mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This adds support for backwards hooks that are *both*: 1) Interior to the graph; and 2) Dynamically generated (e.g. lambdas) We do this by creating a BackwardState object that is used to register the hooks in the forward, then populated by dynamo *after* the forwards runs. Pull Request resolved: https://github.com/pytorch/pytorch/pull/120382 Approved by: https://github.com/xmfan
1165 lines
42 KiB
Python
1165 lines
42 KiB
Python
# mypy: ignore-errors
|
|
|
|
import functools
|
|
|
|
import inspect
|
|
import operator
|
|
import types
|
|
from typing import Dict, List
|
|
|
|
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
|
|
|
from ..bytecode_transformation import create_call_method
|
|
from ..external_utils import call_hook_from_backward_state
|
|
|
|
try:
|
|
import numpy as np
|
|
except ModuleNotFoundError:
|
|
np = None
|
|
|
|
|
|
import sympy
|
|
|
|
import torch._numpy as tnp
|
|
|
|
import torch.fx
|
|
import torch.random
|
|
from torch._dynamo import compiled_autograd
|
|
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
guard_scalar,
|
|
GuardOnDataDependentSymNode,
|
|
has_free_symbols,
|
|
is_symbolic,
|
|
SymTypes,
|
|
)
|
|
|
|
from .. import config, variables
|
|
from .._trace_wrapped_higher_order_op import trace_wrapped
|
|
|
|
from ..exc import unimplemented, UserError, UserErrorType
|
|
from ..guards import GuardBuilder, install_guard
|
|
from ..source import AttrSource
|
|
from ..utils import (
|
|
fqn,
|
|
get_custom_getattr,
|
|
get_fake_value,
|
|
get_real_value,
|
|
guard_if_dyn,
|
|
object_has_getattribute,
|
|
product,
|
|
proxy_args_kwargs,
|
|
tensortype_to_dtype,
|
|
)
|
|
from .base import VariableTracker
|
|
from .constant import ConstantVariable
|
|
from .lists import SizeVariable
|
|
|
|
supported_tensor_comparison_ops = {
|
|
">": operator.gt,
|
|
"<": operator.lt,
|
|
">=": operator.ge,
|
|
"<=": operator.le,
|
|
"==": operator.eq,
|
|
"!=": operator.ne,
|
|
}
|
|
supported_const_comparison_ops = {
|
|
"is": operator.is_,
|
|
"is not": operator.is_not,
|
|
"==": operator.eq,
|
|
"!=": operator.ne,
|
|
}
|
|
|
|
|
|
class TensorVariable(VariableTracker):
|
|
"""A torch.Tensor input or an intermediate value in the FX graph"""
|
|
|
|
_nonvar_fields = {
|
|
"proxy",
|
|
"dtype",
|
|
"device",
|
|
"layout",
|
|
"ndim",
|
|
"size",
|
|
"stride",
|
|
"requires_grad",
|
|
"is_quantized",
|
|
"is_contiguous",
|
|
"is_sparse",
|
|
"class_type",
|
|
"specialized_value",
|
|
*VariableTracker._nonvar_fields,
|
|
}
|
|
|
|
def get_real_value(self):
|
|
"""
|
|
Get the actual value represented by this variable if computation is run
|
|
using the user-provided inputs.
|
|
NOTE: this runs actual tensor computation and may be
|
|
slow and memory-intensive.
|
|
"""
|
|
return get_real_value(self.proxy.node, self.proxy.tracer)
|
|
|
|
def __init__(
|
|
self,
|
|
proxy: torch.fx.Proxy,
|
|
*,
|
|
dtype,
|
|
device,
|
|
layout,
|
|
ndim,
|
|
requires_grad,
|
|
is_quantized,
|
|
is_sparse,
|
|
class_type,
|
|
size=None,
|
|
stride=None,
|
|
is_contiguous=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.proxy = proxy
|
|
self.dtype = dtype
|
|
self.device = device
|
|
self.layout = layout
|
|
self.ndim = ndim
|
|
self.size = size
|
|
self.stride = stride
|
|
self.requires_grad = requires_grad
|
|
self.is_quantized = is_quantized
|
|
self.is_contiguous = is_contiguous
|
|
self.is_sparse = is_sparse
|
|
self.class_type = class_type
|
|
|
|
def as_proxy(self):
|
|
return self.proxy
|
|
|
|
def python_type(self):
|
|
return self.class_type
|
|
|
|
@staticmethod
|
|
def specialize(value: torch.Tensor):
|
|
props = {
|
|
"dtype": value.dtype,
|
|
"device": value.device,
|
|
"layout": value.layout,
|
|
"ndim": int(value.ndim),
|
|
"requires_grad": value.requires_grad,
|
|
"is_quantized": value.is_quantized,
|
|
"is_sparse": value.is_sparse,
|
|
"class_type": type(value),
|
|
}
|
|
if not has_free_symbols(value):
