent common to all accesses in A. (P)
// * Collect all the loops above P. (L)
// * Collect all the loop variables corresponding to L. (LV)
// * For every access a in A:
// * For the index I in every dimension of a:
// * If the variables in I are all in LV, mark this dimension
// for deletion.
// * For every dimension that is marked for deletion in ALL accesses in A:
// * Update the buffer to set the size of that dimension to 1.
// * Update all accesses in A to set the index in that dimension to 0.
auto writes = WritesToBuf::find(stmt, buf);
auto reads = StmtsReadingBuf::find(stmt, buf);
// Find the parent common to all the buffer accesses.
BlockPtr parent = to<Block>(writes.front()->get_parent());
TORCH_INTERNAL_ASSERT(
parent,
buildErrorMessage(
"Expected parent stmt to be a non-null block in compressBuffer in the fuser."));
for (const auto& w : writes) {
parent = Block::getSharedParent(parent, w);
}
for (const auto& r : reads) {
parent = Block::getSharedParent(parent, r);
}
// Collect all the loops that are above the common parent.
auto loops = LoopNest::getEnclosingLoopNest(parent);
std::unordered_set<VarPtr> loop_vars;
for (const auto& l : loops) {
loop_vars.insert(l->var());
}
// TODO: Need to handle other Stmts / Exprs that read / write buffers.
auto stores = NodeFinder<Store>::find(stmt);
auto loads = NodeFinder<Load>::find(stmt);
// Vector to indicate which dimensions could be compressed away.
std::vector<bool> dims(buf->dims().size(), true);
auto check_indices = [&](const std::vector<ExprPtr>& indices) {
TORCH_INTERNAL_ASSERT(
indices.size() == dims.size(),
buildErrorMessage(
"Expected ranks to match in compressBuffer in the fuser."));
for (size_t i = 0; i < indices.size(); ++i) {
auto index_vars = NodeFinder<Var>::find(indices[i]);
for (const auto& iv : index_vars) {
if (loop_vars.count(iv) == 0) {
// A variable in this index is not in loop_vars.
// This implies that this dimension cannot be optimized away.
dims[i] = false;
break;
}
}
}
};
for (const auto& s : stores) {
if (s->buf() == buf) {
check_indices(s->indices());
}
}
for (const auto& l : loads) {
if (l->buf() == buf) {
check_indices(l->indices());
}
}
bool any_dim_to_compress = false;
for (auto d : dims) {
any_dim_to_compress |= d;
}
if (!any_dim_to_compress) {
return;
}
// Compress buffer by removing the marked dims.
std::vector<ExprPtr> new_dims(buf->dims());
for (size_t i = 0; i < dims.size(); ++i) {
if (dims[i]) {
new_dims[i] = immLike(buf->dims()[i], 1);
}
}
buf->set_dims(new_dims);
// Modify all access to reflect the removed dims.
auto get_new_indices = [&](const std::vector<ExprPtr>& indices) {
TORCH_INTERNAL_ASSERT(
indices.size() == dims.size(),
buildErrorMessage(
"Expected ranks to match in compressBuffer in the fuser."));
std::vector<ExprPtr> new_indices(indices);
for (size_t i = 0; i < dims.size(); ++i) {
if (dims[i]) {
new_indices[i] = immLike(indices[i], 0);
}
}
return new_indices;
};
for (const auto& s : stores) {
if (s->buf() == buf) {
s->set_indices(get_new_indices(s->indices()));
}
}
for (const auto& l : loads) {
if (l->buf() == buf) {
l->set_indices(get_new_indices(l->indices()));
}
}
}
void LoopNest::compressAllBuffers(const StmtPtr& stmt) {
for (const auto& buf : BufFinder::find(stmt)) {
compressBuffer(buf, stmt);
}
}
std::vector<ForPtr> LoopNest::getLoopStmtsFor(const Tensor& t) const {
StmtPtr cur_stmt = getLoopBodyFor(t);
return getLoopStmtsFor(cur_stmt);
}
std::vector<ForPtr> LoopNest::getLoopStmtsFor(const BufPtr& buf) const {
StmtPtr cur_stmt = getLoopBodyFor(buf);
return getLoopStmtsFor(cur_stmt);
}
std::vector<ForPtr> LoopNest::getLoopStmtsFor(StmtPtr s) const {
std::vector<ForPtr> result;
while (s) {
if (auto loop = to<For>(s)) {
