Files
pytorch/torch/testing/_internal/composite_compliance.py
Yuanyuan Chen aaac8cb0f5 [1/N] Add strict parameter to Python zip calls (#165531)
Add `strict=True/False` to zip calls in test utils. `strict=True` is passed when possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165531
Approved by: https://github.com/Skylion007
2025-10-18 05:26:33 +00:00

609 lines
26 KiB
Python

# mypy: ignore-errors
import torch
from torch import Tensor
import itertools
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map, tree_flatten, tree_unflatten
from torch.utils import _pytree as pytree
from functools import partial
from torch.utils._mode_utils import no_dispatch, all_same_mode
import torch.autograd.forward_ad as fwAD
from collections.abc import Callable
import re
def check_attr_consistency(wrapper_tensor, metadata_name, metadata_accessor):
elem = wrapper_tensor.elem
metadata_wrapper_tensor = metadata_accessor(wrapper_tensor)
metadata_elem = metadata_accessor(elem)
if metadata_wrapper_tensor == metadata_elem:
return
raise RuntimeError(
f"This operator is not Composite Compliant: the "
f"{metadata_name} of the tensor was modified directly without "
f"going through the PyTorch dispatcher.")
def check_metadata_consistency(wrapper_tensor, CCT):
# CCT: CompositeCompliantTensor class which is generated using generate_cct
if not isinstance(wrapper_tensor, CCT):
return
things_to_check = {
'shape': Tensor.size,
'dtype': lambda x: x.dtype,
'device': lambda x: x.device,
'numel': Tensor.numel,
'stride': Tensor.stride,
'storage_offset': Tensor.storage_offset,
}
for metadata_name, metadata_accessor in things_to_check.items():
check_attr_consistency(wrapper_tensor, metadata_name, metadata_accessor)
def is_view_fn(func):
return func.overloadpacket.__name__ in {
'as_strided',
'detach',
'diagonal',
'expand',
'expand_as',
'movedim',
'narrow',
'permute',
'select',
'squeeze',
'transpose',
't',
'real',
'imag',
'view_as_real',
'view_as_complex',
'unflatten',
'unfold',
'unsqueeze',
'view',
'view_as',
'unbind',
'split',
'split_with_sizes',
'vsplit',
'hsplit',
'tensor_split',
'chunk',
'swapaxes',
'slice',
'_reshape_alias',
'_unsafe_view',
'_conj',
'alias',
}
# manually populated from native_functions that have inplace_view: True.
# In the future we will probably be able to grab that list directly
def is_inplace_view_fn(func):
return func.overloadpacket.__name__ in {
'as_strided_',
'detach_',
'squeeze_',
'swapaxes_',
'swapdims_',
't_',
'transpose_',
'unsqueeze_',
}
# Introspection please save us
def is_inplace(func):
name = func.overloadpacket.__name__
if re.match('__i.+__', name):
return True
if re.match('__.+__', name):
return False
return name[-1] == '_'
def generate_cct_and_mode(autograd_view_consistency=True):
# This function returns a new class CompositeCompliantTensor
# The two arguments control the behaviour described below.
# autograd_view_consistency:
# If True, alias result using `set_` if func returns a view
# (See Note [Alias Result]).
# Since Forward AD doesn't work with `set_`
# we disable it by setting alias to False.
class CompositeCompliantTensor(torch.Tensor):
elem: torch.Tensor
__slots__ = ['elem']
@staticmethod
def __new__(cls, elem, mode, *args, **kwargs):
assert type(elem) is not cls, \
"Wrapping a CompositeCompliantTensor in a CompositeCompliantTensor is not supported"
# The storage of CompositeCompliantTensor should never be used directly
# by a Composite operation; if the Composite
# operator attempts to read from the storage without dispatching then it'll
# raise a RuntimeError due to it being a meta storage.
r = torch.Tensor._make_wrapper_subclass(
cls, elem.size(),
dtype=elem.dtype, layout=elem.layout,
device=elem.device, requires_grad=elem.requires_grad,
strides=elem.stride(), storage_offset=elem.storage_offset())
if elem.requires_grad:
# CompositeCompliantTensor steals the "requires_grad"-ness.
# Why a new copy of `elem`? Because sometimes OpInfo shares inputs between tests...
tmp = torch.empty(
(),
dtype=elem.dtype,
device=elem.device,
layout=elem.layout,
requires_grad=False,
)
# Use set_ rather than empty_strided() + copy_ so that we can preserve
# things like storage_offset.
tmp.set_(
source=elem.untyped_storage().clone(),
storage_offset=elem.storage_offset(),
size=elem.size(),
stride=elem.stride(),
)
r.elem = tmp
else:
r.elem = elem
assert r.stride() == r.elem.stride()
# Propagate conjugate bits to the wrapper tensor
# Ref: https://github.com/albanD/subclass_zoo/issues/24
# Ref: https://github.com/albanD/subclass_zoo/issues/21
torch._C._set_conj(r, r.elem.is_conj())
torch._C._set_neg(r, r.elem.is_neg())
r.mode = mode
return r
def __repr__(self):
return f"CompositeCompliantTensor({self.elem})"
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
all_args = pytree.arg_tree_leaves(*args, **(kwargs or {}))
modes = tuple(e.mode for e in all_args if isinstance(e, CompositeCompliantTensor))
if not all_same_mode(modes):
raise RuntimeError("Multiple CompositeCompliantTensorModes NYI")
with modes[0]:
return func(*args, **kwargs)
class CompositeCompliantTensorMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
def unwrap(e):
return e.elem if isinstance(e, CompositeCompliantTensor) else e
def wrap(e):
return CompositeCompliantTensor(e, self) if isinstance(e, torch.Tensor) else e
if func == torch.ops.aten._local_scalar_dense.default:
raise RuntimeError(
".item() is not allowed to be called inside of composite "
"functions in the PyTorch library because not all backends "
"and/or Tensor subclasses (e.g. vmap, ProxyTensor) support them.")
if func.overloadpacket.__name__ in ('set_', 'resize_'):
raise RuntimeError(
f"{func.__name__} is not allowed to be called inside of "
f"Composite operators.")
if is_inplace(func):
# NB: We are making an assumption that if the function is in-place,
# then the first argument is being written to. Introspection please save us!
mutated_argument = args[0]
if not isinstance(mutated_argument, CompositeCompliantTensor) and \
any(isinstance(a, CompositeCompliantTensor) for a in args[1:]):
raise RuntimeError(
'Not composite compliant: performing in-place operation '
f'{func.__name__} where the Tensor being written to is '
'regular Tensor but the other tensors are Tensor Subclasses. '
'Please try to avoid this in-place operation.')
unwrapped_args = tree_map(unwrap, args)
unwrapped_kwargs = tree_map(unwrap, kwargs)
unwrapped_rs = func(*unwrapped_args, **unwrapped_kwargs)
rs = tree_map(wrap, unwrapped_rs)
if is_view_fn(func) and autograd_view_consistency:
# Note [Alias Result]
# Autograd asserts that for B = A.view_fn(...), B and A's storages
# are the same. Here we try to make B alias A to avoid those asserts.
# See https://github.com/pytorch/pytorch/issues/65339 for more information
# about the issue.
with no_dispatch():
