mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Replace the **runtime_error** of the vallina C++ exceptions with **TORCH_CEHCK** in **torch/nativert/*** The vallina C++ exception should not exist in the core part of pytorch for its corss-languanges trait. Comparing with the vallina C++ exceptions, TORCH_CHECK have the richer error context and It has the unified error handling mechanism. This commit replace the runtime_error with TORCH_CHECK of the files in torch/nativert/* . Fixes part of #148114 Pull Request resolved: https://github.com/pytorch/pytorch/pull/163308 Approved by: https://github.com/dolpm
112 lines
4.1 KiB
C++
112 lines
4.1 KiB
C++
#include <torch/nativert/kernels/HigherOrderKernel.h>
|
|
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/string_view.h>
|
|
|
|
namespace torch::nativert {
|
|
|
|
HigherOrderKernel::HigherOrderKernel(
|
|
const Node* node,
|
|
std::vector<std::unique_ptr<GraphExecutorBase>> graphExecutors)
|
|
: OpKernel(node), graphExecutors_(std::move(graphExecutors)) {
|
|
static constexpr std::string_view prefix = "torch.ops.higher_order.";
|
|
TORCH_CHECK(c10::starts_with(node->target(), prefix));
|
|
auto opName = node->target().substr(prefix.size());
|
|
if (opName == "cond") {
|
|
opType_ = OpType::COND;
|
|
// Checking torch.cond schema is as expected:
|
|
// torch.cond(Tensor predicate, Graph graph1, Graph graph2, Tensor[] args)
|
|
// -> Tensor[]
|
|
TORCH_CHECK(node_->attributes().size() == 2);
|
|
TORCH_CHECK(node_->inputs().size() == 2);
|
|
} else if (opName == "while_loop") {
|
|
opType_ = OpType::WHILE_LOOP;
|
|
// Checking torch.while_loop schema is as expected:
|
|
// torch.while_loop(Graph cond, Graph body, Tensor[] args, Tensor[]
|
|
// additional) -> Tensor[]
|
|
TORCH_CHECK(node_->attributes().size() == 2);
|
|
TORCH_CHECK(node_->inputs().size() == 2);
|
|
} else if (opName == "run_const_graph") {
|
|
opType_ = OpType::RUN_CONST_GRAPH;
|
|
// Checking torch.run_const_graph schema is as expected:
|
|
// torch.run_const_graph(Graph graph, Tensor[] args) -> Tensor[]
|
|
TORCH_CHECK(!node_->attributes().empty());
|
|
TORCH_CHECK(node_->inputs().size() == 1);
|
|
} else {
|
|
TORCH_CHECK(false, "Unknown higher order op: ", opName);
|
|
}
|
|
}
|
|
|
|
void HigherOrderKernel::computeInternal(ExecutionFrame& executionFrame) const {
|
|
switch (opType_) {
|
|
case OpType::COND: {
|
|
auto inputs = executionFrame.getIValue(node_->inputs()[1].value->id())
|
|
.toList()
|
|
.vec();
|
|
std::vector<c10::IValue> outputs;
|
|
auto cond = executionFrame.getIValue(node_->inputs()[0].value->id());
|
|
size_t branchIdx = 0;
|
|
if (cond.isTensor()) {
|
|
branchIdx = cond.toTensor().item().toBool() ? 0 : 1;
|
|
} else if (cond.isBool()) {
|
|
branchIdx = cond.toBool() ? 0 : 1;
|
|
} else {
|
|
TORCH_CHECK(false, "Unsupported type for cond predicate");
|
|
}
|
|
ExecutionFrame branchFrame(*std::get<std::unique_ptr<Graph>>(
|
|
node_->attributes()[branchIdx].value));
|
|
auto ret =
|
|
graphExecutors_[branchIdx]->execute(branchFrame, std::move(inputs));
|
|
for (size_t i = 0; i < ret.size(); i++) {
|
|
executionFrame.setIValue(node_->outputs()[i]->id(), std::move(ret[i]));
|
|
}
|
|
break;
|
|
}
|
|
case OpType::WHILE_LOOP: {
|
|
auto carriedVals =
|
|
executionFrame.getIValue(node_->inputs()[0].value->id())
|
|
.toList()
|
|
.vec();
|
|
auto additonalVals =
|
|
executionFrame.getIValue(node_->inputs()[1].value->id())
|
|
.toList()
|
|
.vec();
|
|
size_t numCarriedVals = carriedVals.size();
|
|
ExecutionFrame condFrame(
|
|
*std::get<std::unique_ptr<Graph>>(node_->attributes()[0].value));
|
|
ExecutionFrame bodyFrame(
|
|
*std::get<std::unique_ptr<Graph>>(node_->attributes()[1].value));
|
|
while (true) {
|
|
auto inputs = carriedVals;
|
|
inputs.insert(inputs.end(), additonalVals.begin(), additonalVals.end());
|
|
auto cond = graphExecutors_[0]->execute(condFrame, inputs);
|
|
|
|
if (cond.at(0).isTensor() && !cond[0].toTensor().item().toBool()) {
|
|
break;
|
|
}
|
|
if (cond.at(0).isBool() && !cond[0].toBool()) {
|
|
break;
|
|
}
|
|
auto out = graphExecutors_[1]->execute(bodyFrame, std::move(inputs));
|
|
TORCH_CHECK(out.size() == numCarriedVals);
|
|
carriedVals = std::move(out);
|
|
}
|
|
for (size_t i = 0; i < carriedVals.size(); i++) {
|
|
executionFrame.setIValue(
|
|
node_->outputs()[i]->id(), std::move(carriedVals[i]));
|
|
}
|
|
break;
|
|
}
|
|
case OpType::RUN_CONST_GRAPH: {
|
|
// run_const_graph op is a special case of higher order op which has
|
|
// been executed during weights loading, therefore at runtime we can
|
|
// just make this a no-op.
|
|
break;
|
|
}
|
|
default:
|
|
TORCH_CHECK(false, "Unknown higher order op");
|
|
}
|
|
}
|
|
|
|
} // namespace torch::nativert
|