Files
pytorch/torch/_dynamo/testing.py
William Wen 0066f3405f [dynamo 3.11] enable dynamo unittests in 3.11 (#98104)
Enable most dynamo unittests for 3.11. There are a few tests that are skipped due to failures that will be addressed in upcoming PRs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98104
Approved by: https://github.com/yanboliang, https://github.com/voznesenskym, https://github.com/albanD, https://github.com/jansel, https://github.com/jerryzh168, https://github.com/malfet
2023-04-06 23:15:48 +00:00

309 lines
8.8 KiB
Python

import contextlib
import dis
import functools
import logging
import os.path
import sys
import types
import unittest
from unittest.mock import patch
import torch
from torch import fx
from . import config, eval_frame, optimize_assert, reset
from .bytecode_transformation import (
create_instruction,
debug_checks,
is_generator,
transform_code_object,
)
from .guards import CheckFunctionManager, GuardedCode
from .utils import same
unsupported = eval_frame.unsupported
three = 3
log = logging.getLogger(__name__)
def clone_me(x):
if x is None:
return None
return x.detach().clone().requires_grad_(x.requires_grad)
def skip_if_pytest(fn):
@functools.wraps(fn)
def wrapped(*args, **kwargs):
if "PYTEST_CURRENT_TEST" in os.environ:
raise unittest.SkipTest("does not work under pytest")
return fn(*args, **kwargs)
return wrapped
def named_parameters_for_optimized_module(mod):
assert isinstance(mod, eval_frame.OptimizedModule)
return mod._orig_mod.named_parameters
def named_buffers_for_optimized_module(mod):
assert isinstance(mod, eval_frame.OptimizedModule)
return mod._orig_mod.named_buffers
def remove_optimized_module_prefix(name):
prefix = "_orig_mod."
assert name.startswith(prefix)
name = name[len(prefix) :]
return name
def collect_results(model, prediction, loss, example_inputs):
results = []
results.append(prediction)
results.append(loss)
# if isinstance(loss, torch.Tensor) and loss.item() > 1:
# log.warning(
# f"High loss value alert - {loss:.2f}. Can result in unstable gradients."
# )
grads = dict()
params = dict()
for name, param in model.named_parameters():
if isinstance(model, eval_frame.OptimizedModule):
name = remove_optimized_module_prefix(name)
param_copy = param
grad = param.grad
# Treat None and zero grad as same
if param.grad is None:
grad = torch.zeros_like(param)
grads[name + ".grad"] = grad
params[name] = param_copy
results.append(grads)
results.append(params)
buffers = dict()
for name, buffer in model.named_buffers():
if isinstance(model, eval_frame.OptimizedModule):
name = remove_optimized_module_prefix(name)
buffers[name] = buffer
results.append(buffers)
for example in example_inputs:
if isinstance(example, (tuple, list)):
for inp in example:
if isinstance(inp, torch.Tensor):
results.append(inp.grad)
else:
if isinstance(example, torch.Tensor):
results.append(example.grad)
return results
def requires_bwd_pass(out):
if isinstance(out, torch.Tensor):
return out.requires_grad
elif isinstance(out, (list, tuple)):
return any([requires_bwd_pass(x) for x in out])
elif out is None:
return False
elif isinstance(out, int):
return False
raise NotImplementedError("Don't know how to reduce", type(out))
def reduce_to_scalar_loss(out):
"""Reduce the output of a model to get scalar loss"""
if isinstance(out, torch.Tensor):
# Mean does not work on integer tensors
return out.sum() / out.numel()
elif isinstance(out, (list, tuple)):
return sum([reduce_to_scalar_loss(x) for x in out]) / len(out)
elif type(out).__name__ in (
"MaskedLMOutput",
"Seq2SeqLMOutput",
"CausalLMOutputWithCrossAttentions",
):
return reduce_to_scalar_loss(out.logits)
elif type(out).__name__ == "SquashedNormal":
return out.mean.sum()
elif isinstance(out, dict):
return sum([reduce_to_scalar_loss(value) for value in out.values()]) / len(
out.keys()
)
raise NotImplementedError("Don't know how to reduce", type(out))
def debug_dir():
path = os.path.join(os.path.dirname(__file__), "../debug")
if not os.path.exists(path):
os.mkdir(path)
return path
