Files
pytorch/test/test_python_dispatch.py
Edward Yang 0239284313 Relax dtype restrictions on torch.Tensor (#73850)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73850

Previously, torch.Tensor was treated as if it were torch.FloatTensor
(where Float is whatever the default dtype was).  This is not good
behavior for tensor subclasses, which inherit from torch.Tensor and
will want to super() call into it and will only notice later that
only float works as a dtype.  So in this PR I relax the behavior
for this case to make the torch.Tensor constructor more useful for
subclasses.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D34707396

Pulled By: ezyang

fbshipit-source-id: a995d601007b6fcd0317d89f66ca7e08c4d6053e
(cherry picked from commit e8d0d7b3e8b17681b931cbe4f5729de2e80cf3de)
2022-03-09 15:45:24 +00:00

739 lines
29 KiB
Python

# Owner(s): ["high priority"]
import tempfile
import torch
from copy import deepcopy
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.logging_tensor import LoggingTensor, log_input, capture_logs, no_dispatch
from torch.utils._pytree import tree_map
from torch.utils._python_dispatch import enable_python_mode
import logging
class TestPythonDispatch(TestCase):
def test_basic(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.tensor([3.0]), requires_grad=True)
log_input("x", x)
y = x * x
saved_x = y.grad_fn._saved_self
grad_y = LoggingTensor(torch.tensor([1.0]))
log_input("grad_y", grad_y)
g, = torch.autograd.grad((y,), (x,), (grad_y,))
self.assertEqual(g.elem, torch.tensor([6.0]))
with torch.no_grad():
self.assertEqual(saved_x, x)
self.assertEqual(saved_x._version, x._version)
x.add_(2)
self.assertEqual(saved_x, x)
# TODO: figure out why broken
# self.assertEqual(saved_x._version, x._version)
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten.mul.Tensor($0, $0)
$2 = input('grad_y')
$3 = torch._ops.aten.mul.Tensor($2, $0)
$4 = torch._ops.aten.mul.Tensor($2, $0)
$5 = torch._ops.aten.add.Tensor($4, $3)''')
def test_out(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1))
y = LoggingTensor(torch.zeros(1))
log_input("x", x)
log_input("y", y)
torch.abs(x, out=y)
self.assertEqual(y.elem, torch.ones(1))
# TODO: arguably this shouldn't pass and we should complain
# that out isn't a kwarg
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = torch._ops.aten.abs.out($0, out=$1)''')
def test_kwarg_only(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1))
y = LoggingTensor(torch.ones(1, 1))
z = LoggingTensor(torch.ones(1))
log_input("x", x)
log_input("y", y)
log_input("z", z)
torch.addmv(x, y, z)
torch.addmv(x, y, z, beta=1)
torch.addmv(x, y, z, beta=2)
torch.addmv(x, y, z, alpha=2)
torch.addmv(x, y, z, beta=2, alpha=2)
# The expectation is that beta/alpha don't show up when they're
# defaulted. This is even if the user explicitly specified it.
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = input('z')
$3 = torch._ops.aten.addmv.default($0, $1, $2)
$4 = torch._ops.aten.addmv.default($0, $1, $2)
$5 = torch._ops.aten.addmv.default($0, $1, $2, beta=2)
$6 = torch._ops.aten.addmv.default($0, $1, $2, alpha=2)
$7 = torch._ops.aten.addmv.default($0, $1, $2, beta=2, alpha=2)''')
def test_kwarg_only_and_positional_default(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1))
y = LoggingTensor(torch.ones(1))
log_input("x", x)
log_input("y", y)
torch.ops.aten.kl_div(x, y)
torch.ops.aten.kl_div(x, y, 2)
torch.ops.aten.kl_div(x, y, log_target=True)
torch.ops.aten.kl_div(x, y, 2, log_target=True)
# What we are testing here is that we omit reduction
# if it is defaulted, even if a kwarg is set
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('y')
$2 = torch._ops.aten.kl_div.default($0, $1)
$3 = torch._ops.aten.kl_div.default($0, $1, 2)
$4 = torch._ops.aten.kl_div.default($0, $1, log_target=True)
$5 = torch._ops.aten.kl_div.default($0, $1, 2, log_target=True)''')
def test_list_ret(self) -> None:
# test all sequence types are permissible returns
for list_type in (list, tuple):
class A(torch._C._TensorBase):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if func.overloadpacket == torch.ops.aten.split:
with no_dispatch():
return list_type(torch.split(*args))
else:
raise AssertionError(f"unrecognized func: {func}")
self.assertEqual(
torch.split(A(torch.tensor([0, 1])), 2),
torch.split(torch.tensor([0, 1]), 2)
)
def test_invalid_ret(self) -> None:
# test invalid return gets reasonable error message
class A(torch._C._TensorBase):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return "arf"
# Wobbles depending on NDEBUG mode of pybind11
self.assertRaisesRegexp(
RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).neg(),
)
self.assertRaisesRegexp(
RuntimeError, "Unable to cast", lambda: A(torch.zeros(1)).detach(),
)
def test_detach_appears_twice_when_called_once(self) -> None:
with capture_logs() as logs:
x = LoggingTensor(torch.tensor([3.0]), requires_grad=True)
log_input("x", x)
x.detach()