|
|
# this is a fully static shape, and the keys on props here inform specialization.
|
|
# We have to cast to int here, because these might get accessed as ConstantVariable, which has
|
|
# a strict no-symint policy. If we got here due to not having free symbols, this is a known constant
|
|
# already. We could remove the discrepancy here, by having ConstantVariable be more permissive for
|
|
# constant backed SymInts, but that assert being strict has led to some good signal in hunting bugs, and
|
|
# I'd like to keep it around for now.
|
|
props["size"] = tuple(
|
|
# the non is_symbolic case applies to the jagged layout
|
|
# NestedTensor case as singleton ints are not symbolic
|
|
[int(s) if is_symbolic(s) else s for s in value.size()]
|
|
)
|
|
props["stride"] = tuple(value.stride())
|
|
if torch._C._functorch.is_batchedtensor(value):
|
|
# Batched tensors does not support contiguity patterns, so
|
|
# we refrain from computing the `is_contiguous` property
|
|
props["is_contiguous"] = None
|
|
else:
|
|
props["is_contiguous"] = tuple(
|
|
[
|
|
x
|
|
for x in torch._prims_common._memory_formats
|
|
if value.is_contiguous(memory_format=x)
|
|
]
|
|
)
|
|
return props
|
|
|
|
def dynamic_getattr(self, tx, name):
|
|
fake_val = self.proxy.node.meta["example_value"]
|
|
# For getattrs on tensors without sources,
|
|
# we can do better than the default (creating a GetAttrVariable)
|
|
# if:
|
|
# (1) the tensor is a traceable tensor subclass
|
|
# (2) We are getattr'ing an inner tensor from that subclass
|
|
if not self.source and is_traceable_wrapper_subclass(fake_val):
|
|
fake_val = self.proxy.node.meta["example_value"]
|
|
attrs, ctx = fake_val.__tensor_flatten__()
|
|
proxy = getattr(self.as_proxy(), name)
|
|
example_value = getattr(fake_val, name)
|
|
if name in attrs:
|
|
# attrs returned from tensor_flatten are always tensors
|
|
assert isinstance(example_value, torch.Tensor)
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(tx=tx, proxy=proxy, example_value=example_value)
|
|
# any other attributes on the subclass (that are not methods)
|
|
# are assumed to be constant metadata.
|
|
elif not callable(example_value):
|
|
from .builder import SourcelessBuilder
|
|
|
|
return SourcelessBuilder()(tx, example_value)
|
|
if not self.source:
|
|
raise NotImplementedError()
|
|
|
|
# For local source, we associate the real value. We use this real value
|
|
# for implementing getattr fallthrough on the variable tracker base class.
|
|
|
|
# Note - this scope construction is mirrored in guards
|
|
# A subsequent PR will introduce a util.
|
|
scope = {"L": tx.output.local_scope, "G": tx.output.global_scope}
|
|
try:
|
|
# We raise in case we get a typerror bug w/ SuperSource.
|
|
# SuperSource has bugs in it atm, and can produce code like
|
|
# eval("super(L['mod'].model.model.encoder.embed_positions.forward__class__,
|
|
# L['mod'].model.model.encoder.embed_positions)", scope)
|
|
# Which is incorrect, and violates the invariant that all sources should be eval()-able against the scope.
|
|
_input_associated_real_value = eval(self.source.name(), scope)
|
|
except Exception as exc:
|
|
raise NotImplementedError() from exc
|
|
|
|
if _input_associated_real_value is None:
|
|
raise NotImplementedError()
|
|
|
|
if object_has_getattribute(_input_associated_real_value):
|
|
raise NotImplementedError()
|
|
|
|
if get_custom_getattr(_input_associated_real_value):
|
|
raise NotImplementedError()
|
|
|
|
real_value = getattr(_input_associated_real_value, name)
|
|
if callable(real_value):
|
|
# Callables have more nuanced handling, and we should let the existing system delegate here.
|
|
# Raising was past behavior and so should always be sound to fall back.
|
|
# Note - at a certain point we may want to handle
|
|
raise NotImplementedError()
|
|
|
|
from ..guards import GuardBuilder
|
|
from .builder import VariableBuilder
|
|
|
|
attr_source = AttrSource(self.source, name)
|
|
install_guard(attr_source.make_guard(GuardBuilder.HASATTR))
|
|
return VariableBuilder(tx, attr_source)(real_value)
|
|
|
|
def method_attr_ndim(self, tx):
|
|
if self.ndim is not None:
|
|
return ConstantVariable.create(self.ndim)
|
|
else:
|
|
return self.call_method(tx, "dim", [], {})
|
|
|
|
def method_attr_dtype(self, tx):
|
|
if self.dtype is not None:
|
|
return ConstantVariable.create(self.dtype)
|
|
|
|
def method_attr_device(self, tx):
|
|
if self.device is not None:
|
|
return ConstantVariable.create(self.device)
|
|
|
|
def method_attr_layout(self, tx):
|
|
if self.layout is not None:
|
|
return ConstantVariable.create(self.layout)
|
|
|
|
def method_attr_is_cuda(self, tx):
|
|
if self.device is not None:
|
|
return ConstantVariable.create(self.device.type == "cuda")
|
|
|
|
def method_attr_shape(self, tx):
|
|
if self.size is not None:
|
|
sizes = [variables.ConstantVariable.create(x) for x in self.size]
|
|
return SizeVariable(sizes)
|
|
else:
|
|
return self.call_method(tx, "size", [], {})
|
|
|
|
def method_attr_requires_grad(self, tx):
|
|
if self.requires_grad is not None:
|
|
return ConstantVariable.create(self.requires_grad)
|
|
|
|
def method_attr_is_quantized(self, tx):
|
|
if self.is_quantized is not None:
|
|
return ConstantVariable.create(self.is_quantized)
|
|
|
|
def method_attr_is_sparse(self, tx):
|
|
if self.is_sparse is not None:
|
|
return ConstantVariable.create(self.is_sparse)
|
|
|
|
def method_attr_data(self, tx):
|
|
return self.call_method(tx, "detach", [], {})
|
|
|
|
def var_getattr(self, tx, name):
|
|
from . import UserDefinedClassVariable
|
|
|
|
if tx.strict_checks_enabled:
|
|
if name in self._strict_mode_banned_ops():
|
|
unimplemented(f"Illegal getattr invocation {name} in strict mode")
|
|
|
|
if name == "__class__":
|
|
return UserDefinedClassVariable(self.python_type())
|
|
|
|
handler = getattr(self, f"method_attr_{name}", None)
|
|
result = handler(tx) if handler is not None else None
|
|
|
|
# Add a guard for type matching, these guards are checked before tensor guards
|
|
# In some cases, a <tensor>.<attr> guard can be evaluated first, and break if
|
|
# <tensor> is later changed to another type
|
|
if result is not None and self.source is not None:
|
|
install_guard(self.make_guard(GuardBuilder.TYPE_MATCH))
|
|
result.source = AttrSource(self.source, name)