result.push_back(loop);
}
s = s->get_parent();
}
std::reverse(result.begin(), result.end());
return result;
}
StmtPtr LoopNest::getLoopBodyFor(const Tensor& t) const {
return getLoopBodyFor(t.buf());
}
StmtPtr LoopNest::getLoopBodyFor(BufPtr buf) const {
auto writes = WritesToBuf::find(root_stmt_, std::move(buf));
// special case for reduction Tensors, ignore the initializer if it's the only
// op:
if (writes.size() == 2) {
if (StorePtr s = to<Store>(writes.back())) {
if (ReduceOpPtr r = to<ReduceOp>(s->value())) {
return (StmtPtr)s;
}
}
}
StmtPtr res = nullptr;
for (const auto& s : writes) {
if (!res) {
res = s;
continue;
}
res = Block::getSharedParent(res, s);
}
return (StmtPtr)res;
}
ForPtr LoopNest::getParentLoop(const StmtPtr& st) {
if (st == nullptr) {
return nullptr;
}
auto par = st->get_parent();
if (auto f = to<For>(par)) {
return f;
}
return getParentLoop(par);
}
std::vector<ForPtr> LoopNest::getEnclosingLoopNest(const StmtPtr& st) {
std::vector<ForPtr> loops;
auto f = getParentLoop(st);
while (f) {
loops.push_back(f);
f = getParentLoop(f);
}
std::reverse(loops.begin(), loops.end());
return loops;
}
std::vector<StmtPtr> LoopNest::getAllWritesToBuf(BufPtr buf) const {
return WritesToBuf::find(root_stmt_, std::move(buf));
}
std::vector<ForPtr> LoopNest::getAllInnermostLoopsWritingToBuf(
BufPtr buf) const {
auto writes = getAllWritesToBuf(std::move(buf));
std::vector<ForPtr> innermost_loops;
innermost_loops.reserve(writes.size());
for (const auto& w : writes) {
innermost_loops.push_back(LoopNest::getParentLoop(w));
}
return innermost_loops;
}
std::vector<std::vector<ForPtr>> LoopNest::getAllLoopNestsWritingToBuf(
BufPtr buf) const {
auto writes = getAllWritesToBuf(std::move(buf));
std::vector<std::vector<ForPtr>> loopnests;
loopnests.reserve(writes.size());
for (const auto& w : writes) {
loopnests.emplace_back(LoopNest::getEnclosingLoopNest(w));
}
return loopnests;
}
StmtPtr LoopNest::simplify() {
root_stmt_ = IRSimplifier::simplify(root_stmt_);
return root_stmt_;
}
StmtPtr FlattenIndexes(const StmtPtr& s) {
IndexFlattener idx_flattener;
return idx_flattener.flatten(s);
}
// Auxiliary class for rewriting we're doing in `compute_at`. See
// LoopNest::computeAt for more details.
class LoopComputeAtRewriter : public IRMutator {
public:
LoopComputeAtRewriter(
BufPtr buf,
BufPtr new_buf,
std::vector<ExprPtr> offsets)
: buf_(std::move(buf)),
new_buf_(std::move(new_buf)),
offsets_(std::move(offsets)) {}
private:
BufPtr buf_;
BufPtr new_buf_;
std::vector<ExprPtr> offsets_;
ExprPtr mutate(const LoadPtr& v) override {
if (v->buf() != buf_) {
return v;
}
std::vector<ExprPtr> new_indices(v->indices().size());
for (const auto i : c10::irange(v->indices().size())) {
new_indices[i] =
IRSimplifier::simplify(alloc<Sub>(v->indices()[i], offsets_[i]));
}
return alloc<Load>(v->dtype(), new_buf_, new_indices);
}
};
static StorePtr getStoreStmtOfProducer(const StmtPtr& s) {
if (StorePtr st = to<Store>(s)) {
return st;
}
if (BlockPtr b = to<Block>(s)) {
for (const StmtPtr& ss : *b) {
if (StorePtr st = to<Store>(ss)) {
return st;
}
}
}
return nullptr;
}
static std::vector<VarPtr> getOuterLoopIndexes(StmtPtr s) {
std::vector<VarPtr> res;
StmtPtr cur = std::move(s);
while (cur) {
if (auto l = to<For>(cur)) {
res.push_back(l->var());
}
cur = cur->get_parent();
}
return res;
}
class CacheReplacer : public IRMutator {
public:
CacheReplacer(BufPtr buffer, BufPtr cache, std::vector<ExprPtr>& offsets)
: buf_(std::move(buffer)), cache_(std::move(cache)), offsets_(offsets) {}
private:
ExprPtr mutate(const LoadPtr& v) override {
BufPtr buf = v->buf();
if (buf != buf_) {
return IRMutator::mutate(v);
}
// Map indices to call-parameters.
