mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Summary: it's possible that we have foldable nodes that use things that will be folded by run_const_graph Test Plan: CI Rollback Plan: Differential Revision: D80355542 Pull Request resolved: https://github.com/pytorch/pytorch/pull/160760 Approved by: https://github.com/SherlockNoMad
381 lines
13 KiB
C++
381 lines
13 KiB
C++
#include <memory>
|
|
|
|
#include <c10/util/Enumerate.h>
|
|
#include <c10/util/Synchronized.h>
|
|
#include <torch/nativert/executor/ExecutionFrame.h>
|
|
#include <torch/nativert/executor/Executor.h>
|
|
#include <torch/nativert/executor/ParallelGraphExecutor.h>
|
|
#include <torch/nativert/executor/SerialGraphExecutor.h>
|
|
#include <torch/nativert/executor/Weights.h>
|
|
#include <torch/nativert/kernels/C10Kernel.h>
|
|
#include <torch/nativert/kernels/KernelFactory.h>
|
|
|
|
namespace torch::nativert {
|
|
|
|
Executor::Executor(
|
|
torch::nativert::ExecutorConfig executorConfig,
|
|
std::shared_ptr<Graph> graph,
|
|
const std::shared_ptr<Weights>& weights,
|
|
const std::shared_ptr<caffe2::serialize::PyTorchStreamReader>&
|
|
pytorchStreamReader)
|
|
: executorConfig_(std::move(executorConfig)),
|
|
graph_(std::move(graph)),
|
|
constantFolder_(
|
|
executorConfig_.runConstFolding
|
|
? std::optional<ConstantFolder>(*graph_)
|
|
: std::nullopt),
|
|
executionFrames_(executorConfig_.maxNumConcurrentThreads),
|
|
inactiveExecutionFrames_(executorConfig_.maxNumConcurrentThreads),
|
|
numExecutionFrames_(0),
|
|
lastClearedTimestamp_(getCurrentTimestampSeconds()) {
|
|
if (weights) {
|
|
initialize(weights, pytorchStreamReader);
|
|
}
|
|
}
|
|
|
|
void Executor::initialize(
|
|
const std::shared_ptr<Weights>& weights,
|
|
const std::shared_ptr<caffe2::serialize::PyTorchStreamReader>&
|
|
pytorchStreamReader) {
|
|
auto start = std::chrono::high_resolution_clock::now();
|
|
|
|
auto executionKernels = KernelFactory().initializeNodeKernels(
|
|
*graph_, weights, executorConfig_, pytorchStreamReader);
|
|
|
|
if (constantFolder_.has_value()) {
|
|
constantFolder_->unlinkConstants(executionKernels.nodeKernels);
|
|
}
|
|
|
|
const auto& kernelSchemas = getKernelSchemas(executionKernels.nodeKernels);
|
|
|
|
if (executorConfig_.maxParallelOps > 1) {
|
|
graphExecutor_ = std::make_unique<ParallelGraphExecutor>(
|
|
*graph_, std::move(executionKernels.nodeKernels), executorConfig_);
|
|
} else {
|
|
graphExecutor_ = std::make_unique<torch::nativert::SerialGraphExecutor>(
|
|
*graph_, std::move(executionKernels.nodeKernels), executorConfig_);
|
|
}
|
|
|
|
delegateExecutors_ = std::move(executionKernels.delegateExecutors);
|
|
constFoldingExecutions_ = std::move(executionKernels.constFoldingExecutions);
|
|
|
|
initWeights(weights);
|
|
|
|
if (executorConfig_.layoutPlannerSettings.enabled()) {
|
|
layoutPlanner_ = std::make_unique<LayoutPlanner>(
|
|
*graph_,
|
|
kernelSchemas,
|
|
ExecutionFrame::getPersistentValueMask(*graph_, weights.get()),
|
|
executorConfig_.layoutPlannerSettings);
|
|
}
|
|
|
|
auto end = std::chrono::high_resolution_clock::now();
|
|
LOG(INFO) << "Initialization completed in "
|
|
<< std::chrono::duration_cast<std::chrono::milliseconds>(
|
|
end - start)
|
|
.count()
|
|
<< " ms";
|
|
}
|
|
|
|
/* static */ c10::
|
|
FastMap<std::string /* target */, torch::nativert::FunctionSchema>
|
|
Executor::getKernelSchemas(
|
|
const std::vector<std::unique_ptr<OpKernel>>& kernels) {
|
|
