mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
See #127836 for details. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127846 Approved by: https://github.com/ezyang ghstack dependencies: #127842, #127843, #127844, #127845
83 lines
3.1 KiB
Python
83 lines
3.1 KiB
Python
# mypy: allow-untyped-defs
|
|
import numpy as np
|
|
import torch
|
|
|
|
from torch.utils.benchmark import Fuzzer, FuzzedParameter, ParameterAlias, FuzzedTensor
|
|
|
|
|
|
_MIN_DIM_SIZE = 16
|
|
_MAX_DIM_SIZE = 16 * 1024 ** 2
|
|
_POW_TWO_SIZES = tuple(2 ** i for i in range(
|
|
int(np.log2(_MIN_DIM_SIZE)),
|
|
int(np.log2(_MAX_DIM_SIZE)) + 1,
|
|
))
|
|
|
|
|
|
class UnaryOpFuzzer(Fuzzer):
|
|
def __init__(self, seed, dtype=torch.float32, cuda=False):
|
|
super().__init__(
|
|
parameters=[
|
|
# Dimensionality of x. (e.g. 1D, 2D, or 3D.)
|
|
FuzzedParameter("dim", distribution={1: 0.3, 2: 0.4, 3: 0.3}, strict=True),
|
|
|
|
# Shapes for `x`.
|
|
# It is important to test all shapes, however
|
|
# powers of two are especially important and therefore
|
|
# warrant special attention. This is done by generating
|
|
# both a value drawn from all integers between the min and
|
|
# max allowed values, and another from only the powers of two
|
|
# (both distributions are loguniform) and then randomly
|
|
# selecting between the two.
|
|
[
|
|
FuzzedParameter(
|
|
name=f"k_any_{i}",
|
|
minval=_MIN_DIM_SIZE,
|
|
maxval=_MAX_DIM_SIZE,
|
|
distribution="loguniform",
|
|
) for i in range(3)
|
|
],
|
|
[
|
|
FuzzedParameter(
|
|
name=f"k_pow2_{i}",
|
|
distribution={size: 1. / len(_POW_TWO_SIZES) for size in _POW_TWO_SIZES}
|
|
) for i in range(3)
|
|
],
|
|
[
|
|
FuzzedParameter(
|
|
name=f"k{i}",
|
|
distribution={
|
|
ParameterAlias(f"k_any_{i}"): 0.8,
|
|
ParameterAlias(f"k_pow2_{i}"): 0.2,
|
|
},
|
|
strict=True,
|
|
) for i in range(3)
|
|
],
|
|
|
|
# Steps for `x`. (Benchmarks strided memory access.)
|
|
[
|
|
FuzzedParameter(
|
|
name=f"x_step_{i}",
|
|
distribution={1: 0.8, 2: 0.06, 4: 0.06, 8: 0.04, 16: 0.04},
|
|
) for i in range(3)
|
|
],
|
|
|
|
# Repeatable entropy for downstream applications.
|
|
FuzzedParameter(name="random_value", minval=0, maxval=2 ** 32 - 1, distribution="uniform"),
|
|
],
|
|
tensors=[
|
|
FuzzedTensor(
|
|
name="x",
|
|
size=("k0", "k1", "k2"),
|
|
steps=("x_step_0", "x_step_1", "x_step_2"),
|
|
probability_contiguous=0.75,
|
|
min_elements=4 * 1024,
|
|
max_elements=32 * 1024 ** 2,
|
|
max_allocation_bytes=2 * 1024**3, # 2 GB
|
|
dim_parameter="dim",
|
|
dtype=dtype,
|
|
cuda=cuda,
|
|
),
|
|
],
|
|
seed=seed,
|
|
)
|