mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37937 Sometime traces models dont preseve aten::linear ops and they are decomposed into addmm or mul + add. Adding thie preprocessing step helps us catch more lowerable linear nodes. Please see the test for example. Test Plan: python test/test_xnnpack_integration.py Reviewed By: xcheng16 Differential Revision: D21428069 fbshipit-source-id: 6c4ea3335eaf5722852c639fb4ee593746bb408f
710 lines
32 KiB
Python
710 lines
32 KiB
Python
from __future__ import division
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
import torch.backends.xnnpack
|
|
from torch.nn import functional as F
|
|
from torch.testing import FileCheck
|
|
import torch.testing._internal.hypothesis_utils as hu
|
|
from torch.testing._internal.common_utils import TestCase, run_tests
|
|
from hypothesis import given, assume
|
|
from hypothesis import strategies as st
|
|
import io
|
|
|
|
|
|
@unittest.skipUnless(torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests."
|
|
" Please build with USE_XNNPACK=1.")
|
|
class TestXNNPACKOps(TestCase):
|
|
@given(batch_size=st.integers(0, 3),
|
|
data_shape=hu.array_shapes(1, 3, 2, 64),
|
|
weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans())
|
|
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
|
|
data_shape = [batch_size] + list(data_shape)
|
|
input_data = torch.rand(data_shape)
|
|
weight = torch.rand((weight_output_dim, data_shape[-1]))
|
|
if use_bias:
|
|
bias = torch.rand((weight_output_dim))
|
|
else:
|
|
bias = None
|
|
ref_result = F.linear(input_data, weight, bias)
|
|
packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias)
|
|
output_linearprepacked = torch.ops.prepacked.linear_clamp_run(input_data, packed_weight_bias)
|
|
torch.testing.assert_allclose(ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3)
|
|
|
|
@given(batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
use_bias=st.booleans(),
|
|
format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last]))
|
|
def test_conv2d(self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
use_bias,
|
|
format):
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0]
|
|
>= dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1]
|
|
>= dilations[1] * (kernels[1] - 1) + 1)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if (format is not None):
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
|
|
bias = None
|
|
if use_bias:
|
|
bias = torch.rand((output_channels))
|
|
|
|
ref_result = F.conv2d(input_data, weight, bias,
|
|
strides, paddings, dilations, groups)
|
|
packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(weight, bias,
|
|
strides, paddings, dilations, groups)
|
|
xnnpack_result = torch.ops.prepacked.conv2d_clamp_run(input_data, packed_weight_bias)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
|
|
@unittest.skipUnless(torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests."
|
|
" Please build with USE_XNNPACK=1.")
|
|
class TestXNNPACKSerDes(TestCase):
|
|
@given(batch_size=st.integers(0, 3),
|
|
data_shape=hu.array_shapes(1, 3, 2, 64),
|
|
weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans())
|
|
def test_linear(self, batch_size, data_shape, weight_output_dim, use_bias):
|
|
class Linear(torch.nn.Module):
|
|
def __init__(self, weight, bias=None):
|
|
super(Linear, self).__init__()
|
|
self.weight = weight
|
|
self.bias = bias
|
|
|
|
def forward(self, x):
|
|
return F.linear(x, self.weight, self.bias)
|
|
|
|
class LinearPrePacked(torch.nn.Module):
|
|
def __init__(self, weight, bias=None):
|
|
super(LinearPrePacked, self).__init__()
|
|
self.packed_weight_bias = torch.ops.prepacked.linear_clamp_prepack(weight, bias)
|
|
|
|
def forward(self, x):
|
|
return torch.ops.prepacked.linear_clamp_run(x, self.packed_weight_bias)
|
|
|
|
data_shape = [batch_size] + list(data_shape)
|
|
weight = torch.rand((weight_output_dim, data_shape[-1]))
|
|
if use_bias:
|
|
bias = torch.rand((weight_output_dim))
|
|
else:
|
|
bias = None
|
|
scripted_linear = torch.jit.script(Linear(weight, bias))
|
|
scripted_linear_clamp_prepacked = torch.jit.script(LinearPrePacked(weight, bias))
|
|
input_data = torch.rand(data_shape)
|
|
ref_result = scripted_linear(input_data)
|
|
output_linearprepacked = scripted_linear_clamp_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand(data_shape)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_linear, buffer)
|
|
buffer.seek(0)
|
|
deserialized_linear = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_linear_clamp_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_linear_clamp_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_linear(input_data)
|
|
output_linearprepacked = deserialized_linear_clamp_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, output_linearprepacked, rtol=1e-2, atol=1e-3)
|
|
|
|
@given(batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