std::vector<ExprPtr> newIndices;
TORCH_INTERNAL_ASSERT(
offsets_.size() == v->indices().size(),
buildErrorMessage(
"Expected ranks to match in CacheReplacer in the fuser."));
for (size_t i = 0; i < v->indices().size(); ++i) {
ExprPtr index = v->indices()[i]->accept_mutator(this);
ExprPtr offset = offsets_[i];
ExprPtr sub = IRSimplifier::simplify(alloc<Sub>(index, offset));
newIndices.push_back(sub);
}
v->set_buf(cache_);
v->set_indices(newIndices);
return v;
}
StmtPtr mutate(const StorePtr& v) override {
BufPtr buf = v->buf();
if (buf != buf_) {
return IRMutator::mutate(v);
}
ExprPtr newValue = v->value()->accept_mutator(this);
// Map indices to call-parameters.
std::vector<ExprPtr> newIndices;
TORCH_INTERNAL_ASSERT(
offsets_.size() == v->indices().size(),
buildErrorMessage(
"Expected ranks to match in CacheReplacer in the fuser."));
for (size_t i = 0; i < v->indices().size(); ++i) {
ExprPtr index = v->indices()[i]->accept_mutator(this);
ExprPtr offset = offsets_[i];
ExprPtr sub = IRSimplifier::simplify(alloc<Sub>(index, offset));
newIndices.push_back(sub);
}
v->set_buf(cache_);
v->set_indices(newIndices);
v->set_value(newValue);
return v;
}
BufPtr buf_;
BufPtr cache_;
std::vector<ExprPtr>& offsets_;
};
LoopNest::AccessResult LoopNest::cacheAccesses(
const BufPtr& producer,
const std::string& name,
const StmtPtr& consumer) {
ReduceOpPtr reduceOp{nullptr};
auto stores = NodeFinder<Store>::find(consumer);
for (const auto& store : stores) {
if (auto ro = to<ReduceOp>(store->value())) {
if (store->buf() != producer) {
continue;
}
if (reduceOp) {
throw std::runtime_error(
"can only cache accesses used by at most a single reduceOp");
return {nullptr, nullptr};
}
reduceOp = ro;
}
}
// Check bounds but don't care about AccessKind.
auto consumer_bounds_info = inferBounds(consumer, false);
auto bounds_it = consumer_bounds_info.find(producer);
if (bounds_it == consumer_bounds_info.end()) {
throw std::runtime_error("consumer does not use the Tensor produced");
return {nullptr, nullptr};
}
TORCH_INTERNAL_ASSERT(
bounds_it->second.size() == 1,
buildErrorMessage(
"Unexpected number of bound info entries in cacheAccesses in the fuser."));
TensorAccessBoundsInfo& info = bounds_it->second[0];
bool hasReads = info.kind == kLoad || info.kind == kMutate;
bool hasWrites = info.kind == kStore || info.kind == kMutate;
std::vector<std::string> var_names = {"i", "j", "k", "l", "m", "n", "o", "p"};
std::vector<ExprPtr> tmp_dims;
std::vector<VarPtr> new_loop_vars;
std::vector<ExprPtr> new_loop_vars_expr;
// Determine the size of the cache, and create a loop var for each dimension.
for (size_t i = 0; i < info.start.size(); ++i) {
ExprPtr dim = IRSimplifier::simplify(alloc<Add>(
alloc<Sub>(info.stop[i], info.start[i]), immLike(info.stop[i], 1)));
tmp_dims.push_back(dim);
new_loop_vars.push_back(
alloc<Var>(var_names[i % var_names.size()], info.stop[i]->dtype()));
new_loop_vars_expr.push_back(new_loop_vars[i]);
}
// Create the var.
BufPtr tmp_buf =
alloc<Buf>(alloc<Var>(name, kHandle), tmp_dims, producer->dtype());
// determine the offsets for calls into the cache based off the loop start of
// each axis.
std::vector<ExprPtr> tmp_params;
for (size_t i = 0; i < new_loop_vars.size(); ++i) {
tmp_params.push_back(alloc<Add>(new_loop_vars[i], info.start[i]));
}
// Replace accesses to the producer in the consumer with the cache.