# FIXME: We actually want this to emit a single detach. However,
# it currently emits two, for reasons unclear to us. Leaving
# this test here to make sure we don't regress even further (it
# would be bad if calling .detach() once emits 3+ detaches).
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = torch._ops.aten.detach.default($0)
$2 = torch._ops.aten.detach.default($1)''')
def test_metadata_change_not_allowed(self) -> None:
x = LoggingTensor(torch.ones(1))
y = x.data
self.assertIsInstance(y, LoggingTensor)
self.assertRaises(RuntimeError, lambda: y.resize_(4))
def test_storage(self) -> None:
# For now, just make sure it doesn't crash. Ideally, we should
# return some virtual storage that is safe to work with
x = LoggingTensor(torch.ones(1))
self.assertRaises(RuntimeError, lambda: x.storage())
def test_make_wrapper_subclass_noalloc(self) -> None:
# This is ludicrously big (8TB) and this should pass because wrapper
# subclasses don't allocate
torch.Tensor._make_wrapper_subclass(LoggingTensor, (1000000000000,))
def test_version(self) -> None:
x = LoggingTensor(torch.ones(1))
prev_vc = x._version
x.detach().add_(2)
cur_vc = x._version
self.assertNotEqual(prev_vc, cur_vc)
x.data.add_(2)
self.assertEqual(cur_vc, x._version)
def test_subclass_priority(self) -> None:
class ErrorA(RuntimeError):
pass
class ErrorB(RuntimeError):
pass
# The big tests for code coverage are test_precedence_semantics in
# test_overrides.py; this is just to make sure it is wired up at all
# correctly for __torch_dispatch__
class A(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorA
class B(A):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorB
self.assertRaises(ErrorA, lambda: torch.add(A(torch.empty(1)), A(torch.empty(1))))
self.assertRaises(ErrorB, lambda: torch.add(A(torch.empty(1)), B(torch.empty(1))))
self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), A(torch.empty(1))))
self.assertRaises(ErrorB, lambda: torch.add(B(torch.empty(1)), B(torch.empty(1))))
def test_format(self) -> None:
x = LoggingTensor(torch.ones(1))
s1 = str(x)
s2 = repr(x)
s3 = f"{x}"
self.assertExpectedInline(s1, """LoggingTensor(tensor([1.]))""")
self.assertEqual(s1, s2)
self.assertEqual(s1, s3)
def test_custom_autograd(self) -> None:
escape = [None]
class Square(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
y = x ** 2
ctx.save_for_backward(x)
return y
@staticmethod
def backward(ctx, grad_output):
assert isinstance(grad_output, LoggingTensor)
x, = ctx.saved_tensors
assert isinstance(x, LoggingTensor)
escape[0] = x
return grad_output * 2 * x
with capture_logs() as logs:
x = LoggingTensor(torch.ones(1), requires_grad=True)
log_input("x", x)
x.grad = LoggingTensor(torch.zeros(1))
log_input("x.grad", x.grad)
y = Square.apply(x)
grad_output = LoggingTensor(torch.ones(1))
log_input("grad_output", grad_output)
y.backward(grad_output)
with torch.no_grad():
self.assertEqual(escape[0], x)
self.assertEqual(escape[0]._version, x._version)
# TODO: figure out why x.requires_grad = False doesn't
# trigger an error for LoggingTensor
x.add_(2)
self.assertEqual(escape[0], x)
# TODO: figure out why this is broken
# self.assertEqual(escape[0]._version, x._version)
self.assertExpectedInline('\n'.join(logs), '''\
$0 = input('x')
$1 = input('x.grad')
$2 = torch._ops.aten.pow.Tensor_Scalar($0, 2)
$3 = input('grad_output')
$4 = torch._ops.aten.mul.Tensor($3, tensor(2))
$5 = torch._ops.aten.mul.Tensor($4, $0)
$6 = torch._ops.aten.add_.Tensor($1, $5)''')
def test_subclass_creation(self):
