Files
pytorch/torch/nativert/kernels/GeneratedNativeStaticDispatchKernels.cpp
PyTorch MergeBot 7614338b69 Revert "Add SVE128 ISA (#158932)"
This reverts commit 92284fb2ff44f09a9c7df0d8cf6cac9903e376a4.

Reverted https://github.com/pytorch/pytorch/pull/158932 on behalf of https://github.com/malfet due to Hmm, but from OSS point of view, this is a no-op ([comment](https://github.com/pytorch/pytorch/pull/158932#issuecomment-3387961238))
2025-10-10 01:17:02 +00:00

355 lines
11 KiB
C++

// @generated
// @lint-ignore-every CLANGTIDY HOWTOEVEN
#include <ATen/CPUFunctions.h>
#include <ATen/InferSize.h>
#include <ATen/NativeFunctions.h>
#include <ATen/Parallel.h>
#include <ATen/ScalarOps.h>
#include <ATen/TensorUtils.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/native/EmbeddingBag.h>
#include <ATen/native/Fill.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/native/NonSymbolicBC.h>
#include <ATen/native/Resize.h>
#include <ATen/native/SharedReduceOps.h>
#include <ATen/native/TensorAdvancedIndexing.h>
#include <ATen/native/cpu/SerialStackImpl.h>
#include <ATen/native/layer_norm.h>
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
#include <ATen/native/quantized/cpu/qembeddingbag.h>
#include <ATen/native/quantized/cpu/qembeddingbag_prepack.h>
#include <ATen/quantized/QTensorImpl.h>
#include <ATen/quantized/Quantizer.h>
#include <c10/core/ScalarType.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/util/irange.h>
#include <torch/nativert/kernels/KernelRegistry.h>
#include <iterator>
namespace torch::nativert {
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.view_as_real.default",
aten_view_as_real_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::view_as_real(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.view_as_complex.default",
aten_view_as_complex_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::view_as_complex(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.real.default", aten_real_default, {
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::real(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.imag.default", aten_imag_default, {
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::imag(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten._conj.default", aten__conj_default, {
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::_conj(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.conj.default", aten_conj_default, {
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::conj(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.resolve_conj.default",
aten_resolve_conj_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::resolve_conj(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.resolve_neg.default",
aten_resolve_neg_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::resolve_neg(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten._neg_view.default",
aten__neg_view_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::_neg_view(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.diagonal.default",
aten_diagonal_default,
{
const auto& self = KernelInput(0).toTensor();
const auto offset = KernelInput(1).toInt();
const auto dim1 = KernelInput(2).toInt();
const auto dim2 = KernelInput(3).toInt();
KernelOutput(0) = at::native::diagonal(self, offset, dim1, dim2);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.linalg_diagonal.default",
aten_linalg_diagonal_default,
{
const auto& A = KernelInput(0).toTensor();
const auto offset = KernelInput(1).toInt();
const auto dim1 = KernelInput(2).toInt();
const auto dim2 = KernelInput(3).toInt();
KernelOutput(0) = at::native::linalg_diagonal(A, offset, dim1, dim2);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.expand_as.default",
aten_expand_as_default,
{
const auto& self = KernelInput(0).toTensor();
const auto& other = KernelInput(1).toTensor();
KernelOutput(0) = at::native::expand_as(self, other);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.flatten.using_ints",
aten_flatten_using_ints,
{
const auto& self = KernelInput(0).toTensor();
const auto start_dim = KernelInput(1).toInt();
const auto end_dim = KernelInput(2).toInt();
KernelOutput(0) = at::native::flatten(self, start_dim, end_dim);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.movedim.int", aten_movedim_int, {
const auto& self = KernelInput(0).toTensor();
const auto source = KernelInput(1).toInt();
const auto destination = KernelInput(2).toInt();
KernelOutput(0) = at::native::movedim(self, source, destination);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.moveaxis.int", aten_moveaxis_int, {
const auto& self = KernelInput(0).toTensor();
const auto source = KernelInput(1).toInt();
const auto destination = KernelInput(2).toInt();