use_bias=st.booleans(),
|
|
format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last]))
|
|
def test_conv2d(self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
use_bias,
|
|
format):
|
|
class Conv2D(torch.nn.Module):
|
|
def __init__(self, weight, bias, strides, paddings, dilations, groups):
|
|
super(Conv2D, self).__init__()
|
|
self.weight = weight
|
|
self.bias = bias
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
return F.conv2d(x, self.weight, self.bias,
|
|
self.strides, self.paddings, self.dilations, self.groups)
|
|
|
|
class Conv2DPrePacked(torch.nn.Module):
|
|
def __init__(self, weight, bias, strides, paddings, dilations, groups):
|
|
super(Conv2DPrePacked, self).__init__()
|
|
self.packed_weight_bias = torch.ops.prepacked.conv2d_clamp_prepack(weight, bias,
|
|
strides, paddings, dilations, groups)
|
|
|
|
def forward(self, x):
|
|
return torch.ops.prepacked.conv2d_clamp_run(x, self.packed_weight_bias)
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0] >=
|
|
dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1] >=
|
|
dilations[1] * (kernels[1] - 1) + 1)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if (format is not None):
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
|
|
bias = None
|
|
if use_bias:
|
|
bias = torch.rand((output_channels))
|
|
|
|
scripted_conv2d = torch.jit.script(Conv2D(weight, bias,
|
|
strides, paddings, dilations, groups))
|
|
scripted_conv2d_clamp_prepacked = torch.jit.script(Conv2DPrePacked(
|
|
weight, bias, strides, paddings, dilations, groups))
|
|
ref_result = scripted_conv2d(input_data)
|
|
xnnpack_result = scripted_conv2d_clamp_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if (format is not None):
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_conv2d, buffer)
|
|
buffer.seek(0)
|
|
deserialized_conv2d = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_conv2d_clamp_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_conv2d_clamp_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_conv2d(input_data)
|
|
xnnpack_result = deserialized_conv2d_clamp_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
@given(batch_size=st.integers(0, 3),
|
|
input_channels_per_group=st.integers(1, 32),
|
|
height=st.integers(5, 64),
|
|
width=st.integers(5, 64),
|
|
output_channels_per_group=st.integers(1, 32),
|
|
groups=st.integers(1, 16),
|
|
kernel_h=st.integers(1, 7),
|
|
kernel_w=st.integers(1, 7),
|
|
stride_h=st.integers(1, 2),
|
|
stride_w=st.integers(1, 2),
|
|
pad_h=st.integers(0, 2),
|
|
pad_w=st.integers(0, 2),
|
|
dilation=st.integers(1, 2),
|
|
linear_weight_output_dim=st.integers(2, 64),
|
|
use_bias=st.booleans(),
|
|
format=st.sampled_from([None, torch.preserve_format, torch.contiguous_format, torch.channels_last]))
|
|
def test_combined_model(self,
|
|
batch_size,
|
|
input_channels_per_group,
|
|
height,
|
|
width,
|
|
output_channels_per_group,
|
|
groups,
|
|
kernel_h,
|
|
kernel_w,
|
|
stride_h,
|
|
stride_w,
|
|
pad_h,
|
|
pad_w,
|
|
dilation,
|
|
linear_weight_output_dim,
|
|
use_bias,
|
|
format):
|
|
class M(torch.nn.Module):
|
|
def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias,
|
|
strides, paddings, dilations, groups):
|
|
super(M, self).__init__()
|
|
self.conv_weight = conv_weight
|
|
self.conv_bias = conv_bias
|
|
self.linear_weight = linear_weight
|
|
self.linear_bias = linear_bias
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
o = F.conv2d(x, self.conv_weight, self.conv_bias,
|
|
self.strides, self.paddings, self.dilations, self.groups)
|
|
o = o.permute([0, 2, 3, 1])
|
|
o = F.linear(o, self.linear_weight, self.linear_bias)
|
|
return F.relu(o)
|
|
|
|
class MPrePacked(torch.nn.Module):
|
|
def __init__(self, conv_weight, conv_bias, linear_weight, linear_bias,
|
|
strides, paddings, dilations, groups):
|
|
super(MPrePacked, self).__init__()
|
|
self.conv2d_clamp_run_weight_bias = \
|
|
torch.ops.prepacked.conv2d_clamp_prepack(conv_weight, conv_bias,
|
|
strides, paddings, dilations, groups)
|
|
self.linear_clamp_run_weight_bias = \
|
|
torch.ops.prepacked.linear_clamp_prepack(linear_weight, linear_bias)
|
|
|
|
def forward(self, x):
|
|
o = torch.ops.prepacked.conv2d_clamp_run(x, self.conv2d_clamp_run_weight_bias)
|
|
o = o.permute([0, 2, 3, 1])
|
|
o = torch.ops.prepacked.linear_clamp_run(o, self.linear_clamp_run_weight_bias)
|
|
return F.relu(o)
|
|
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
assume(height + 2 * paddings[0]
|
|
>= dilations[0] * (kernels[0] - 1) + 1)
|
|
assume(width + 2 * paddings[1]
|
|
>= dilations[1] * (kernels[1] - 1) + 1)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
if (format is not None):
|
|
input_data = input_data.contiguous(memory_format=format)
|
|
conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
|
|
conv_bias = None
|
|
if use_bias:
|
|
conv_bias = torch.rand((output_channels))
