Files
pytorch/torch/nativert/executor/SerialGraphExecutor.cpp
dolpm 018e9826a2 [nativert] hook up memory planning to execution frame (#157053)
Summary: pretty simple. if planner exists, which implies that planning is enabled, create a manager for each frame. the associated serial executor will use the withMemoryPlannner fn to ensure the deallocation is done after execution completes.

Test Plan: CI

Differential Revision: D73635809

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157053
Approved by: https://github.com/henryoier, https://github.com/georgiaphillips
2025-06-30 00:06:37 +00:00

35 lines
1.2 KiB
C++

#include <torch/nativert/executor/ExecutionPlanner.h>
#include <torch/nativert/executor/ExecutorConfig.h>
#include <torch/nativert/executor/SerialGraphExecutor.h>
namespace torch::nativert {
std::vector<c10::IValue> SerialGraphExecutor::execute(
ExecutionFrame& executionFrame,
std::vector<c10::IValue> inputs) {
fillUserInputs(executionFrame, std::move(inputs));
return executeWithPrefilledFrame(executionFrame);
}
std::vector<c10::IValue> SerialGraphExecutor::executeWithPrefilledFrame(
ExecutionFrame& executionFrame) {
executionFrame.withMemoryPlanner([&]() {
// Execute kernels for all nodes except prim.Input and prim.Output
for (NodeIndex nodeIdx = 1; nodeIdx < nodeKernels_.size() - 1; ++nodeIdx) {
nodeKernels_[nodeIdx]->compute(executionFrame);
// don't free intermediate values when static memory planning is enabled
if (executorConfig_.tryFreeUnmanagedValuesAfterUse) {
// Free the intermediate values that are no used anymore
for (const auto& valueKey : execPlan_->valuesToFree[nodeIdx]) {
executionFrame.releaseValueIfNeeded(valueKey);
}
}
}
});
return executionFrame.tryMoveUserOutputs();
}
} // namespace torch::nativert