c10::FastMap<std::string, torch::nativert::FunctionSchema> output;
|
|
for (const auto& kernel : kernels) {
|
|
if (const auto* casted = dynamic_cast<C10Kernel*>(kernel.get()); casted) {
|
|
output.insert({std::string(kernel->node()->target()), casted->schema()});
|
|
}
|
|
}
|
|
return output;
|
|
}
|
|
|
|
void Executor::atomicSwapWeights(std::shared_ptr<Weights> weights) {
|
|
weights_.withLock([&](auto& w) { w = std::move(weights); });
|
|
|
|
// update weights in delegate executors
|
|
for (auto& delegateExecutor : delegateExecutors_) {
|
|
delegateExecutor->commitWeights();
|
|
}
|
|
}
|
|
|
|
void Executor::maybeRunConstantFolding(
|
|
const std::shared_ptr<Weights>& weights) {
|
|
for (auto& execution : constFoldingExecutions_) {
|
|
ExecutionFrame constFoldingFrame(execution.executor->graph());
|
|
std::vector<c10::IValue> inputs;
|
|
inputs.reserve(graph_->signature().inputsToWeights().size());
|
|
for (const auto& [_, name] : graph_->signature().inputsToWeights()) {
|
|
inputs.emplace_back(weights->at(name));
|
|
}
|
|
|
|
auto outputs = execution.executor->execute(constFoldingFrame, inputs);
|
|
for (const auto& [idx, value] :
|
|
c10::enumerate(execution.executor->graph().outputs())) {
|
|
weights->updateFoldedConst(value->name(), outputs.at(idx));
|
|
}
|
|
}
|
|
// runtime constant folding after the run_const_graph HOPs, if applicable
|
|
if (constantFolder_.has_value()) {
|
|
constantFolder_->evaluate(*weights);
|
|
}
|
|
}
|
|
|
|
void Executor::processWeights(const std::shared_ptr<Weights>& weights) {
|
|
maybeRunConstantFolding(weights);
|
|
for (auto& delegateExecutor : delegateExecutors_) {
|
|
delegateExecutor->processWeights(weights);
|
|
}
|
|
}
|
|
|
|
void Executor::initWeights(const std::shared_ptr<Weights>& weights) {
|
|
maybeRunConstantFolding(weights);
|
|
|
|
weights_.withLock([&](auto& w) { w = std::move(weights); });
|
|
|
|
for (auto& delegateExecutor : delegateExecutors_) {
|
|
delegateExecutor->initWeights(weights);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
void validateInput(
|
|
const std::string& inputName,
|
|
const at::Tensor& inputTensor,
|
|
const torch::nativert::TensorMeta& tensorValueMeta) {
|
|
TORCH_CHECK(
|
|
inputTensor.dtype() == tensorValueMeta.dtype(),
|
|
"Input tensor dtype mismatch for ",
|
|
inputName,
|
|
", expecting ",
|
|
c10::toString(tensorValueMeta.dtype()),
|
|
" but got ",
|
|
inputTensor.dtype().name());
|
|
|
|
TORCH_CHECK(
|
|
inputTensor.device() == tensorValueMeta.device(),
|
|
"Input tensor device mismatch for ",
|
|
inputName,
|
|
", expecting ",
|
|
tensorValueMeta.device().str(),
|
|
" but got ",
|
|
inputTensor.device().str());
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// validate input tensor's dtype matches tensorMeta
|
|
void Executor::validateInputs(const std::vector<c10::IValue>& inputs) const {
|
|
const auto& inputValues = graph_->userInputs();
|
|
const auto& tensorValuesMeta = graph_->tensorValuesMeta();
|
|
TORCH_CHECK(inputs.size() == inputValues.size(), "Input size mismatch");
|
|
for (auto&& [i, actualInput] : c10::enumerate(inputs)) {
|
|
if (actualInput.isTensor()) {
|
|
const auto& inputName = std::string(inputValues[i]->name());
|
|
auto it = tensorValuesMeta.find(inputName);
|
|
TORCH_CHECK(
|
|
it != tensorValuesMeta.end(),
|
|
"Couldn't find ",
|
|
inputName,
|
|
" in tensorValuesMeta");
|
|
validateInput(inputName, actualInput.toTensor(), it->second);
|
|
}
|
|
}
|
|
}
|
|
|
|