|
|
|
|
# It's hard to get inplace view (metadata mutation) on graph input work properly across
|
|
# dynamo/aot/inductor, just fall back.
|
|
if self.source is not None and hasattr(torch.ops.aten, name):
|
|
fn = getattr(torch.ops.aten, name)
|
|
if (
|
|
hasattr(fn, "overloads")
|
|
and hasattr(fn, fn.overloads()[0])
|
|
and torch.Tag.inplace_view in getattr(fn, fn.overloads()[0]).tags
|
|
):
|
|
# Delay the graph break to the actual call of unsqueeze_/resize_/resize_as_ etc.
|
|
return variables.misc.DelayGraphBreakVariable(
|
|
source=AttrSource(self.source, name)
|
|
)
|
|
|
|
# For attributes (not methods) that were not caught in the special handling above,
|
|
# (e.g. tensor.real), we handle these generically, assuming that the output type is
|
|
# a tensor.
|
|
if result is None and name != "grad":
|
|
|
|
def try_generic_attr_handling():
|
|
from .builder import wrap_fx_proxy
|
|
from .misc import GetAttrVariable
|
|
|
|
try:
|
|
static_attr = inspect.getattr_static(torch.Tensor, name)
|
|
except AttributeError:
|
|
return None
|
|
|
|
# Make sure this is an attribute, not a method.
|
|
# type(torch.Tensor.H) should be "getset_descriptor"
|
|
# This is a because of CPython implementation, see THPVariableType:
|
|
# these attributes are implemented under tp_getset, which appear
|
|
# as `getset_descriptor`s, (compared to, say, methods which appear
|
|
# as `method_descriptor`s)
|
|
if type(static_attr) != types.GetSetDescriptorType:
|
|
return None
|
|
|
|
proxy = GetAttrVariable.create_getattr_proxy(self.as_proxy(), name)
|
|
if self.source is not None:
|
|
return wrap_fx_proxy(
|
|
tx=tx, proxy=proxy, source=AttrSource(self.source, name)
|
|
)
|
|
else:
|
|
return wrap_fx_proxy(tx=tx, proxy=proxy)
|
|
|
|
result = try_generic_attr_handling()
|
|
|
|
if result is None:
|
|
result = self.dynamic_getattr(tx, name)
|
|
|
|
if result is None:
|
|
raise NotImplementedError()
|
|
return result
|
|
|
|
def has_unpack_var_sequence(self, tx):
|
|
return self.ndim > 0
|
|
|
|
def unpack_var_sequence(self, tx, idxes=None):
|
|
from .builder import wrap_fx_proxy_cls
|
|
|
|
if idxes is None:
|
|
if self.size:
|
|
length = self.size[0]
|
|
else:
|
|
dyn_length = self.call_method(
|
|
tx, "size", [ConstantVariable.create(0)], {}
|
|
)
|
|
# SymNodeVariable for symbolic sizes, ConstantVariable for constants OR values produced through
|
|
# symbolic_shapes, but that end up as int/sympy.Integer
|
|
assert isinstance(dyn_length, (SymNodeVariable, ConstantVariable))
|
|
if isinstance(dyn_length, SymNodeVariable):
|
|
length = dyn_length.evaluate_expr(tx.output)
|
|
else:
|
|
length = dyn_length.value
|
|
idxes = range(length)
|
|
return [
|
|
wrap_fx_proxy_cls(target_cls=type(self), tx=tx, proxy=self.as_proxy()[i])
|
|
for i in idxes
|
|
]
|
|
|
|
def _strict_mode_banned_ops(self):
|
|
return torch._dynamo.config._autograd_backward_strict_mode_banned_ops
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
if tx.strict_checks_enabled:
|
|
if name in self._strict_mode_banned_ops():
|
|
unimplemented(f"Illegal method invocation {name} in strict mode")
|
|
|
|
"""
|
|
Dispatch to a method-specific handler defined below. If the
|
|
handler returns None (or doesn't exist) we put the method call
|
|
in the graph.