# Make sure these statements runs without error
# In particular checking that when internal detach returns
# subclasses, these are cleanly overwritten.
class Foo(torch.Tensor):
pass
err_msg = "subclass Foo but.*already associated to a python object of type LoggingTensor"
with self.assertRaisesRegex(RuntimeError, err_msg):
a = torch.Tensor._make_subclass(Foo, LoggingTensor(torch.rand(2)))
with self.assertRaisesRegex(RuntimeError, err_msg):
b = LoggingTensor(torch.rand(2)).as_subclass(Foo)
with self.assertRaisesRegex(RuntimeError, err_msg):
Foo(LoggingTensor(torch.rand(2)))
with self.assertRaisesRegex(TypeError, "Foo must define __torch_dispatch__"):
torch.Tensor._make_wrapper_subclass(Foo, (2, 2))
def test_new_ones(self) -> None:
class MyTensor(torch.Tensor):
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return MyTensor(3)
self.assertEqual(type(MyTensor(2).new_ones(3)), MyTensor)
def test_like(self) -> None:
class MyTensor(torch.Tensor):
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
return MyTensor(3)
for f in ["empty", "ones", "rand", "randn", "zeros"]:
f_name = f + "_like"
self.assertEqual(type(getattr(torch, f_name)(MyTensor(2))), MyTensor)
self.assertEqual(type(torch.full_like(MyTensor(2), 1.)), MyTensor)
self.assertEqual(type(torch.randint_like(MyTensor(2), high=3)), MyTensor)
def test_make_wrapper_subclass_propagates_metadata(self) -> None:
class WrapperTensor(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls, elem.size(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad,
strides=elem.stride(), storage_offset=elem.storage_offset())
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise RuntimeError("NYI")
# non-contiguous strides, non-zero storage offset
x = torch.randn(4, 6).t().diagonal(offset=2)
y = WrapperTensor(x)
self.assertEqual(y.size(), x.size())
self.assertEqual(y.stride(), x.stride())
self.assertEqual(y.storage_offset(), x.storage_offset())
def test_wrapper_subclass_serializes(self) -> None:
with tempfile.TemporaryFile() as f:
x = LoggingTensor(torch.randn(3))
torch.save(x, f)
f.seek(0)
x_loaded = torch.load(f)
self.assertTrue(type(x_loaded) is type(x))
self.assertEqual(x.elem, x_loaded.elem)
self.assertFalse(x is x_loaded)
def test_deepcopy_wrapper_subclass(self) -> None:
x = LoggingTensor(torch.randn(3))
x_copy = deepcopy(x)
self.assertTrue(type(x_copy) is type(x))
self.assertEqual(x.elem, x_copy.elem)
self.assertFalse(x is x_copy)
def test_deepcopy_wrapper_subclass_with_clone_returning_different_type(self) -> None:
class MyWrapperTensor(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
r = torch.Tensor._make_wrapper_subclass( # type: ignore[attr-defined]
cls, elem.size(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad,
strides=elem.stride(), storage_offset=elem.storage_offset())
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
if func.overloadpacket.__name__ == "clone":
# Return a plain tensor from clone().
return args[0].elem.clone()
raise RuntimeError("NYI")
# NB: The default Tensor.__torch_function__ implementation called for deepcopy
# disables __torch_function__ by the time we get to clone(), so there is no need to
# explicitly disable __torch_function__ for this subclass.
x = MyWrapperTensor(torch.randn(3))
with self.assertRaisesRegex(RuntimeError,
"for which cloning returns another instance of the same subclass"):
x_copy = deepcopy(x)
def test_deepcopy_non_wrapper_subclass(self) -> None:
# Ensure correct error is thrown for common error cases.
class SubTensorError1(torch.Tensor):
# Default implementation of new_empty() returns a plain tensor.
pass
class SubTensorError2(torch.Tensor):
# new_empty() incorrectly returns a different type (i.e. a plain tensor).
def new_empty(self, shape):
return torch.Tensor(shape)
for error_cls in [SubTensorError1, SubTensorError2]:
x = error_cls(3)
with self.assertRaisesRegex(RuntimeError,
"for which that function returns another instance of the same subclass"):
x_copy = deepcopy(x)