# Idea: this is a weird way of getting a storage that aliases the input.
# This is a workaround for #65339.
# 1. under no_dispatch, all of the wrapper tensors look like regular
# tensors with special storage (the storage is nullptr and
# advertises CPU/CUDA device.
# 2. we run func, which ends up running the view operation
# 3. All view operations reuse the input's storage and return
# result Tensor(s) with new sizes/strides/offset that alias
# the input.
# 4. we set the storage (and sizes/strides/offset) of the wrapper
# tensor results to be that of the tensors that alias the input
result = func(*args, **kwargs)
if isinstance(result, (tuple, list)):
for a, b in zip(rs, result, strict=True):
a.set_(b)
else:
rs.set_(result)
# Some operations are allowed to in-place modify the metadata of the
# inputs. The only ones are the "inplace view functions"; when we
# run into these, we manually modify the metadata of the input.
with no_dispatch():
if is_inplace_view_fn(func):
func(*args, **kwargs)
# For each CompositeCompliantTensor t, we check that t and t.elem
# have consistent metadata. If they don't have consistent metadata,
# that means the operator did something fishy.
check = partial(check_metadata_consistency, CCT=CompositeCompliantTensor)
pytree.tree_map_(check, args)
pytree.tree_map_(check, kwargs)
pytree.tree_map_(check, rs)
return rs
return CompositeCompliantTensor, CompositeCompliantTensorMode()
def is_tensorlist(lst):
if not isinstance(lst, list) and not isinstance(lst, tuple):
return False
if len(lst) == 0:
return False
all_tensors = all(isinstance(elt, torch.Tensor) for elt in lst)
if all_tensors:
return True
exists_one_tensor = all(isinstance(elt, torch.Tensor) for elt in lst)
if exists_one_tensor:
raise RuntimeError('This test assumes that PyTorch APIs cannot take '
'mixed lists of Tensor and other things')
return False
def maybe_map(fn, should_map, arg):
return fn(arg) if should_map else arg
def wrap(arg, CCT, cct_mode):
# CCT: CompositeCompliantTensor class which is generated using generate_cct_and_mode
if isinstance(arg, torch.Tensor):
return CCT(arg, cct_mode)
if is_tensorlist(arg):
return [CCT(a, cct_mode) for a in arg]
raise RuntimeError("wrap assumes that the input can be wrapped")
# Given a list of flat arguments, some of which may be Tensors, return all
# possible ways some of the arguments could be CompositeCompliantTensors (CCT).
# For example, given Tensors A, B, C and flat_args = [A, 1, B],
# We would return the following 4 options:
# [CCT(A), 1, CCT(B)]
# [CCT(A), 1, B]
# [A, 1, CCT(B)]
# [A, 1, B]
# NB: Yes, this is exponential. No, we don't care too much because PyTorch ops
# don't accept that many input Tensors.
def generate_subclass_choices(flat_args, CCT, cct_mode):
# CCT: CompositeCompliantTensor class which is generated using generate_cct_and_mode
is_tensor_likes = [isinstance(arg, torch.Tensor) or is_tensorlist(arg) for arg in flat_args]
subclass_options = [[False, True] if is_tensor_like else [False] for is_tensor_like in is_tensor_likes]
for which_args_are_wrapped in itertools.product(*subclass_options):
result = [maybe_map(partial(wrap, CCT=CCT, cct_mode=cct_mode), should_wrap_arg, arg)
for should_wrap_arg, arg in zip(which_args_are_wrapped, flat_args, strict=True)]