|
|
"""
|
|
try:
|
|
handler_method = getattr(self, f"method_{name}")
|
|
except AttributeError:
|
|
pass
|
|
else:
|
|
try:
|
|
result = handler_method(*args, **kwargs)
|
|
if result:
|
|
return result
|
|
except TypeError as e:
|
|
unimplemented(f"unhandled args for {name}: {e}")
|
|
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
name,
|
|
*proxy_args_kwargs([self, *args], kwargs),
|
|
),
|
|
)
|
|
|
|
def method_size(self, *args, **kwargs):
|
|
return self._method_size_stride("size", *args, **kwargs)
|
|
|
|
def method_stride(self, *args, **kwargs):
|
|
return self._method_size_stride("stride", *args, **kwargs)
|
|
|
|
def _method_size_stride(self, name, dim=None):
|
|
dim = guard_if_dyn(dim)
|
|
|
|
def make_const_size_variable(x, **options):
|
|
return SizeVariable(
|
|
[ConstantVariable.create(y, **options) for y in x], **options
|
|
)
|
|
|
|
RetVariable = (
|
|
make_const_size_variable if name == "size" else ConstantVariable.create
|
|
)
|
|
|
|
# Technically, this should not be necessary, but I'm including it
|
|
# for enhanced BC, in case example_value is sometimes not set
|
|
# (it really should always be set though!)
|
|
if (r := getattr(self, name)) is not None:
|
|
if dim is None:
|
|
return RetVariable(r)
|
|
else:
|
|
return ConstantVariable.create(r[dim])
|
|
|
|
# It might still be constant! Consult the fake tensor and see
|
|
if (fake := self.proxy.node.meta.get("example_value")) is not None:
|
|
if dim is None:
|
|
fake_r = getattr(fake, name)()
|
|
if not has_free_symbols(fake_r):
|
|
# int conversion for safety, in case a SymInt refined
|
|
# to constant
|
|
return RetVariable(tuple(int(r) for r in fake_r))
|
|
else:
|
|
fake_r = getattr(fake, name)(dim)
|
|
if not has_free_symbols(fake_r):
|
|
return ConstantVariable.create(int(fake_r))
|
|
|
|
def method_numel(self):
|
|
if self.size is not None:
|
|
return ConstantVariable.create(product(self.size))
|
|
|
|
# It might still be constant! Consult the fake tensor and see
|
|
if (fake := self.proxy.node.meta.get("example_value")) is not None:
|
|
fake_r = fake.numel()
|
|
if not has_free_symbols(fake_r):
|
|
return ConstantVariable.create(int(fake_r))
|
|
|
|
method_nelement = method_numel
|
|
|
|
def method_dim(self):
|
|
if self.ndim is not None:
|
|
return ConstantVariable.create(self.ndim)
|
|
|
|
method_ndimension = method_dim
|
|
|
|
def method_is_floating_point(self):
|
|
if self.dtype is not None:
|
|
return ConstantVariable.create(self.dtype.is_floating_point)
|
|
|
|
def method_is_contiguous(self, memory_format=None):
|
|
memory_format = (
|
|
memory_format.as_python_constant()
|
|
if memory_format is not None
|
|
else torch.contiguous_format
|
|
)
|
|
if self.is_contiguous is not None:
|
|
return ConstantVariable.create(memory_format in self.is_contiguous)
|
|
elif (fake := self.proxy.node.meta.get("example_value")) is not None:
|
|
return ConstantVariable.create(
|
|
fake.is_contiguous(memory_format=memory_format)
|
|
)
|
|
|
|
def method_type(self, dtype=None, non_blocking=False, **kwargs):
|
|
if (
|
|
dtype is None
|
|
and self.dtype is not None
|
|
and isinstance(self.device, torch.device)
|
|
):
|
|
tensortype = next(
|
|
k for k, v in tensortype_to_dtype.items() if self.dtype in v
|
|
)
|
|
if self.device.type == "cuda":
|
|
return ConstantVariable.create(f"torch.cuda.{tensortype.__name__}")
|
|
else:
|
|
return ConstantVariable.create(f"torch.{tensortype.__name__}")
|
|
elif (
|
|
dtype is not None
|
|
and fqn(type(dtype.as_python_constant())) == "torch.tensortype"
|
|
):
|
|
# torch.FloatTensor, etc. are all of type "torch.tensortype".
|
|
# torch.fx's tracer fails on these types, because it doesn't support arguments of torch.tensortype type.
|
|
# So, we pass it in as a string (which is also supported, see above implementation for .type() with 0 args)
|
|
tensor_type = dtype.as_python_constant()
|
|
tensor_type_const = ConstantVariable.create(fqn(tensor_type))
|
|
|
|
from ..symbolic_convert import InstructionTranslator
|
|
from .builder import wrap_fx_proxy
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
if non_blocking:
|
|
kwargs = {"non_blocking": non_blocking, **kwargs}
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
"type",
|
|
*proxy_args_kwargs([self, tensor_type_const], kwargs),
|
|
),
|
|
)
|
|
|
|
def method_as_subclass(self, cls):
|
|
if isinstance(cls, TensorSubclassVariable) and cls.source:
|
|
from ..symbolic_convert import InstructionTranslator
|
|
from .builder import VariableBuilder
|
|
from .torch_function import TensorWithTFOverrideVariable
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
# [Note: __torch_function__] coerce this tensor variable into a TensorWithTFOverrideVariable
|
|
# in eager, this is just a type change. This isn't sound if a __torch_function__ tensor subclass
|
|
# defines a constructor, but if only a __torch_function__ impl is defined, this is okay to call.
|
|
# It is up to the user whether this is correct behavior or not.
|
|
py_cls = cls.as_python_constant()
|
|
torch_fn = VariableBuilder(
|
|
tx,
|
|
AttrSource(AttrSource(cls.source, "__torch_function__"), "__func__"),
|
|
)(py_cls.__torch_function__.__func__)
|
|
|
|
return TensorWithTFOverrideVariable.from_tensor_var(
|
|
tx, self, py_cls, torch_fn
|
|
)
|
|
|
|
def method_get_device(self):
|
|
if isinstance(self.device, torch.device):
|
|
index = self.device.index if self.device.type != "cpu" else -1
|
|
return ConstantVariable.create(index)
|
|
|
|
def method_element_size(self):
|
|
return ConstantVariable.create(self.dtype.itemsize)
|
|
|
|
def method_numpy(self, *, force=False):
|
|
if not config.trace_numpy:
|
|
unimplemented("Tensor.numpy(). config.trace_numpy is False")
|
|
if not np:
|
|
unimplemented("Tensor.numpy(). NumPy is not available")
|
|
if self.layout != torch.strided:
|
|
raise TypeError(
|
|
f"can't convert {self.layout} layout tensor to numpy. Use Tensor.dense() first"
|
|
)
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
# We don't check that the tensor is on CPU when force is False, as this
|
|
# allows us to execute NumPy code on CUDA. Same for requires_grad=True
|
|
if force and force.as_python_constant():
|
|
# If the user set force=True we try to preserve the semantics (no gradients, move to CPU...)
|
|
t = self.call_method(tx, "detach", [], {})
|
|
proxy = tx.output.create_proxy("call_method", "cpu", (t.as_proxy(),), {})
|
|
else:
|
|
# Hacky way to create a view of self that will be marked as NumpyNdarrayVariable
|
|
proxy = tx.output.create_proxy(
|
|
"call_method", "view_as", *proxy_args_kwargs([self, self], {})
|
|
)
|
|
return NumpyNdarrayVariable.create(tx, proxy)
|
|
|
|
def method_tolist(self):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
from .builder import SourcelessBuilder
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
def tolist(tensor, sub_proxy):
|
|
def wrap(i, sub_proxy):
|
|
return SymNodeVariable.create(
|
|
tx,
|
|
sub_proxy.item(),
|
|
sym_num=tx.output.shape_env.create_unbacked_symint(),
|
|
)
|
|
|
|
if tensor.dtype not in [
|
|
torch.int8,
|
|
torch.int16,
|
|
torch.int32,
|
|
torch.int64,
|
|
]:
|
|
unimplemented("Input tensor for tolist must be an integer tensor")
|
|
|
|
if tensor.dim() == 0:
|
|
return wrap(tensor, sub_proxy)
|
|
|
|
if tensor.dim() == 1:
|
|
return [wrap(val, sub_proxy[i]) for i, val in enumerate(tensor)]
|
|
|
|
return [
|
|
tolist(sub_tensor, sub_proxy=sub_proxy[i])
|
|
for i, sub_tensor in enumerate(tensor)
|
|
]
|
|
|
|
tensor = self.as_proxy().node.meta["example_value"]
|
|
out = tolist(tensor, self.as_proxy())
|
|
return SourcelessBuilder()(tx, out)
|
|
|
|
def method_backward(self, *args, **kwargs):
|
|
unimplemented("Tensor.backward")
|
|
|
|
def method_data_ptr(self, *args, **kwargs):
|
|
unimplemented("Tensor.data_ptr")
|
|
|
|
def method_item(self, *args, **kwargs):
|
|
if not config.capture_scalar_outputs:
|
|
unimplemented("Tensor.item")
|
|
|
|
def method___len__(self):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
return self.call_method(tx, "size", [ConstantVariable.create(0)], {})
|
|
|
|
def method___setitem__(self, key, value):
|
|
def has_bool_key(v):
|
|
if isinstance(v, TensorVariable):
|
|
return v.dtype in (torch.bool, torch.int8)
|
|
elif isinstance(v, variables.TupleVariable):
|
|
return any(has_bool_key(item) for item in v.items)
|
|
else:
|
|
return False
|
|
|
|
if (
|
|
has_bool_key(key)
|
|
and isinstance(value, TensorVariable)
|
|
and value.requires_grad
|
|
and torch.is_grad_enabled()
|
|
):
|
|
unimplemented(
|
|
"boolean masking setitem backwards, see https://github.com/pytorch/pytorch/issues/114123"
|
|
)
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
operator.setitem,
|
|
*proxy_args_kwargs([self, key, value], {}),
|
|
)
|
|
return ConstantVariable.create(None)
|
|
|
|
def method_resize_(self, *args, **kwargs):
|
|
unimplemented("Tensor.resize_")
|
|
|
|
def method_resize_as_(self, *args, **kwargs):
|
|
unimplemented("Tensor.resize_as_")
|
|
|
|
def method_set_(self, *args, **kwargs):
|
|
if len(args) > 1:
|
|
# torch.Tensor.set_() has several overloads.
|
|
# aten::set_.source_Tensor(Tensor) gets special handling
|
|
# in AOTAutograd and functionalization, because it is the most common
|
|
# overload and is used by FSDP.
|
|
# graph-breaking on aten::set_source_Tensor_storage_offset for now,
|
|
# unless we find that we need to make it work.
|
|
unimplemented("Tensor.set_.source_Tensor_storage_offset")
|
|
|
|
def method_add_(self, other, *, alpha=None):
|
|
if alpha is not None:
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
result = variables.TorchInGraphFunctionVariable(torch.mul).call_function(
|
|
tx, [other, alpha], {}
|
|
)
|
|
return self.call_method(tx, "add_", [result], {})
|
|
|
|
def method_addcdiv_(self, tensor1, tensor2, *, value=None):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
if value is not None:
|
|
result = variables.TorchInGraphFunctionVariable(torch.div).call_function(
|
|
tx, [tensor1, tensor2], {}
|
|
)
|
|
result = variables.TorchInGraphFunctionVariable(torch.mul).call_function(
|
|
tx, [result, value], {}
|
|
)
|
|
return self.call_method(tx, "add_", [result], {})
|
|
|
|
def method___contains__(self, arg):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
# Rewrite __contains__ here so that downstream passes can trace through
|
|
# without dealing with unbacked symbool. Roughly the code we translate is:
|
|
# def __contains__(self, x):
|
|
# return (x == self).any().item()
|
|
result = variables.TorchInGraphFunctionVariable(torch.eq).call_function(
|
|
tx, [self, arg], {}
|
|
)
|
|
result = variables.TorchInGraphFunctionVariable(torch.any).call_function(
|
|
tx, [result], {}
|
|
)
|
|
return result.call_method(tx, "item", [], {})
|
|
|
|
def method_redistribute(self, *args, **kwargs):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
# rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
|
|
# and rewrite args to have only proxyable args, then insert call_function
|
|
args_as_value = [x.as_python_constant() for x in args]
|
|
kwargs_as_value = {k: v.as_python_constant() for k, v in kwargs.items()}
|
|
|
|
def redistribute_fn_with_prim_types(x):
|
|
return x.redistribute(*args_as_value, **kwargs_as_value)
|
|
|
|
# attach the same function name for better debugging
|
|
redistribute_fn_with_prim_types.__name__ = "prim_redistribute"
|
|
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
redistribute_fn_with_prim_types,
|
|
*proxy_args_kwargs([self], {}),
|
|
),
|
|
)
|
|
|
|
def method_register_hook(self, *args, **kwargs):
|
|
return self._method_register_hook("register_hook", *args, **kwargs)
|
|
|
|
def method_register_post_accumulate_grad_hook(self, *args, **kwargs):
|
|
return self._method_register_hook(
|
|
"register_post_accumulate_grad_hook", *args, **kwargs
|
|
)
|
|
|
|
def _method_register_hook(self, name: str, hook: VariableTracker):
|
|
# Note - do not arbitrarily add hooks here - make sure they match the same contract
|
|
# see [On tensor.register_hook]
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
tx = InstructionTranslator.current_tx()
|
|
|
|
if not self.source:
|
|
if not compiled_autograd.compiled_autograd_enabled:
|
|
# TODO(voz):
|
|
# We can relax this by speculating the callable and ensuring that it doesn't modify arbitrary
|
|
# python state.
|
|
# We *Must* be in compiled_autograd here because backward hooks can contain anything, and it is unsafe to run
|
|
# them in a compiled bwd without re-entering dynamo as compiled_autograd does.
|
|
#
|
|
# Discussion point 1 - Should we bypass this if nopython/fullgraph = True?
|
|
# No. Because this was going to be a graph break anyway - this check does not
|
|
# introduce new graph breaks where there were none.
|
|
#
|
|
# Discussion point 2 - Should we defer this check to backwards?
|
|
# No. Because compiled autograd is not yet ready for prime time. As such, if we defer, a user
|
|
# would have no recourse - their forward traces just fine, but will fail at backwards unless
|
|
# compiled_autograd is enabled. If compiled_autograd fails (there are a lot of failures today)
|
|
# then they have nothing they can do except disable compile.
|
|
unimplemented(
|
|
"Compilation of intermediate hooks requires compiled autograd"
|
|
)
|
|
|
|
hook_name, bw_state_proxy = tx.output.add_backward_state_hook(hook)
|
|
|
|
def _register_hook_trampoline(tensor, bw_state):
|
|
register_hook = getattr(tensor, name)
|
|
register_hook(
|
|
functools.partial(
|
|
trace_wrapped,
|
|
fn=call_hook_from_backward_state,
|
|
bw_state=bw_state,
|
|
hook_name=hook_name,
|
|
)
|
|
)
|
|
# TODO(jansel): returning None here is wrong, it should be
|
|
# RemovableHandle, but we need some extra work to support
|
|
# this properly.
|
|
return None
|
|
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
_register_hook_trampoline,
|
|
(self.as_proxy(), bw_state_proxy),
|
|
{},
|
|
),
|
|
)
|
|
|
|
handle_variable = variables.RemovableHandleVariable(
|
|
mutable_local=variables.base.MutableLocal(),
|
|
)
|
|
tx.output.side_effects.register_hook(self, hook, handle_variable, name)
|
|
return handle_variable
|
|
|
|
def method_requires_grad_(self, requires_grad=True):
|
|
if requires_grad is not True:
|
|
requires_grad = requires_grad.as_python_constant()
|
|
|
|
if self.as_proxy().node.meta["example_value"].requires_grad != requires_grad:
|
|
unimplemented("Tensor.requires_grad_")
|
|
else:
|
|
return self
|
|
|
|
def method_new(self, *args, **kwargs):