|
|
|
|
# This is done just to find the output shape of the result
|
|
# so that the shape of weight for the following linear layer
|
|
# can be determined.
|
|
result = F.conv2d(input_data, conv_weight, conv_bias,
|
|
strides, paddings, dilations, groups)
|
|
linear_input_shape = result.shape[1]
|
|
|
|
linear_weight = torch.rand((linear_weight_output_dim, linear_input_shape))
|
|
linear_bias = None
|
|
if use_bias:
|
|
linear_bias = torch.rand((linear_weight_output_dim))
|
|
|
|
scripted_m = torch.jit.script(M(conv_weight, conv_bias, linear_weight,
|
|
linear_bias, strides, paddings, dilations, groups))
|
|
scripted_m_prepacked = torch.jit.script(
|
|
MPrePacked(
|
|
conv_weight,
|
|
conv_bias,
|
|
linear_weight,
|
|
linear_bias,
|
|
strides,
|
|
paddings,
|
|
dilations,
|
|
groups))
|
|
ref_result = scripted_m(input_data)
|
|
xnnpack_result = scripted_m_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
# Serialize the modules and then deserialize
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
input_data = input_data.contiguous(memory_format=torch.channels_last)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_m, buffer)
|
|
buffer.seek(0)
|
|
deserialized_m = torch.jit.load(buffer)
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_m_prepacked, buffer)
|
|
buffer.seek(0)
|
|
deserialized_m_prepacked = torch.jit.load(buffer)
|
|
ref_result = deserialized_m(input_data)
|
|
xnnpack_result = deserialized_m_prepacked(input_data)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
|
|
@unittest.skipUnless(torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests."
|
|
" Please build with USE_XNNPACK=1.")
|
|
class TestXNNPACKRewritePass(TestCase):
|
|
@staticmethod
|
|
def validate_transformed_module(
|
|
# To please flake
|
|
self,
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=False,
|
|
fuse_clamping_ops=False):
|
|
module_instance = self
|
|
scripted_model = torch.jit.script(module_instance)
|
|
scripted_model.eval()
|
|
input_data = torch.normal(1, 20, size=data_shape)
|
|
ref_result = scripted_model(input_data)
|
|
torch._C._jit_pass_insert_prepacked_ops(scripted_model._c)
|
|
if fuse_clamping_ops or prepack_removal:
|
|
scripted_model._c = torch._C._freeze_module(scripted_model._c)
|
|
if fuse_clamping_ops:
|
|
torch._C._jit_pass_fuse_clamp_w_prepacked_linear_conv(scripted_model._c)
|
|
if (prepack_removal):
|
|
torch._C._jit_pass_fold_prepacking_ops(scripted_model._c)
|
|
|
|
buffer = io.BytesIO()
|
|
torch.jit.save(scripted_model, buffer)
|
|
buffer.seek(0)
|
|
deserialized_scripted_model = torch.jit.load(buffer)
|
|
for pattern, v in pattern_count_map.items():
|
|
if (v == 0):
|
|
FileCheck().check(pattern).run(deserialized_scripted_model.graph)
|
|
elif (v == -1):
|
|
FileCheck().check_not(pattern).run(deserialized_scripted_model.graph)
|
|
else:
|
|
FileCheck().check_count(pattern, v, exactly=True).run(deserialized_scripted_model.graph)
|
|
xnnpack_result = deserialized_scripted_model(input_data)
|
|
torch.testing.assert_allclose(ref_result, xnnpack_result, rtol=1e-2, atol=1e-3)
|
|
|
|
def test_linear(self):
|
|
data_shape = [2, 3, 32]
|
|
weight_output_dim = 24
|
|
weight_shape = (weight_output_dim, data_shape[-1])
|
|
|
|
class Linear(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Linear, self).__init__()
|
|
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(weight_shape)), requires_grad=False)
|
|
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))), requires_grad=False)
|
|
|
|
def forward(self, x):
|
|
return F.linear(x, self.weight, self.bias)
|
|
|
|
class LinearNoBias(torch.nn.Module):
|
|
def __init__(self):
|
|
super(LinearNoBias, self).__init__()
|
|
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(weight_shape)), requires_grad=False)
|
|
|
|
def forward(self, x):
|
|
return F.linear(x, self.weight, None)
