Files
pytorch/test/test_per_overload_api.py
hippocookie 74a0ef8f8c Enable UFMT format on test/test_package.py test/test_per_overload_api.py (#125834)
Fixes some files in https://github.com/pytorch/pytorch/issues/123062

Run lintrunner on files:
test/test_package.py
test/test_per_overload_api.py

```bash
$ lintrunner -a --take UFMT --all-files
ok No lint issues.
Successfully applied all patches.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125834
Approved by: https://github.com/malfet
2024-05-09 19:48:22 +00:00

80 lines
2.5 KiB
Python

# Owner(s): ["module: unknown"]
import copy
import torch
from torch.testing._internal.common_utils import run_tests, TestCase
class TestPerOverloadAPI(TestCase):
def test_basics_opoverloadpacket(self):
# add is ony used as an example here. It is ok to update the test
# if the semantics of add are modified in the future.
add_packet = torch.ops.aten.add
# class attributes
self.assertEqual(add_packet.__name__, "add")
self.assertEqual(str(add_packet), "aten.add")
# callable
self.assertEqual(add_packet(torch.tensor(2), torch.tensor(3)), torch.tensor(5))
# correct module
self.assertEqual(add_packet.__module__, add_packet.op.__module__)
# caching
another_add_packet = torch.ops.aten.add
self.assertEqual(id(add_packet), id(another_add_packet))
# deepcopy is a no-op
self.assertEqual(id(add_packet), id(copy.deepcopy(add_packet)))
# pretty print
self.assertEqual(repr(add_packet), "<OpOverloadPacket(op='aten.add')>")
self.assertRaises(AttributeError, lambda: add_packet.foo)
def test_basics_opoverload(self):
add_packet = torch.ops.aten.add
add_tensoroverload = add_packet.Tensor
# class attributes
self.assertEqual(str(add_tensoroverload), "aten.add.Tensor")
self.assertEqual(add_tensoroverload.__name__, "add.Tensor")
self.assertEqual(add_tensoroverload.overloadpacket, add_packet)
# deepcopy is a no-op
self.assertEqual(id(add_tensoroverload), id(copy.deepcopy(add_tensoroverload)))
# caching
another_add_tensoroverload = torch.ops.aten.add.Tensor
self.assertEqual(id(add_tensoroverload), id(another_add_tensoroverload))
# pretty print
self.assertEqual(
repr(add_tensoroverload), "<OpOverload(op='aten.add', overload='Tensor')>"
)
# callable
self.assertEqual(
add_tensoroverload(torch.tensor(2), torch.tensor(3)), torch.tensor(5)
)
a = torch.tensor(2)
b = torch.tensor(0)
torch.ops.aten.add.out(a, a, out=b)
self.assertEqual(b, torch.tensor(4))
self.assertRaises(RuntimeError, lambda: add_tensoroverload(a, a, out=b))
def test_decompose(self):
x = torch.randn(2, 3)
y = torch.randn(5, 3)
self.assertEqual(
torch.ops.aten.linear.default.decompose(x, y),
torch.ops.aten.linear.default(x, y),
)
if __name__ == "__main__":
run_tests()