CacheReplacer replacer(producer, tmp_buf, info.start);
consumer->accept_mutator(&replacer);
// replace the old consumer with the replaced consumer.
BlockPtr consumer_block = to<Block>(consumer);
BlockPtr parent_block = to<Block>(consumer->get_parent());
// if the consumer is a block, we should mutate it in place.
bool is_block = consumer_block != nullptr;
// If there's a reduction and we are operating on the reduce axis, we need to
// initialize the cache with 0s. Also, we can't just write the result straight
// back to the original buffer, since after parallelism the writes will race.
// Instead we need to create a new ReduceOp.
bool on_reduce_axis = false;
if (reduceOp) {
std::set<VarPtr> reduce_args(
reduceOp->reduce_args().begin(), reduceOp->reduce_args().end());
std::set<VarPtr> enclosing_vars;
for (const auto& enclosing_for_stmt : NodeFinder<For>::find(consumer)) {
enclosing_vars.insert(enclosing_for_stmt->var());
}
for (const auto& reduce_arg : reduce_args) {
if (enclosing_vars.find(reduce_arg) == enclosing_vars.end()) {
on_reduce_axis = true;
}
}
}
if (reduceOp && on_reduce_axis) {
// reduceOp means we had both loads and stores.
// Init cache to 0.
StmtPtr tmp_init = alloc<Store>(
tmp_buf, new_loop_vars_expr, getImmediateByType(tmp_buf->dtype(), 0));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_init = alloc<For>(
new_loop_vars[i], immLike(tmp_dims[i], 0), tmp_dims[i], tmp_init);
}
if (is_block) {
consumer_block->prepend_stmt(tmp_init);
} else {
parent_block->insert_stmt_before(tmp_init, consumer);
}
// Reduce back to the original buffer:
StmtPtr tmp_store = alloc<Store>(
producer,
tmp_params,
reduceOp->reducer()(
producer,
alloc<Load>(tmp_buf, new_loop_vars_expr),
tmp_params,
{}));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_store = alloc<For>(
new_loop_vars[i], immLike(tmp_dims[i], 0), tmp_dims[i], tmp_store);
}
if (is_block) {
consumer_block->append_stmt(tmp_store);
} else {
parent_block->insert_stmt_after(tmp_store, consumer);
}
return std::make_pair(tmp_buf, consumer);
}
if (hasReads) {
// Fill the cache with values from the consumer.
StmtPtr tmp_store = alloc<Store>(
tmp_buf, new_loop_vars_expr, alloc<Load>(producer, tmp_params));
for (int64_t i = new_loop_vars.size() - 1; i >= 0; --i) {
tmp_store = alloc<For>(
new_loop_vars[i], immLike(tmp_dims[i], 0), tmp_dims[i], tmp_store);
}
if (is_block) {
consumer_block->prepend_stmt(tmp_store);
} else {
parent_block->insert_stmt_before(tmp_store, consumer);
}
}
if (hasWrites) {
// sync the cache back to the producer buf.
StmtPtr tmp_store = alloc<Store>(
producer, tmp_params, alloc<Load>(tmp_buf, new_loop_vars_expr));
for (int64_t i = static_cast<int64_t>(new_loop_vars.size()) - 1; i >= 0;
--i) {
tmp_store = alloc<For>(
new_loop_vars[i], immLike(tmp_dims[i], 0), tmp_dims[i], tmp_store);
}
if (is_block) {
consumer_block->append_stmt(tmp_store);
} else {
parent_block->insert_stmt_after(tmp_store, consumer);
}
}
return std::make_pair(tmp_buf, consumer);
}
/*
* WHAT COMPUTE_AT DOES
* ====================
*
* Suppose we have two loops:
*
* for i in 0..100:
* for j in 0..200:
* A[i,j] = sin(i*j)
* for i in 0..100:
* for j in 0..199:
* B[i,j] = A[i,j] + A[i, j+1]
*
* If we compute these loops as is, we would have to allocate two buffers:
* 100x200 for A and 100x199 for B. To decrease the memory usage one can use
* compute_inline primitive, which would result in the following:
*
* for i in 0..100:
* for j in 0..199:
* B[i,j] = sin(i*j) + sin(i*(j+1))
*
* We now need only one buffer - 100x199 for B. However, we're now doing some
* redundant computations: we're calling `sin` twice as much as in the first
* version.