# Ensure a correctly implemented new_empty() causes deepcopy() to work.
class SubTensorSuccess(torch.Tensor):
def new_empty(self, shape):
return type(self)(shape)
x = SubTensorSuccess(3)
x_copy = deepcopy(x)
self.assertIs(type(x_copy), type(x))
def test_index_put_where_only_index_is_subclass(self) -> None:
called_funcs = []
class MyTensor(torch.Tensor):
__torch_function__ = torch._C._disabled_torch_function_impl
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
r = torch.Tensor._make_wrapper_subclass(
cls, elem.size(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad
)
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
called_funcs.append(func)
return MyTensor(torch.tensor(3))
x = torch.randn(3, 3)
idxs = (MyTensor(torch.tensor(0)),)
v = torch.randn(1)
res = x.index_put_(idxs, v)
self.assertEqual(called_funcs, [torch.ops.aten.index_put_.default])
def test_enable_python_mode_error(self) -> None:
with self.assertRaisesRegex(ValueError, "__torch_dispatch__"):
with enable_python_mode(torch.Tensor):
pass
z = LoggingTensor(torch.empty([]))
with self.assertRaisesRegex(ValueError, "must be the type"):
with enable_python_mode(z):
pass
def test_enable_python_mode_basic(self) -> None:
with enable_python_mode(LoggingTensor):
z = torch.empty([])
self.assertTrue(isinstance(z, LoggingTensor))
def test_enable_python_mode_unrelated_tensors(self) -> None:
x = torch.randn([])
y = torch.randn([])
with enable_python_mode(LoggingTensor):
z = x + y
self.assertTrue(isinstance(z, LoggingTensor))
def test_enable_python_mode_subclass_priority(self) -> None:
class ErrorA(RuntimeError):
pass
class ErrorB(RuntimeError):
pass
class A(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorA
class B(A):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
raise ErrorB
a = A(torch.empty(1))
b = B(torch.empty(1))
with self.assertRaises(ErrorA):
a + a
# B has precedence over A due to the subclass relationship
with self.assertRaises(ErrorB):
with enable_python_mode(A):
b + b
with self.assertRaises(ErrorB):
with enable_python_mode(B):
a + a
with self.assertRaises(ErrorB):
with enable_python_mode(B):
a + b
def test_enable_python_mode_respects_no_dispatch(self) -> None:
with enable_python_mode(LoggingTensor):
z = torch.ones([2, 3])
self.assertTrue(isinstance(z, LoggingTensor))
with no_dispatch():
expected = torch.ones([2, 3])
self.assertEqual(z.elem, expected)
def test_nested_enable_python_mode(self) -> None:
with self.assertRaisesRegex(RuntimeError, "has already been set"):
with enable_python_mode(LoggingTensor):
with enable_python_mode(LoggingTensor):
pass
def test_tolist_numpy_with_python_mode(self) -> None:
x = LoggingTensor(torch.tensor([2.0, 3.0]))
with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."):
x.tolist()
with self.assertRaisesRegex(RuntimeError, "is not supported for tensor subclasses."):
x.numpy()
with self.assertRaises(AssertionError):
self.assertEqual(x, None)
def test_enable_python_mode_subclass_autograd_device_check(self) -> None:
class NonWrapperSubclass(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, *args, **kwargs):
# Wrong device here!
r = torch.Tensor._make_subclass(cls, elem.to("meta"), elem.requires_grad)
# ...the real tensor is held as an element on the tensor.
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
return e.elem if isinstance(e, NonWrapperSubclass) else e
def wrap(e):
return NonWrapperSubclass(e) if isinstance(e, torch.Tensor) else e
# no_dispatch is only needed if you use enable_python_mode.
# It prevents infinite recursion.
with no_dispatch():
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
logging.getLogger("NonWrapperSubclass").info(f"{func.__module__}.{func.__name__}", args, kwargs, rs)
return rs
x = NonWrapperSubclass(torch.tensor([3.0, 4.0], requires_grad=True))
y = torch.randn(2, requires_grad=True)
z = x * y
self.assertIsInstance(z, NonWrapperSubclass)
z.sum().backward(torch.tensor(1))
self.assertEqual(x.grad, y)
self.assertEqual(y.grad, x)
def test_none_wrapping(self):
# A Tensor subclass that returns None when doing add
# See LoggingTensor above for more details on the subclass
class SubclassWithNone(torch.Tensor):
@staticmethod
def __new__(cls, elem, *args, **kwargs):
r = torch.Tensor._make_wrapper_subclass(
cls, elem.size(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad
)
r.elem = elem
return r
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
return e.elem if isinstance(e, SubclassWithNone) else e
def wrap(e):