def debug_dump(name, code: types.CodeType, extra=""):
with open(os.path.join(debug_dir(), name), "w") as fd:
fd.write(
f"{dis.Bytecode(code).info()}\n\n{dis.Bytecode(code).dis()}\n\n{extra}\n"
)
def debug_insert_nops(frame, cache_size, hooks):
"""used to debug jump updates"""
def insert_nops(instructions, code_options):
instructions.insert(0, create_instruction("NOP"))
instructions.insert(0, create_instruction("NOP"))
if is_generator(frame.f_code):
return None
debug_checks(frame.f_code)
code = transform_code_object(frame.f_code, insert_nops)
return GuardedCode(code, CheckFunctionManager().check_fn)
class CompileCounter:
def __init__(self):
self.frame_count = 0
self.op_count = 0
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
self.frame_count += 1
for node in gm.graph.nodes:
if "call" in node.op:
self.op_count += 1
return gm.forward
def clear(self):
self.frame_count = 0
self.op_count = 0
class CompileCounterWithBackend:
def __init__(self, backend):
self.frame_count = 0
self.op_count = 0
self.backend = backend
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
from .backends.registry import lookup_backend
self.frame_count += 1
for node in gm.graph.nodes:
if "call" in node.op:
self.op_count += 1
return lookup_backend(self.backend)(gm, example_inputs)
def standard_test(self, fn, nargs, expected_ops=None, expected_ops_dynamic=None):
if config.dynamic_shapes and expected_ops_dynamic is not None:
expected_ops = expected_ops_dynamic
actual = CompileCounter()
if expected_ops is None:
expected = CompileCounter()
try:
gm = torch.fx.symbolic_trace(fn)
expected(gm)
print("\nfx.symbolic_trace graph:")
gm.graph.print_tabular()
expected_ops = expected.op_count
except Exception:
pass # Silently ignore FX errors (not our issue)
args1 = [torch.randn(10, 10) for _ in range(nargs)]
args2 = [torch.randn(10, 10) for _ in range(nargs)]
correct1 = fn(*args1)
correct2 = fn(*args2)
reset()
opt_fn = optimize_assert(actual)(fn)
val1a = opt_fn(*args1)
val2a = opt_fn(*args2)
val1b = opt_fn(*args1)
val2b = opt_fn(*args2)
reset()
self.assertTrue(same(val1a, correct1))
self.assertTrue(same(val1b, correct1))
self.assertTrue(same(val2a, correct2))
self.assertTrue(same(val2b, correct2))
self.assertEqual(actual.frame_count, 1)
if expected_ops is not None:
self.assertEqual(actual.op_count, expected_ops)
def dummy_fx_compile(gm: fx.GraphModule, example_inputs):
return gm.forward
def format_speedup(speedup, pvalue, is_correct=True, pvalue_threshold=0.1):
if not is_correct:
return "ERROR"
if pvalue > pvalue_threshold:
return f"{speedup:.3f}x SAME"
return f"{speedup:.3f}x p={pvalue:.2f}"
def requires_static_shapes(fn):
@functools.wraps(fn)
def _fn(*args, **kwargs):
if config.dynamic_shapes:
raise unittest.SkipTest("requires static shapes")
return fn(*args, **kwargs)
return _fn
def rand_strided(size, stride, dtype=torch.float32, device="cpu", extra_size=0):
needed_size = (
sum((shape - 1) * stride for shape, stride in zip(size, stride))
+ 1
+ extra_size
)
if dtype.is_floating_point:
buffer = torch.randn(needed_size, dtype=dtype, device=device)
else:
buffer = torch.zeros(size=[needed_size], dtype=dtype, device=device)
return torch.as_strided(buffer, size, stride)
def _make_fn_with_patches(fn, *patches):
@functools.wraps(fn)
def _fn(*args, **kwargs):
with contextlib.ExitStack() as stack:
for module, attr, val in patches:
stack.enter_context(patch.object(module, attr, val))
return fn(*args, **kwargs)
return _fn
def make_test_cls_with_patches(cls, cls_prefix, fn_suffix, *patches):
class DummyTestClass(cls):
pass
DummyTestClass.__name__ = f"{cls_prefix}{cls.__name__}"
DummyTestClass.__qualname__ = DummyTestClass.__name__
for name in dir(cls):
if name.startswith("test_"):
fn = getattr(cls, name)
if not callable(fn):
continue
new_name = f"{name}{fn_suffix}"
fn = _make_fn_with_patches(fn, *patches)
fn.__name__ = new_name
setattr(DummyTestClass, new_name, fn)
return DummyTestClass
# temporary decorator to skip failing 3.11 dynamo tests
def skipIfPy311(fn):
if sys.version_info < (3, 11):
return fn
else:
return unittest.skip(fn)