*
* Ultimately, we nede to choose at what point we prefer to compute values of
* A[i,j] - we can do it in the very beginning for the entire buffer A (the
* first option) or compute it on the fly when we compute B (the second option).
* There are also options in between those two: we can compute a part of B which
* is required for a computation of part of B, e.g. for a single row of B. The
* code would then look like:
*
* for i in 0..100:
* for j in 0..200:
* A[j] = sin(i*j)
* for j in 0..199:
* B[i,j] = A[j] + A[j+1]
*
* In this case we're only using 1x200 for A, and we're avoiding redundant
* computations.
*
* The purpose of `compute_at` is to achieve exactly this transformation.
*
* compute_at requires to specify What to compute and Where to compute: in our
* example we would call compute_at(What=`A[i,j] = sin(i*j)`, Where=`for i in
* 0..100`).
*
* More info about compute_at could be found in Halide's tutorials:
* https://halide-lang.org/tutorials/tutorial_lesson_08_scheduling_2.html
*
* HOW COMPUTE_AT WORKS
* ====================
*
* The most important part of compute_at is bounds inference: we need to figure
* out what part of the used tensors we need to compute when we move the
* computation to a new scope. In the example above, we need bounds inference to
* tell us that in order to compute A at each iteration of the outer loop, we
* need to compute A within indices [i:i+1,0:200].
*
* This info allows us to conclude that we need a temp buffer of size 1x200.
*
* Once this is known we need to insert statements for allocation and freeing
* the temporary buffer and copy the original computation to fill the temp
* buffer with proper values. When we copy the computation we also must rewrite
* indices used in it: old indices are referring to the old loop and are not
* valid in the new loop.
*
* To easier follow the logic, let's examine an example. Suppose we start from
* the following loop nest:
* for py in 0..100:
* for px in 0..100:
* producer[py,px] = py*px
* for cy in 0..100:
* for cx in 0..100:
* consumer[cy,cx] = producer[cy,cx]
*
* And then we're running `compute_at(producer, cy)`.
*
* What we would like to get is the following loop nest:
* for py in 0..100:
* for px in 0..100:
* producer[py,px] = py*px
* for cy in 0..100:
* Allocate(temp, {1, 100})
* for ty in 0..1:
* for tx in 0..100:
* temp[ty,tx] = (ty+cy)*(tx+0)
* for cx in 0..100:
* consumer[cy,cx] = temp[0,cx]
* Free(temp)
*
* NB: this loop nest can and should be simplified (e.g. the producer loop can
* be removed since its result is no longer used), but this clean-up
* optimization is performed separately (currently, not performed at all).
*
* If we examine the final loop nest, we can identify that the following steps
* needs to be performed:
* - Bounds inference needs to tell us that we need a 1x100 buffer for temp.
* - Allocate and Free statements for this buffer need to be inserted to the
* loop.
* - A new loop-nest should be inserted to the loop CY for computing `temp`
* and it should replicate the loopnest of producer (PY,PX loops). The indices
* in the loop body need to be offset by (cy, 0) - the offsets come from
* bounds inference too.
* - The computation of `consumer` needs to be rewritten so that it uses
* `temp` instead of `producer`. The indices in the corresponding accesses
* also need to be offset.
*/
void LoopNest::computeAt(const StmtPtr& s, const ForPtr& f) {
StorePtr st = getStoreStmtOfProducer(s);
if (!st) {
return;
}
// Infer bounds info for all accesses that we make in the loop
auto loop_bounds_info = inferBounds(f->body());
// bounds_it holds bounds info for the store we're trying to move to
// the loop. If its result isn't accessed in the loop at all - do nothing and
// exit early.
auto bounds_it = loop_bounds_info.find(st->buf());
if (bounds_it == loop_bounds_info.end()) {
return;
}
// Compute dimensions of the temp buffer we would need to allocate
std::vector<ExprPtr> dims = getBoundExtents(bounds_it->second);
// TODO: Use name-hint of the producer instead of "temp"
BufPtr temp_buf = alloc<Buf>("temp", dims, st->value()->dtype());
// Generate index variables for 'temp'
std::vector<ExprPtr> temp_indices(dims.size());
for (const auto i : c10::irange(dims.size())) {
// TODO: Use name-hint of the producer indices instead of 'idx'
temp_indices[i] =
alloc<Var>(std::string("idx") + std::to_string(i), dims[i]->dtype());
}
// Prepare substitute rules for constructing the temp statement from the prod
// statement
// TODO: Instead of going up the loop nest we should go through the indices in
// the original tensor expression. The loops in the nest might've been
// modified (e.g. split or merged) so that the loop indices no longer
// correspond to the indices of the original expression and even their number
// might be different. In that case, the loop below would crash.