KernelOutput(0) = at::native::moveaxis(self, source, destination);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.numpy_T.default",
aten_numpy_T_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::numpy_T(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.matrix_H.default",
aten_matrix_H_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::matrix_H(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.mT.default", aten_mT_default, {
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::mT(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.mH.default", aten_mH_default, {
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::mH(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.adjoint.default",
aten_adjoint_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::adjoint(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.ravel.default", aten_ravel_default, {
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::ravel(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.reshape_as.default",
aten_reshape_as_default,
{
const auto& self = KernelInput(0).toTensor();
const auto& other = KernelInput(1).toTensor();
KernelOutput(0) = at::native::reshape_as(self, other);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.detach.default",
aten_detach_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::detach(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.squeeze.default",
aten_squeeze_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::squeeze(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.squeeze.dim", aten_squeeze_dim, {
const auto& self = KernelInput(0).toTensor();
const auto dim = KernelInput(1).toInt();
KernelOutput(0) = at::native::squeeze(self, dim);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.t.default", aten_t_default, {
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::t(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.transpose.int", aten_transpose_int, {
const auto& self = KernelInput(0).toTensor();
const auto dim0 = KernelInput(1).toInt();
const auto dim1 = KernelInput(2).toInt();
KernelOutput(0) = at::native::transpose(self, dim0, dim1);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.unsqueeze.default",
aten_unsqueeze_default,
{
const auto& self = KernelInput(0).toTensor();
const auto dim = KernelInput(1).toInt();
KernelOutput(0) = at::native::unsqueeze(self, dim);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.view_as.default",
aten_view_as_default,
{
const auto& self = KernelInput(0).toTensor();
const auto& other = KernelInput(1).toTensor();
KernelOutput(0) = at::native::view_as(self, other);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.positive.default",
aten_positive_default,
{
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::positive(self);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten._autocast_to_reduced_precision.default",
aten__autocast_to_reduced_precision_default,
{
const auto& self = KernelInput(0).toTensor();
const auto cuda_enabled = KernelInput(1).toBool();
const auto cpu_enabled = KernelInput(2).toBool();
const auto cuda_dtype = KernelInput(3).toScalarType();
const auto cpu_dtype = KernelInput(4).toScalarType();
KernelOutput(0) = at::native::_autocast_to_reduced_precision(
self, cuda_enabled, cpu_enabled, cuda_dtype, cpu_dtype);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten._autocast_to_full_precision.default",
aten__autocast_to_full_precision_default,
{
const auto& self = KernelInput(0).toTensor();
const auto cuda_enabled = KernelInput(1).toBool();
const auto cpu_enabled = KernelInput(2).toBool();
KernelOutput(0) = at::native::_autocast_to_full_precision(
self, cuda_enabled, cpu_enabled);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.swapaxes.default",
aten_swapaxes_default,
{
const auto& self = KernelInput(0).toTensor();
const auto axis0 = KernelInput(1).toInt();
const auto axis1 = KernelInput(2).toInt();
KernelOutput(0) = at::native::swapaxes(self, axis0, axis1);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.swapdims.default",
aten_swapdims_default,
{
const auto& self = KernelInput(0).toTensor();
const auto dim0 = KernelInput(1).toInt();
const auto dim1 = KernelInput(2).toInt();
KernelOutput(0) = at::native::swapdims(self, dim0, dim1);
return;
})
REGISTER_NATIVE_CPU_KERNEL(
"torch.ops.aten.unfold.default",
aten_unfold_default,
{
const auto& self = KernelInput(0).toTensor();
const auto dimension = KernelInput(1).toInt();
const auto size = KernelInput(2).toInt();
const auto step = KernelInput(3).toInt();
KernelOutput(0) = at::native::unfold(self, dimension, size, step);
return;
})
REGISTER_NATIVE_CPU_KERNEL("torch.ops.aten.alias.default", aten_alias_default, {
const auto& self = KernelInput(0).toTensor();
KernelOutput(0) = at::native::alias(self);
return;
})
} // namespace torch::nativert