|
|
# Convert x.new(torch.Size) into x.new_empty(torch.Size),
|
|
# as Tensor.new acts differently with a Size input versus a tuple input.
|
|
if len(args) == 1 and isinstance(args[0], SizeVariable):
|
|
from ..symbolic_convert import InstructionTranslator
|
|
|
|
return self.call_method(
|
|
InstructionTranslator.current_tx(), "new_empty", args, kwargs
|
|
)
|
|
|
|
def method_untyped_storage(self):
|
|
return UntypedStorageVariable(
|
|
self, self.as_proxy().node.meta["example_value"].untyped_storage()
|
|
)
|
|
|
|
def rename(self, tx, name):
|
|
self.proxy.node._rename(name)
|
|
return super().rename(tx, name)
|
|
|
|
|
|
class SymNodeVariable(VariableTracker):
|
|
"""
|
|
Represents a symbolic size, e.g., as returned by tensor.size(0)
|
|
"""
|
|
|
|
@classmethod
|
|
def create(cls, tx, proxy, sym_num, **options):
|
|
if "example_value" in proxy.node.meta:
|
|
assert proxy.node.meta["example_value"] == sym_num
|
|
if sym_num is None:
|
|
sym_num = get_fake_value(proxy.node, tx)
|
|
proxy.node.meta["example_value"] = sym_num
|
|
|
|
if isinstance(sym_num, (sympy.Integer, int, bool)):
|
|
sym_num = int(sym_num) if isinstance(sym_num, sympy.Integer) else sym_num
|
|
return ConstantVariable.create(sym_num)
|
|
|
|
return SymNodeVariable(proxy, sym_num, **options)
|
|
|
|
def __init__(self, proxy, sym_num, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.proxy = proxy
|
|
# TODO: Should we allow non SymTypes here? Today it is allowed
|
|
self.sym_num = sym_num
|
|
|
|
def python_type(self):
|
|
if isinstance(self.sym_num, SymTypes):
|
|
return self.sym_num.node.pytype
|
|
else:
|
|
return type(self.sym_num)
|
|
|
|
def as_proxy(self):
|
|
return self.proxy
|
|
|
|
def evaluate_expr(self, output_graph=None):
|
|
try:
|
|
return guard_scalar(self.sym_num)
|
|
except GuardOnDataDependentSymNode as e:
|
|
raise UserError( # noqa: TRY200
|
|
UserErrorType.ANTI_PATTERN,
|
|
f"Consider annotating your code using torch._constrain_as_*(). {str(e)}",
|
|
case_name="constrain_as_size_example",
|
|
)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
name,
|
|
*proxy_args_kwargs([self, *args], kwargs),
|
|
),
|
|
)
|
|
|
|
|
|
class NumpyNdarrayVariable(TensorVariable):
|
|
"""
|
|
Represents a np.ndarray, but backed by torch Tensor via torch._numpy.ndarray.
|
|
Use this for Tensor.numpy() call.
|
|
"""
|
|
|
|
@staticmethod
|
|
def create(tx, proxy, **options):
|
|
from .builder import wrap_fx_proxy_cls
|
|
|
|
return wrap_fx_proxy_cls(
|
|
target_cls=NumpyNdarrayVariable,
|
|
tx=tx,
|
|
proxy=proxy,
|
|
**options,
|
|
)
|
|
|
|
def var_getattr(self, tx, name):
|
|
# NB: This INTENTIONALLY does not call super(), because there is
|
|
# no intrinsic reason ndarray properties are related to Tensor
|
|
# properties. The inheritance here is for implementation sharing.
|
|
|
|
from ..utils import numpy_attr_wrapper
|
|
from .builder import wrap_fx_proxy
|
|
|
|
result = None
|
|
|
|
example_value = self.as_proxy().node.meta["example_value"]
|
|
example_ndarray = tnp.ndarray(example_value)
|
|
|
|
def insert_into_graph():
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function", numpy_attr_wrapper, (self.as_proxy(), name), {}
|
|
),
|
|
)
|
|
|
|
if name in ["T", "real", "imag"]:
|
|
proxy = tx.output.create_proxy(
|
|
"call_function",
|
|
numpy_attr_wrapper,
|
|
(self.as_proxy(), name),
|
|
{},
|
|
)
|
|
result = NumpyNdarrayVariable.create(tx, proxy)