Executor::ExecutorFramePtr Executor::getExecutorFrameFromPool() {
|
|
std::shared_ptr<Weights> weights;
|
|
weights_.withLock([&](auto& w) { weights = w; });
|
|
|
|
// Try to get a frame from the main pool or create a new one
|
|
std::unique_ptr<ExecutionFrame> frame;
|
|
|
|
// Try to get a frame from executionFrames_ or inactiveExecutionFrames_
|
|
while (!executionFrames_.readIfNotEmpty(frame) &&
|
|
!inactiveExecutionFrames_.readIfNotEmpty(frame)) {
|
|
int64_t numFrames = numExecutionFrames_.load();
|
|
if (numFrames < executorConfig_.maxNumConcurrentThreads) {
|
|
if (numExecutionFrames_.compare_exchange_strong(
|
|
numFrames, numFrames + 1)) {
|
|
return ExecutorFramePtr{
|
|
std::make_unique<ExecutionFrame>(
|
|
*graph_, *weights, executorConfig_, layoutPlanner_.get()),
|
|
*this};
|
|
}
|
|
} else {
|
|
sem_.acquire();
|
|
}
|
|
}
|
|
ExecutorFramePtr ptr{std::move(frame), *this};
|
|
|
|
if (ptr->weightVersion() != weights->version()) {
|
|
ptr->setWeights(*weights);
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
void Executor::clearStaleExecutionFrames() {
|
|
LOG(INFO) << "Clearing stale execution frames";
|
|
if (!cleanupLock_.try_lock()) {
|
|
// Another thread is already doing cleanup
|
|
return;
|
|
}
|
|
// Update timestamp first to minimize contention
|
|
lastClearedTimestamp_ = getCurrentTimestampSeconds();
|
|
|
|
// Get the size of active execution frames queue directly
|
|
size_t activeFramesSize = executionFrames_.size();
|
|
size_t inactiveFramesSize = inactiveExecutionFrames_.size();
|
|
size_t total = activeFramesSize + inactiveFramesSize;
|
|
size_t numCleared = 0;
|
|
std::unique_ptr<ExecutionFrame> frame;
|
|
|
|
// If number of active frames is less than the configured min, then transfer
|
|
// the difference from inactive frames
|
|
size_t minFramesToKeep = std::min(
|
|
static_cast<size_t>(executorConfig_.minNumExecutionFrames), total);
|
|
size_t framesToTransfer =
|
|
(minFramesToKeep - activeFramesSize) > minFramesToKeep
|
|
? static_cast<size_t>(0)
|
|
: minFramesToKeep - activeFramesSize;
|
|
;
|
|
for (size_t i = 0;
|
|
i < framesToTransfer && inactiveExecutionFrames_.readIfNotEmpty(frame);
|
|
++i) {
|
|
executionFrames_.writeIfNotFull(std::move(frame));
|
|
}
|
|
|
|
size_t newActiveFramesSize = executionFrames_.size();
|
|
|
|
// Clear remaining inactive frames (i.e. those that were not used in the last
|
|
// time interval)
|
|
while (inactiveExecutionFrames_.readIfNotEmpty(frame)) {
|
|
++numCleared;
|
|
frame.reset();
|
|
numExecutionFrames_ -= 1;
|
|
}
|
|
|
|
// Move active frames to inactive so they are cleared next time if not used
|
|
// Check newActiveFramesSize > 0 to guuard against other threads adding
|
|
// frames to active queue during while loop
|
|
while (executionFrames_.readIfNotEmpty(frame) && newActiveFramesSize > 0) {
|
|
--newActiveFramesSize;
|
|
inactiveExecutionFrames_.writeIfNotFull(std::move(frame));
|
|
}
|
|
|
|
LOG(INFO) << "Cleared " << numCleared << " out of " << total
|
|
<< " ExecutionFrame instances in the pool";
|
|
|
|
cleanupLock_.unlock();
|
|
}
|
|
|
|
void Executor::returnExecutorFrameToPool(
|
|
std::unique_ptr<ExecutionFrame> frame) {
|
|
// Check if it's time to clean up stale frames
|
|
// TODO: consider moving cleanup to a dedicated thread so it does not impact
|
|
// p99 latency
|
|
if (executorConfig_.doExecutionFrameCleanup &&
|
|
lastClearedTimestamp_ +
|
|
executorConfig_.executionFramePoolCleanupIntervalSec <