return SubclassWithNone(e) if isinstance(e, torch.Tensor) else e
# no_dispatch is only needed if you use enable_python_mode.
# It prevents infinite recursion.
with no_dispatch():
rs = tree_map(wrap, func(*tree_map(unwrap, args), **tree_map(unwrap, kwargs)))
if func.overloadpacket.__name__ == "add":
return None
else:
return rs
x = SubclassWithNone(torch.rand(2))
# Make sure both run without error
self.assertIsInstance(x * 2, SubclassWithNone)
self.assertIsNone(x + 2)
x.requires_grad_()
out = x.acos().sum()
# The backward of acos does add then rsqrt so here we make sure that the
# undefined Tensor generated by the user code is nicely handled.
# If acos formula changes in the future, this can be replaced by any other
# function that does add then something in the backward in a composite way
with self.assertRaisesRegex(RuntimeError, "but got None"):
out.backward()
def test_storage_can_be_converted_to_python_object(self):
with enable_python_mode(LoggingTensor):
s = torch.Storage()
z = LoggingTensor(torch.empty([]))
z.set_(s)
def test_autograd_in_attr(self):
# We want the wrapped Tensor to require gradients!
true_t = torch.rand(2, requires_grad=True)
t = LoggingTensor(true_t)
out = t + 2
self.assertFalse(out.requires_grad)
self.assertIsNone(out.grad_fn)
self.assertTrue(out.elem.requires_grad)
self.assertIsNotNone(out.elem.grad_fn)
with self.assertRaisesRegex(RuntimeError, "does not require grad"):
out.sum().backward()
out.elem.sum().backward()
self.assertIsNone(t.grad)
self.assertIsNotNone(t.elem.grad)
def test_dispatch_super_call(self):
called = []
class SubTensor(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem)
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
called.append(func)
return super().__torch_dispatch__(func, types, args, kwargs)
x = torch.randn(2)
y = torch.randn(2)
self.assertEqual(SubTensor(x) + SubTensor(y), x + y)
self.assertEqual(called, [torch.ops.aten.add.Tensor])
def test_dispatch_super_dont_autograd(self):
called = []
class SubTensor(torch.Tensor):
@staticmethod
def __new__(cls, elem):
return torch.Tensor._make_subclass(cls, elem, elem.requires_grad)
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
called.append(func)
# This argument still requires grad because it was passed
# through directly...
self.assertTrue(args[0].requires_grad)
r = super().__torch_dispatch__(func, types, args, kwargs)
# But the output better not require grad, because that means
# you did autograd again in torch dispatch (oops)
self.assertFalse(r.requires_grad)
return r
x = SubTensor(torch.randn(2, requires_grad=True))
x.neg()
self.assertEqual(called, [torch.ops.aten.neg.default])
def test_construct_int_tensor(self):
class SubTensor(torch.Tensor):
pass
# should not fail
SubTensor(torch.zeros(2, dtype=torch.int))
def test_multiple_ops_subclass(self):
# This is a Direct Subclass, don't do that!
class MySubclass(torch.Tensor):
@staticmethod
def __new__(cls, elem):
r = torch.Tensor._make_subclass(cls, elem)
return r
__torch_function__ = torch._C._disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
with no_dispatch():
return func(*args, **kwargs)
x = MySubclass(torch.rand(2, 2, dtype=torch.complex64))
y = x.conj()
# Details of the bug that this tests for:
# Here, y dispatch keys are: {PythonTLSSnapshot, AutogradCPU, Conjugate, Python, CPU}
# There are a few calls to the dispatcher that are going to happen here:
# - call_exp: User calling exp on y
# - PythonTLSSnapshot: records the TLS on entry and redispatch
# - AutogradCPU: no input requires grad, so does nothing and redispatch
# - Conjugate: no special implementation for exp: use the fallback that
# first clone the Tensor (to materialize the conj) then redispatch
# - call_clone: conjugate fallback calling clone on y
# - PythonTLSSnapshot: records the TLS on entry and redispatch
# - (AutogradCPU: skipped as autograd added itself to the exclude set above)
# - Conjugate: special implementation for clone: just skip this key
# - Python: Reset the TLS based on the snapshot above and call the user implementation (this
# actually calls into the dispatcher again but since we disable both our keys
# before, not detailed here)
# - exit Python: restore the TLS and exit
# - exit Conjugate: nothing was inplace so just exit
# - exit PythonTLSSnapshot: done with this call, reset the saved TLS to empty
# - Python: Reset the TLS again based on the snapshot. <- this used to fail
# - More steps....
y.exp()
if __name__ == '__main__':
run_tests()