yield result, which_args_are_wrapped
# For an operation f(*args, **kwargs), each Tensor argument may either be
# a regular Tensor or a Tensor Subclass. This iterator iterates through
# all of those options.
def generate_subclass_choices_args_kwargs(args, kwargs, CCT, cct_mode):
# CCT: CompositeCompliantTensor class which is generated using generate_cct_and_mode
flat_kwargs, spec = tree_flatten(kwargs)
flat_args_kwargs = list(args) + list(flat_kwargs)
for choice, debug_metadata in generate_subclass_choices(flat_args_kwargs, CCT, cct_mode):
new_args = choice[:len(args)]
new_kwargs = tree_unflatten(choice[len(args):], spec)
which_args_are_wrapped = debug_metadata[:len(args)]
which_kwargs_are_wrapped = tree_unflatten(debug_metadata[len(args):], spec)
yield new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped
def raise_composite_compliance_error(err, additional_info=''):
raise RuntimeError(
"Composite compliance check failed with "
"the above error.\n"
f"{additional_info}"
"If you are adding an OpInfo of an "
"existing operator, please feel free to skip this test "
"because the problem was pre-existing and file an issue. "
"Otherwise, if you added a new operator, please read "
"through the Composite Compliance section in "
"aten/src/ATen/native/README.md for how to resolve this. "
) from err
# This test checks ALL possible permutations of calling `op` with arguments
# that are individually either a regular Tensor or a Tensor subclass.
#
# The general strategy is to wrap some Tensor args and kwargs in
# CompositeCompliantTensor wrappers and call the operation.
# If some composite operation does any non-compliant behavior,
# CompositeCompliantTensor will raise an error.
def check_all_permutations(op, args, kwargs, assert_equal_fn):
CCT, cct_mode = generate_cct_and_mode()
expected = op(*args, **kwargs)
for choice in generate_subclass_choices_args_kwargs(args, kwargs, CCT, cct_mode):
new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped = choice
try:
actual = op(*new_args, **new_kwargs)
# NOTE: [What errors are Composite Compliance trying to catch?]
#
# There's two things we want to catch:
# - errors that would raise within the torch_dispatch impl
# - data_ptr accesses
# The first is easy to filter for (we could make the error a different
# error class), the second is always going to be a RuntimeError due to
# how it is implemented (if you try to access the data_ptr of the
# wrapper Tensor, it raises you some internal RuntimeError).
#
# So the most general thing to catch here was RuntimeError. If you
# are here and debugging why your test failed, it's plausible that
# the operator itself is broken and that there are other tests failing.
except RuntimeError as err:
raise_composite_compliance_error(
err,
f"- wrapped_args: {which_args_are_wrapped}\n"
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
)
def unwrap(e):
return e.elem if isinstance(e, CCT) else e
assert_equal_fn(tree_map(unwrap, actual), expected)
# Checks via the usage of torch dispatch mode certain anti-patterns that
# are not composite compliant.
#
# In particular, the anti-pattern we are trying to prevent is a user
# creating an empty tensor and then resize_-ing it. Torch Dispatch Mode helps
# here because all factory functions will create tensors that are
# CompositeCompliantTensor.
#
# The general strategy is to wrap all Tensor args and kwargs in
# CompositeCompliantTensor wrappers. If an operator that is
# Composite does any non-compliant behavior,
# CompositeCompliantTensor will raise an error.
def check_with_mode(op, args, kwargs, assert_equal_fn):
CCT, cct_mode = generate_cct_and_mode()
def wrap(e):
return CCT(e, cct_mode) if isinstance(e, torch.Tensor) else e
expected = op(*args, **kwargs)
args = tree_map(wrap, args)
kwargs = tree_map(wrap, kwargs)
try:
with cct_mode:
actual = op(*args, **kwargs)
# see NOTE: [What errors are Composite Compliance trying to catch?]
except RuntimeError as err:
raise_composite_compliance_error(err)
def unwrap(e):
return e.elem if isinstance(e, CCT) else e
assert_equal_fn(tree_map(unwrap, actual), expected)
def gather_leaf_tensors(args, kwargs):
leaf_tensors = []
args, _args_spec = tree_flatten(args)
kwargs, _kwargs_spec = tree_flatten(kwargs)
args = args + kwargs
for arg in args:
if not isinstance(arg, torch.Tensor):
continue
if arg.requires_grad:
leaf_tensors.append(arg)
return leaf_tensors
def compute_expected_grads(op, args, kwargs, output_process_fn_grad=None, gradcheck_wrapper=None):
if gradcheck_wrapper is None:
results = op(*args, **kwargs)
else:
results = gradcheck_wrapper(op, *args, **kwargs)
if output_process_fn_grad is not None:
results = output_process_fn_grad(results)
flat_results = pytree.tree_leaves(results)
flat_results = [r for r in flat_results if isinstance(r, torch.Tensor)]
flat_diff_results = [r for r in flat_results if r.requires_grad]
assert len(flat_diff_results) > 0
grads = [torch.ones(r.shape, device=r.device, dtype=r.dtype) for r in flat_diff_results]
leaf_tensors = gather_leaf_tensors(args, kwargs)
assert len(leaf_tensors) > 0
return torch.autograd.grad(flat_diff_results, leaf_tensors,
grads, allow_unused=True, retain_graph=True)