|
|
getCurrentTimestampSeconds()) {
|
|
clearStaleExecutionFrames();
|
|
}
|
|
|
|
try {
|
|
frame->destroyBorrowedIValues();
|
|
// Always return to active execution frame pool, indicating that frame was
|
|
// used in the previous time interval
|
|
TORCH_CHECK(
|
|
executionFrames_.writeIfNotFull(std::move(frame)),
|
|
"ExecutionFrame pool full");
|
|
} catch (...) {
|
|
sem_.release();
|
|
throw;
|
|
}
|
|
sem_.release();
|
|
}
|
|
|
|
std::vector<c10::IValue> Executor::execute(std::vector<c10::IValue> inputs) {
|
|
if (executorConfig_.validateInputs) {
|
|
validateInputs(inputs);
|
|
}
|
|
|
|
auto executionFrame = getExecutorFrameFromPool();
|
|
return graphExecutor_->execute(*executionFrame, std::move(inputs));
|
|
}
|
|
|
|
std::vector<c10::IValue> Executor::execute(
|
|
const std::vector<c10::IValue>& args,
|
|
const std::unordered_map<std::string, c10::IValue>& kwargs,
|
|
const ITreeSpec& inputTreeSpec) {
|
|
auto executionFrame = getExecutorFrameFromPool();
|
|
|
|
std::optional<std::vector<c10::IValue>> outputs;
|
|
const auto userInputs = graph_->userInputs();
|
|
const auto& tensorValuesMeta = graph_->tensorValuesMeta();
|
|
TORCH_CHECK(userInputs.size() == inputTreeSpec.numIValues());
|
|
|
|
auto executionFrameFillUserInputs = [&](const c10::IValue& leaf,
|
|
const Value* value) {
|
|
// validate input tensor's dtype and device matches tensorMeta
|
|
if (executorConfig_.validateInputs && leaf.isTensor()) {
|
|
const auto& inputName = std::string(value->name());
|
|
auto it = tensorValuesMeta.find(inputName);
|
|
TORCH_CHECK(
|
|
it != tensorValuesMeta.end(),
|
|
"Couldn't find ",
|
|
inputName,
|
|
" in tensorValuesMeta");
|
|
validateInput(inputName, leaf.toTensor(), it->second);
|
|
}
|
|
executionFrame->setBorrowedIValue(
|
|
value->id(), c10::MaybeOwnedTraits<c10::IValue>::createBorrow(leaf));
|
|
};
|
|
ivalueApplyFromArgs(
|
|
executionFrameFillUserInputs, args, kwargs, inputTreeSpec);
|
|
try {
|
|
outputs = graphExecutor_->executeWithPrefilledFrame(*executionFrame);
|
|
} catch (const std::exception& e) {
|
|
LOG(ERROR) << "Exception during executeWithPrefilledFrame: " << e.what();
|
|
throw;
|
|
}
|
|
|
|
return std::move(*outputs);
|
|
}
|
|
|
|
ProfileMetrics Executor::benchmarkIndividualNodes(
|
|
const std::vector<std::vector<c10::IValue>>& inputsList,
|
|
const uint32_t warmupRuns,
|
|
const uint32_t mainRuns) {
|
|
TORCH_CHECK(!inputsList.empty(), "Need at least one input to benchmark");
|
|
TORCH_CHECK(warmupRuns >= 1 && mainRuns >= 1, "Need at least one run");
|
|
|
|
for (const auto& inputs : inputsList) {
|
|
if (executorConfig_.validateInputs) {
|
|
validateInputs(inputs);
|
|
}
|
|
}
|
|
auto executionFrame = getExecutorFrameFromPool();
|
|
auto benchmarkResults = graphExecutor_->benchmarkIndividualNodes(
|
|
*executionFrame, inputsList, warmupRuns, mainRuns);
|
|
|
|
return benchmarkResults;
|
|
}
|
|
|
|
int64_t Executor::getCurrentTimestampSeconds() const {
|
|
return std::chrono::duration_cast<std::chrono::seconds>(
|
|
std::chrono::steady_clock::now().time_since_epoch())
|
|
.count();
|
|
}
|
|
|
|
std::vector<DelegateExecutor*> Executor::getDelegates() {
|
|
std::vector<DelegateExecutor*> delegates;
|
|
delegates.reserve(delegateExecutors_.size());
|
|
for (const auto& delegateExecutor : delegateExecutors_) {
|
|
delegates.emplace_back(delegateExecutor.get());
|
|
}
|
|
return delegates;
|
|
}
|
|
|
|
} // namespace torch::nativert
|