std::vector<VarPtr> prod_indices = getOuterLoopIndexes(s);
std::vector<std::pair<VarPtr, ExprPtr>> rewrite_indices_map;
std::vector<ExprPtr> offsets;
for (const TensorAccessBoundsInfo& p : bounds_it->second) {
for (const auto i : c10::irange(p.start.size())) {
if (offsets.size() <= i) {
offsets.push_back(p.start[i]);
} else {
offsets[i] =
IRSimplifier::simplify(alloc<Min>(offsets[i], p.start[i], true));
}
}
}
for (const auto i : c10::irange(prod_indices.size())) {
rewrite_indices_map.emplace_back(
prod_indices[i], alloc<Add>(temp_indices[i], offsets[i]));
}
// Construct the temp statement
StmtPtr bd = alloc<Store>(
temp_buf,
temp_indices,
SubstituteInClone(st->value(), rewrite_indices_map));
// Construct the loop nest for the temp computation
for (const auto i : c10::irange(dims.size())) {
// We're creating loops from innermost to outermost, so we need to access
// dimensions in reversed order.
size_t dim_idx = dims.size() - 1 - i;
bd = alloc<For>(
to<Var>(temp_indices[dim_idx]),
immLike(dims[dim_idx], 0),
dims[dim_idx],
bd);
}
// Add constructed stmts to the consumer loop
f->body()->prepend_stmt(bd);
// Rewrite accesses to producer in consumer with accesses to temp
LoopComputeAtRewriter lr(st->buf(), temp_buf, offsets);
StmtPtr new_f = f->accept_mutator(&lr);
if (f != new_f) {
BlockPtr bb = to<Block>(f->get_parent());
bb->replace_stmt(f, new_f);
}
}
class RfactorStoreRewriter : public IRMutator {
public:
RfactorStoreRewriter(
BufPtr old_buf,
const std::vector<ExprPtr>& old_indices,
BufPtr new_buf,
VarPtr reduction_var)
: old_buf_(std::move(old_buf)),
old_indices_(old_indices),
new_buf_(std::move(new_buf)),
reduction_var_(std::move(reduction_var)),
new_indices_(old_indices) {
new_indices_.push_back(reduction_var_);
}
ExprPtr mutate(const LoadPtr& v) override {
if (v->buf() != old_buf_) {
return IRMutator::mutate(v);
}
TORCH_INTERNAL_ASSERT(
old_indices_.size() == v->indices().size(),
buildErrorMessage(
"Expected ranks to match in RfactorStoreRewriter in the fuser."));
bool equal_indices = true;
for (size_t i = 0; i < v->indices().size(); ++i) {
if (!exprEquals(v->indices()[i], old_indices_[i])) {
equal_indices = false;
break;
}
}
if (!equal_indices) {
return IRMutator::mutate(v);
}
return alloc<Load>(new_buf_, new_indices_);
}
ExprPtr mutate(const ReduceOpPtr& v) override {
ExprPtr body_new = v->body()->accept_mutator(this);
std::vector<VarPtr> new_reduce_args;
for (const auto& r : v->reduce_args()) {
if (r != reduction_var_) {
new_reduce_args.push_back(r);
}
}
return alloc<ReduceOp>(body_new, new_reduce_args, v->reducer());
}
StmtPtr mutate(const StorePtr& v) override {
if (v->buf() != old_buf_) {
return IRMutator::mutate(v);
}
TORCH_INTERNAL_ASSERT(
old_indices_.size() == v->indices().size(),
buildErrorMessage(
"Expected ranks to match in RfactorStoreRewriter in the fuser."));
bool equal_indices = true;
for (size_t i = 0; i < v->indices().size(); ++i) {
if (!exprEquals(v->indices()[i], old_indices_[i])) {
equal_indices = false;
break;
}
}
if (!equal_indices) {
return IRMutator::mutate(v);
}
ExprPtr new_value = v->value()->accept_mutator(this);
return alloc<Store>(new_buf_, new_indices_, new_value);
}
private:
BufPtr old_buf_;
const std::vector<ExprPtr>& old_indices_;
BufPtr new_buf_;
VarPtr reduction_var_;
std::vector<ExprPtr> new_indices_;
};