# Checks if the backward formula is composite compliant by testing
# all possible permutations of {inputs, grad_outputs} being
# CompositeCompliantTensor or regular Tensors.
#
# NB: it is important that op is accepted as a Callable and not an OpInfo,
# this means we can apply check_backward_formula to things that aren't OpInfos
# while debugging.
def check_backward_formula(op: Callable, args, kwargs,
output_process_fn_grad=None,
gradcheck_wrapper=None, assert_equal_fn=None):
CCT, cct_mode = generate_cct_and_mode()
expected = compute_expected_grads(op, args, kwargs, output_process_fn_grad, gradcheck_wrapper)
for choice in generate_subclass_choices_args_kwargs(args, kwargs, CCT, cct_mode):
new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped = choice
leaf_tensors = gather_leaf_tensors(new_args, new_kwargs)
assert len(leaf_tensors) > 0
try:
if gradcheck_wrapper is None:
results = op(*new_args, **new_kwargs)
else:
results = gradcheck_wrapper(op, *new_args, **new_kwargs)
if output_process_fn_grad is not None:
results = output_process_fn_grad(results)
# see NOTE: [What errors are Composite Compliance trying to catch?]
except RuntimeError as err:
raise_composite_compliance_error(
err,
f"- wrapped_args: {which_args_are_wrapped}\n"
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
)
flat_results = pytree.tree_leaves(results)
flat_results = [r for r in flat_results if isinstance(r, torch.Tensor)]
flat_diff_results = [r for r in flat_results if r.requires_grad]
assert len(flat_diff_results) > 0
# NB: ones, not ones_like, so we get a regular Tensor here
grads = [torch.ones(r.shape, device=r.device, dtype=r.dtype)
for r in flat_diff_results]
for flat_new_grads, which_grad_is_batched in generate_subclass_choices(grads, CCT, cct_mode):
try:
actual = torch.autograd.grad(flat_diff_results, leaf_tensors, flat_new_grads,
allow_unused=True, retain_graph=True)
# see NOTE: [What errors are Composite Compliance trying to catch?]
except RuntimeError as err:
raise_composite_compliance_error(
err,
f"- wrapped_args: {which_args_are_wrapped}\n"
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
f"- wrapped_grads: {which_grad_is_batched}\n"
)
def unwrap(e):
return e.elem if isinstance(e, CCT) else e
assert_equal_fn(tuple(map(unwrap, actual)), expected, equal_nan=True)
# Checks if the forward AD formula is composite compliant by testing
# all possible permutations of {primals, tangents} being
# CompositeCompliantTensor or regular Tensors.
#
# NB: it is important that op is accepted as a Callable and not an OpInfo,
# this means we can apply check_forward_ad_formula to things that aren't OpInfos
# while debugging.
def check_forward_ad_formula(op: Callable, args, kwargs, gradcheck_wrapper=None, assert_equal_fn=None):
CCT, cct_mode = generate_cct_and_mode(autograd_view_consistency=False)
def maybe_tangent(t):
