mirror of
				https://github.com/pytorch/pytorch.git
				synced 2025-11-01 04:48:43 +08:00 
			
		
		
		
	Partially fixes: #66328 This PR: - adds support for `ITensorList` to the dispatcher for: - computing the dispatch key - boxing and unboxing `ITensorList` - modified the codegen for structured kernels: - codegen APIs use `ITensorList` instead of `ArrayRef<Tensor>` **Changes summary:** - Signature changes due to the different APIs: - dispatcher API (e.g. `BatchingRegistrations.cpp`) - C++ API (e.g. `TensorShape.cpp`) - Miscelaneous functions used by codegen'd functions (e.g. `FunctionalTensorWrapper.*`) - Dispatcher changes for handling `ITensorList` correctly (e.g. `DispatchKeyExtractor.h`) - Signature changes of `at::cat` due to the need of `const` inside `TensorBody.h` - Forward declarations of `ITensorList` (e.g. `MethodOperators.h`) - Codegen changes, special casing structured kernels (e.g. `gen.py`) **Short description of structured kernels special casing:** I introduced, mainly, 5 types of changes to the codegen for generating code depending on whether the kernel is structured or not: 1. Added a `structured_type_override` flag to the `argument_type` function definition of the affected APIs (mainly the dispatcher and C++ APIs). - `api/cpp.py`, `api/dispatcher.py`, `api/native.py` 2. Added a `structured_type_override` member to the signature classes (e.g. `CppSignature`), since `FunctionSchema` doesn't really know whether the function is structured or not - `api/types.py` 3. Added a `part_of_structured_group` to `NativeFunction` class, which is just a convenient function to forward to `structured_type_override` wherever needed - `model.py` 4. Appropriately changed the rest of the codegen, whenever it used either the signature classes or the `arguments` function directly 5. Added a check for `const ITensorList&` type wherever there was a check for `TensorList` Pull Request resolved: https://github.com/pytorch/pytorch/pull/73350 Approved by: https://github.com/bdhirsh
		
			
				
	
	
		
			116 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			116 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import contextlib
 | |
| 
 | |
| import functools
 | |
| from typing import Callable, Dict, Iterator, Optional, TypeVar, Union
 | |
| 
 | |
| import torchgen.local as local
 | |
| from torchgen.model import (
 | |
|     BackendIndex,
 | |
|     DispatchKey,
 | |
|     NativeFunction,
 | |
|     NativeFunctionsGroup,
 | |
|     NativeFunctionsViewGroup,
 | |
| )
 | |
| from torchgen.utils import context, S, T
 | |
| 
 | |
| # Helper functions for defining generators on things in the model
 | |
| 
 | |
| F = TypeVar(
 | |
|     "F",
 | |
|     NativeFunction,
 | |
|     NativeFunctionsGroup,
 | |
|     NativeFunctionsViewGroup,
 | |
|     Union[NativeFunction, NativeFunctionsGroup],
 | |
|     Union[NativeFunction, NativeFunctionsViewGroup],
 | |
| )
 | |
| 
 | |
| F2 = TypeVar(
 | |
|     "F2",
 | |
|     NativeFunction,
 | |
|     NativeFunctionsGroup,
 | |
|     Optional[NativeFunction],
 | |
|     bool,
 | |
|     str,
 | |
| )
 | |
| 
 | |
| 
 | |
| @contextlib.contextmanager
 | |
| def native_function_manager(
 | |
|     g: Union[NativeFunctionsGroup, NativeFunctionsViewGroup, NativeFunction]
 | |
| ) -> Iterator[None]:
 | |
|     if isinstance(g, NativeFunctionsGroup):
 | |
|         # By default, we associate all errors with structured native functions
 | |
|         # with the out variant.  In some cases, it might be better to have
 | |
|         # a more specific place to hang things; if so, use
 | |
|         # native_function_manager again on the inside
 | |
|         f = g.out
 | |
|     elif isinstance(g, NativeFunctionsViewGroup):
 | |
|         # We associate errors with the view operator
 | |
|         f = g.view
 | |
|     else:
 | |
|         f = g
 | |
|     with context(lambda: f"in native_functions.yaml line {f.loc}:\n  {f.func}"):
 | |
|         with local.parametrize(
 | |
|             use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors,
 | |
|             use_ilistref_for_tensor_lists=f.part_of_structured_group,
 | |
|         ):
 | |
|             yield
 | |
| 
 | |
| 
 | |
| # Given a function that operates on NativeFunction, wrap it into a new function
 | |
| # that sets some appropriate context managers for that native function.
 | |
| # YOU MUST WRAP FUNCTIONS IN THIS for calls to api modules to be sound
 | |
| # (you will get an error if we try to access the local variables without having
 | |
| # set them).
 | |
| def with_native_function(func: Callable[[F], T]) -> Callable[[F], T]:
 | |
|     @functools.wraps(func)
 | |
|     def wrapper(f: F) -> T:
 | |
|         with native_function_manager(f):
 | |
|             return func(f)
 | |
| 
 | |
|     return wrapper
 | |
| 
 | |
| 
 | |
| def with_native_function_and(func: Callable[[F, F2], T]) -> Callable[[F, F2], T]:
 | |
|     @functools.wraps(func)
 | |
|     def wrapper(f: F, f2: F2) -> T:
 | |
|         # The first native_function is assumed to be the one with the appropriate context.
 | |
|         with native_function_manager(f):
 | |
|             return func(f, f2)
 | |
| 
 | |
|     return wrapper
 | |
| 
 | |
| 
 | |
| def method_with_native_function(func: Callable[[S, F], T]) -> Callable[[S, F], T]:
 | |
|     @functools.wraps(func)
 | |
|     def wrapper(slf: S, f: F) -> T:
 | |
|         with native_function_manager(f):
 | |
|             return func(slf, f)
 | |
| 
 | |
|     return wrapper
 | |
| 
 | |
| 
 | |
| # Convenience decorator for functions that explicitly take in a BackendIndex,
 | |
| # instead of indirectly taking one in as a closure
 | |
| def with_native_function_and_index(
 | |
|     func: Callable[[F, BackendIndex], T]
 | |
| ) -> Callable[[F, BackendIndex], T]:
 | |
|     @functools.wraps(func)
 | |
|     def wrapper(f: F, backend_index: BackendIndex) -> T:
 | |
|         with native_function_manager(f):
 | |
|             return func(f, backend_index)
 | |
| 
 | |
|     return wrapper
 | |
| 
 | |
| 
 | |
| # Convenience decorator for functions that explicitly take in a Dict of BackendIndices
 | |
| def with_native_function_and_indices(
 | |
|     func: Callable[[F, Dict[DispatchKey, BackendIndex]], T]
 | |
| ) -> Callable[[F, Dict[DispatchKey, BackendIndex]], T]:
 | |
|     @functools.wraps(func)
 | |
|     def wrapper(f: F, backend_indices: Dict[DispatchKey, BackendIndex]) -> T:
 | |
|         with native_function_manager(f):
 | |
|             return func(f, backend_indices)
 | |
| 
 | |
|     return wrapper
 |