bool LoopNest::rfactor(const StmtPtr& st, const ForPtr& target_for) {
BufPtr tmp_buf = nullptr;
return rfactor(st, target_for, &tmp_buf);
}
bool LoopNest::rfactor(
const StmtPtr& st,
const ForPtr& outer_reduction_for,
BufPtr* rfac_buf_ptr) {
StorePtr reduction_store = to<Store>(st);
ReduceOpPtr reduce_op = to<ReduceOp>(reduction_store->value());
if (!reduce_op) {
// Not a reduction store
return false;
}
auto orig_buf = reduction_store->buf();
auto orig_buf_indices = reduction_store->indices();
VarPtr reduction_var = outer_reduction_for->var();
std::set<VarPtr> reduce_args = {
reduce_op->reduce_args().begin(), reduce_op->reduce_args().end()};
if (reduce_args.size() < 2) {
// Not enough reduction axis to do rfactor
return false;
}
// Verify that outer_reduction_for is a perfect loop nest with all loops being
// reductions
StmtPtr cur = outer_reduction_for;
while (ForPtr cur_for = to<For>(cur)) {
if (!reduce_args.count(cur_for->var())) {
// output axis inside outer_reduction_for are not allowed
return false;
}
reduce_args.erase(cur_for->var());
BlockPtr b = cur_for->body();
if (b->nstmts() != 1) {
return false;
}
cur = b->stmts().front();
}
if (cur != st) {
// The reduction store is not a single stmt in the innermost loop - bail in
// that case
return false;
}
if (!reduce_args.empty()) {
// This is not the outermost reduction axis
return false;
}
// assert: reduce_axis match loop vars from outer_reduction_for and inside
// assert: no other stmts in outer_reduction_for or its child loops
std::vector<ExprPtr> rfac_dims = orig_buf->dims();
ExprPtr extra_dim = IRSimplifier::simplify(
alloc<Sub>(outer_reduction_for->stop(), outer_reduction_for->start()));
rfac_dims.push_back(extra_dim);
ExprPtr rfac_init =
alloc<Cast>(reduce_op->dtype(), reduce_op->reducer().initializer());
*rfac_buf_ptr = alloc<Buf>(
orig_buf->name_hint() + "_rfac",
rfac_dims,
reduce_op->dtype(),
rfac_init);
BufPtr rfac_buf = *rfac_buf_ptr;
// Rewrite the original reduction store to use the temporary rfac buffer:
// 1) X[*indexes] --> T[*indexes + {reduction_var}]
// 2) reduce_axis -= {reduction_var}
RfactorStoreRewriter rfac_rewriter(
orig_buf, orig_buf_indices, rfac_buf, reduction_var);
to<Block>(st->get_parent())
->replace_stmt(st, st->accept_mutator(&rfac_rewriter));
// Insert a store for the final reduction over the temp buffer into the
// original buffer:
// X[*indexes] = ReduceOp(X[*indexes] + T[*indexes + {reduction_var}],
// reduce_axis={reduction_var})
BlockPtr b = outer_reduction_for->body();
TORCH_INTERNAL_ASSERT(
b->nstmts() == 1,
buildErrorMessage(
"Expected to have a single stmt in the block in rfactor transformation in the fuser."));
StmtPtr first_reduction_loop = b->stmts().front();
auto rfac_buf_indices = orig_buf_indices;
rfac_buf_indices.emplace_back(reduction_var);
ExprPtr final_reduce_load = alloc<Load>(rfac_buf, rfac_buf_indices);
outer_reduction_for->body()->insert_stmt_after(
alloc<Store>(
orig_buf,
orig_buf_indices,
reduce_op->reducer()(
orig_buf, final_reduce_load, orig_buf_indices, {reduction_var})),
first_reduction_loop);
// Insert an initialization store for the temp buffer:
// T[a,b,c] = init
outer_reduction_for->body()->insert_stmt_before(
alloc<Store>(rfac_buf, rfac_buf_indices, rfac_init),
first_reduction_loop);
return true;
}
} // namespace torch::jit::tensorexpr