|
|
|
|
# Linear with bias pattern.
|
|
pattern_count_map = {"Tensor = prim::CallFunction": -1,
|
|
"prepacked::linear_clamp_prepack": 1,
|
|
"prepacked::linear_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(Linear(), pattern_count_map, data_shape)
|
|
TestXNNPACKRewritePass.validate_transformed_module(LinearNoBias(), pattern_count_map, data_shape)
|
|
|
|
# Conv params
|
|
batch_size = 2
|
|
input_channels_per_group = 6
|
|
height = 16
|
|
width = 16
|
|
output_channels_per_group = 6
|
|
groups = 4
|
|
kernel_h = kernel_w = 3
|
|
stride_h = stride_w = 1
|
|
pad_h = pad_w = 1
|
|
dilation = 1
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
conv_weight_shape = (output_channels, input_channels_per_group, kernel_h, kernel_w)
|
|
conv_bias_shape = (output_channels)
|
|
|
|
class Conv2D(torch.nn.Module):
|
|
def __init__(self):
|
|
super(Conv2D, self).__init__()
|
|
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)), requires_grad=False)
|
|
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand(conv_bias_shape)), requires_grad=False)
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
return F.conv2d(x, self.weight, self.bias,
|
|
self.strides, self.paddings, self.dilations, self.groups)
|
|
|
|
data_shape = (batch_size, input_channels, height, width)
|
|
pattern_count_map = {"Tensor = aten::conv2d": -1,
|
|
"prepacked::conv2d_clamp_prepack": 1,
|
|
"prepacked::conv2d_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(Conv2D(), pattern_count_map, data_shape)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
|
|
conv_bias = torch.rand((output_channels))
|
|
result = F.conv2d(input_data, conv_weight, conv_bias,
|
|
strides, paddings, dilations, groups)
|
|
linear_input_shape = result.shape[1]
|
|
linear_weight_shape = (weight_output_dim, linear_input_shape)
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self, activation_fn=F.relu):
|
|
super(M, self).__init__()
|
|
self.conv_weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)), requires_grad=False)
|
|
self.conv_bias = torch.nn.Parameter(torch.Tensor(torch.rand((conv_bias_shape))), requires_grad=False)
|
|
self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape)), requires_grad=False)
|
|
self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))), requires_grad=False)
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
self.activation_fn = activation_fn
|
|
|
|
def forward(self, x):
|
|
o = F.conv2d(x, self.conv_weight, self.conv_bias,
|
|
self.strides, self.paddings, self.dilations, self.groups)
|
|
o = self.activation_fn(o)
|
|
o = o.permute([0, 2, 3, 1])
|
|
o = F.linear(o, self.linear_weight, self.linear_bias)
|
|
return self.activation_fn(o)
|
|
|
|
pattern_count_map = {"Tensor = aten::conv2d": -1,
|
|
"prepacked::conv2d_clamp_prepack": 1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": 1,
|
|
"prepacked::linear_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(M(), pattern_count_map, data_shape)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["Tensor = prim::CallFunction"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(M(), pattern_count_map, data_shape, prepack_removal=True)
|
|
|
|
# Not inplace relu fusion test.
|
|
pattern_count_map = {"aten::relu": 2,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(M(), pattern_count_map, data_shape, prepack_removal=True)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
pattern_count_map["aten::relu"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True)
|
|
|
|
# Inplace relu fusion test.
|
|
pattern_count_map = {"aten::relu": 2,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.relu_),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
pattern_count_map["aten::relu"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.relu_),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True)
|
|
|
|
# Not inplace hardtanh fusion test.
|
|
pattern_count_map = {"aten::hardtanh": 2,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.hardtanh),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
pattern_count_map["aten::hardtanh"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.hardtanh),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True)