assert type(t) is not CCT
# Generate `tangent` tensor
# if given object is a Tensor and requires grad is set.
if isinstance(t, torch.Tensor) and t.requires_grad:
return torch.randn_like(t)
elif is_tensorlist(t):
return [torch.randn_like(e) if e.requires_grad else None for e in t]
return None
tangent_args = tuple(maybe_tangent(arg) for arg in args)
flat_kwargs, spec = tree_flatten(kwargs)
flat_tangent_kwargs = tuple(maybe_tangent(arg) for arg in flat_kwargs)
tangent_kwargs = tree_unflatten(flat_tangent_kwargs, spec)
with fwAD.dual_level():
def maybe_make_dual(dual):
# Returns dual tensor if primal is a tensor/tensor subclass
# with requires_grad set.
primal, tangent = dual
if isinstance(primal, torch.Tensor) and primal.requires_grad:
return fwAD.make_dual(primal.detach(), tangent)
elif is_tensorlist(primal):
return tuple(fwAD.make_dual(pri.detach(), tang) if tang is not None else pri
for pri, tang in zip(primal, tangent, strict=True))
return primal
def compute_expected_grad(args, tangent_args, kwargs, tangent_kwargs):
op_args = tuple(map(maybe_make_dual, zip(args, tangent_args, strict=True)))
op_kwargs = {k: maybe_make_dual((v, tangent_kwargs[k])) for k, v in kwargs.items()}
if gradcheck_wrapper is None:
return op(*op_args, **op_kwargs)
return gradcheck_wrapper(op, *op_args, **op_kwargs)
expected = compute_expected_grad(args, tangent_args, kwargs, tangent_kwargs)
expected = tree_map(fwAD.unpack_dual, expected)
expected_primals = tree_map(
lambda x: x.primal,
expected,
is_leaf=lambda x: type(x) is fwAD.UnpackedDualTensor,
)
expected_tangents = tree_map(
lambda x: x.tangent,
expected,
is_leaf=lambda x: type(x) is fwAD.UnpackedDualTensor,
)
# Permutations of arg and kwargs in CCT.
for choice in generate_subclass_choices_args_kwargs(args, kwargs, CCT, cct_mode):
new_args, new_kwargs, which_args_are_wrapped, which_kwargs_are_wrapped = choice
# Permutations tangent arg and tangent kwargs in CCT.
for tang_choice in generate_subclass_choices_args_kwargs(tangent_args, tangent_kwargs, CCT, cct_mode):
new_tang_args, new_tang_kwargs, \
which_tang_args_are_wrapped, which_tang_kwargs_are_wrapped = tang_choice
op_args = tuple(map(maybe_make_dual, zip(new_args, new_tang_args, strict=True)))
op_kwargs = {k: maybe_make_dual((v, new_tang_kwargs[k])) for k, v in new_kwargs.items()}
try:
if gradcheck_wrapper is None:
actual = op(*op_args, **op_kwargs)
else:
actual = gradcheck_wrapper(op, *op_args, **op_kwargs)
# see NOTE: [What errors are Composite Compliance trying to catch?]
except RuntimeError as err:
raise_composite_compliance_error(
err,
f"- wrapped_args: {which_args_are_wrapped}\n"
f"- wrapped_kwargs: {which_kwargs_are_wrapped}\n"
f"- wrapped_tangent_args: {which_tang_args_are_wrapped}\n"
f"- wrapped_tangent_kwargs: {which_tang_kwargs_are_wrapped}\n"
)
def unwrap(e):
return e.elem if isinstance(e, CCT) else e
actual = tree_map(fwAD.unpack_dual, actual)
actual_primals = tree_map(
lambda x: unwrap(x.primal),
actual,
is_leaf=lambda x: type(x) is fwAD.UnpackedDualTensor,
)
actual_tangents = tree_map(
lambda x: unwrap(x.tangent),
actual,
is_leaf=lambda x: type(x) is fwAD.UnpackedDualTensor,
)
assert_equal_fn(actual_primals, expected_primals, equal_nan=True)
assert_equal_fn(actual_tangents, expected_tangents, equal_nan=True)