|
|
|
|
# These are awkward to implement. The standard playbook for torch._numpy
|
|
# interop is to trace a call into the torch._numpy wrapper which works for
|
|
# Tensor operations. However, we don't want to do this for calls
|
|
# that don't return Tensors, because in those cases we may not want
|
|
# to trace the attribute access into the graph at all (it is sort
|
|
# of harmless to do so, because AOTAutograd will eliminate them,
|
|
# but it's best not to trace them in to begin with.) But in any
|
|
# case, tracing these into the graph is like trying to fit a square
|
|
# peg into a round hole; best not to do it. So instead we
|
|
# painstakingly implement these by hand
|
|
#
|
|
# NB: only ALWAYS specialized attributes can go here; notably,
|
|
# size/shape not allowed!
|
|
elif name in ("ndim", "itemsize"):
|
|
return ConstantVariable.create(getattr(example_ndarray, name))
|
|
elif name in ("shape", "stride"):
|
|
if not has_free_symbols(r := getattr(example_ndarray, name)):
|
|
return ConstantVariable.create(tuple(int(r) for r in r))
|
|
return insert_into_graph()
|
|
elif name == "size":
|
|
if not has_free_symbols(r := example_ndarray.size):
|
|
return ConstantVariable.create(int(r))
|
|
return insert_into_graph()
|
|
elif name in ["base", "flags", "dtype"]:
|
|
unimplemented(f"TODO: add support for ndarray.{name}")
|
|
elif name in ["__version__"]:
|
|
unimplemented("delegate np.__version__ to NumPy")
|
|
if result is None:
|
|
raise NotImplementedError()
|
|
return result
|
|
|
|
@staticmethod
|
|
def patch_args(name, args, kwargs):
|
|
if name == "clip":
|
|
kwargs_rename = {"a_min": "min", "a_max": "max"}
|
|
kwargs = {kwargs_rename.get(k, k): v for k, v in kwargs.items()}
|
|
return args, kwargs
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from ..utils import numpy_method_wrapper
|
|
|
|
args, kwargs = self.patch_args(name, args, kwargs)
|
|
|
|
if name in ["__len__", "size", "tolist"]:
|
|
# delegate back to TensorVariable
|
|
return super().call_method(tx, name, args, kwargs)
|
|
if name == "tobytes":
|
|
unimplemented("tobytes is not modelled in torch._numpy")
|
|
proxy = tx.output.create_proxy(
|
|
"call_function",
|
|
numpy_method_wrapper(name),
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
)
|
|
return NumpyNdarrayVariable.create(tx, proxy)
|
|
|
|
def python_type(self):
|
|
return np.ndarray
|
|
|
|
|
|
class UnspecializedPythonVariable(TensorVariable):
|
|
"""
|
|
This is a 1-element tensor represents unspecialized python float/int.
|
|
"""
|
|
|
|
def __init__(
|
|
self, proxy: torch.fx.Proxy, *, raw_value=None, need_unwrap=True, **kwargs
|
|
):
|
|
super().__init__(proxy, **kwargs)
|
|
self.raw_value = raw_value
|
|
self.need_unwrap = need_unwrap
|
|
|
|
@classmethod
|
|
def from_tensor_variable(cls, tensor_variable, raw_value, need_unwrap=True):
|
|
# Convert a `TensorVariable` instance into an `UnspecializedPythonVariable` instance.
|
|
return UnspecializedPythonVariable(
|
|
**dict(tensor_variable.__dict__),
|
|
raw_value=raw_value,
|
|
need_unwrap=need_unwrap,
|
|
)
|
|
|
|
|
|
class FakeItemVariable(TensorVariable):
|
|
"""An unspecialized python variable which prevents access to the underlying raw value.
|
|
This is needed if item is called on a FakeTensor."""
|
|
|
|
def __init__(self, proxy: torch.fx.Proxy, **kwargs):
|
|
need_unwrap = kwargs.pop("need_unwrap", False)
|
|
super().__init__(proxy, **kwargs)
|
|
self.need_unwrap = need_unwrap
|
|
|
|
@classmethod
|
|
def from_tensor_variable(cls, tensor_variable):
|
|
return FakeItemVariable(**dict(tensor_variable.__dict__))
|
|
|
|
|
|
class TensorSubclassVariable(VariableTracker):
|
|
def __init__(self, value, *args, **kwargs):
|
|
self.value = value
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def call_function(
|
|
self, tx, args: List[VariableTracker], kwargs: Dict[str, VariableTracker]
|
|
) -> VariableTracker:
|
|
if len(args) == 1 and isinstance(args[0], TensorVariable):
|
|
from .builder import VariableBuilder
|
|
from .torch_function import TensorWithTFOverrideVariable
|
|
|
|
torch_fn = VariableBuilder(
|
|
tx, AttrSource(self.source, "__torch_function__")
|
|
)(self.value.__torch_function__)
|
|
|
|
return TensorWithTFOverrideVariable.from_tensor_var(
|
|
tx, args[0], self.value, torch_fn
|
|
)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
def python_type(self):
|
|
return type(self.value)
|
|
|
|
|
|
class UntypedStorageVariable(VariableTracker):
|
|
_nonvar_fields = {
|
|
"example_value",
|
|
*VariableTracker._nonvar_fields,
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
from_tensor: TensorVariable,
|
|
example_value: torch.UntypedStorage,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs),
|
|
self.from_tensor = from_tensor
|
|
# Example_value will always have device="meta"
|
|
self.example_value = example_value
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: List[VariableTracker],
|
|
kwargs: Dict[str, VariableTracker],
|
|
) -> VariableTracker:
|
|
if name == "size":
|
|
assert not args
|
|
assert not kwargs
|
|
result = self.example_value.size()
|
|
if not has_free_symbols(result):
|
|
# avoid creating a node in the graph
|
|
return ConstantVariable.create(int(result))
|
|
else:
|
|
from ..external_utils import untyped_storage_size
|
|
from .builder import wrap_fx_proxy
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
untyped_storage_size,
|
|
(self.from_tensor.as_proxy(),),
|
|
{},
|
|
),
|
|
)
|
|
if name == "resize_" and len(args) == 1:
|
|
assert not kwargs
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
torch.ops.inductor.resize_storage_bytes_,
|
|
(self.from_tensor.as_proxy(), args[0].as_proxy()),
|
|
{},
|
|
)
|
|
return self
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def reconstruct(self, codegen):
|
|
codegen(self.from_tensor)
|
|
codegen.append_output(codegen.create_load_method("untyped_storage"))
|
|
codegen.extend_output(create_call_method(0))
|