|
|
|
|
# Inplace hardtanh fusion test.
|
|
pattern_count_map = {"aten::hardtanh_": 2,
|
|
"prepacked::conv2d_clamp_prepack": -1,
|
|
"prepacked::conv2d_clamp_run": 1,
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.hardtanh_),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True)
|
|
pattern_count_map["prepacked::conv2d_clamp_prepack"] = -1
|
|
pattern_count_map["prepacked::linear_clamp_prepack"] = -1
|
|
pattern_count_map["aten::hardtanh_"] = -1
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
M(F.hardtanh_),
|
|
pattern_count_map,
|
|
data_shape,
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True)
|
|
|
|
class MFusionAntiPattern(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MFusionAntiPattern, self).__init__()
|
|
self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape)), requires_grad=False)
|
|
self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))), requires_grad=False)
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
o = F.linear(x, self.linear_weight, self.linear_bias)
|
|
o = F.relu(o)
|
|
o = F.hardtanh(o)
|
|
return o
|
|
|
|
# Unfusable hardtanh.
|
|
pattern_count_map = {"aten::hardtanh": 1, # hardtanh cannot be.
|
|
"aten::relu": -1, # relu is fused.
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
MFusionAntiPattern(),
|
|
pattern_count_map,
|
|
(16, linear_weight_shape[1]),
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True)
|
|
|
|
class MFusionAntiPatternParamMinMax(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MFusionAntiPatternParamMinMax, self).__init__()
|
|
self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape)), requires_grad=False)
|
|
self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))), requires_grad=False)
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
min = x[0, 0]
|
|
max = min + 10
|
|
o = F.linear(x, self.linear_weight, self.linear_bias)
|
|
o = F.hardtanh(o, min, max)
|
|
return o
|
|
|
|
# Unfusable hardtanh.
|
|
pattern_count_map = {"aten::hardtanh": 1, # hardtanh cannot be.
|
|
"prepacked::linear_clamp_prepack": -1,
|
|
"prepacked::linear_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(
|
|
MFusionAntiPatternParamMinMax(),
|
|
pattern_count_map,
|
|
(16, linear_weight_shape[1]),
|
|
prepack_removal=True,
|
|
fuse_clamping_ops=True)
|
|
|
|
def test_decomposed_linear(self):
|
|
data_shape = [2, 32]
|
|
weight_output_dim = 24
|
|
weight_shape = (weight_output_dim, data_shape[-1])
|
|
|
|
class DecomposedLinearAddmm(torch.nn.Module):
|
|
def __init__(self):
|
|
super(DecomposedLinearAddmm, self).__init__()
|
|
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(weight_shape)), requires_grad=False)
|
|
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))), requires_grad=False)
|
|
|
|
def forward(self, x):
|
|
weight_t = self.weight.t()
|
|
return torch.addmm(self.bias, x, weight_t)
|
|
|
|
class DecomposedLinearMatmulAdd(torch.nn.Module):
|
|
def __init__(self):
|
|
super(DecomposedLinearMatmulAdd, self).__init__()
|
|
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(weight_shape)), requires_grad=False)
|
|
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))), requires_grad=False)
|
|
|
|
def forward(self, x):
|
|
weight_t = self.weight.t()
|
|
y = torch.matmul(x, weight_t)
|
|
res = y.add_(self.bias)
|
|
return res
|
|
|
|
class DecomposedLinearMatmul(torch.nn.Module):
|
|
def __init__(self):
|
|
super(DecomposedLinearMatmul, self).__init__()
|
|
self.weight = torch.nn.Parameter(torch.Tensor(torch.rand(weight_shape)), requires_grad=False)
|
|
self.bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))), requires_grad=False)
|
|
|
|
def forward(self, x):
|
|
weight_t = self.weight.t()
|
|
res = torch.matmul(x, weight_t)
|
|
return res
|
|
|
|
# Linear with bias pattern.
|
|
pattern_count_map = {"Tensor = prim::CallFunction": -1,
|
|
"prepacked::linear_clamp_prepack": 1,
|
|
"prepacked::linear_clamp_run": 1}
|
|
TestXNNPACKRewritePass.validate_transformed_module(DecomposedLinearAddmm(), pattern_count_map, data_shape)
|
|
TestXNNPACKRewritePass.validate_transformed_module(DecomposedLinearMatmulAdd(), pattern_count_map, data_shape)
|
|
TestXNNPACKRewritePass.validate_transformed_module(DecomposedLinearMatmul(), pattern_count_map, data_shape)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|