Files
pytorch/torch/distributions/relaxed_categorical.py
Maggie Moss b13cd141b3 Add pyrefly suppressions (#164748)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the `project-excludes` field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:

0 errors (4,263 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164748
Approved by: https://github.com/oulgen
2025-10-07 17:31:18 +00:00

164 lines
5.6 KiB
Python

# mypy: allow-untyped-defs
from typing import Optional
import torch
from torch import Tensor
from torch.distributions import constraints
from torch.distributions.categorical import Categorical
from torch.distributions.distribution import Distribution
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import ExpTransform
from torch.distributions.utils import broadcast_all, clamp_probs
from torch.types import _size
__all__ = ["ExpRelaxedCategorical", "RelaxedOneHotCategorical"]
class ExpRelaxedCategorical(Distribution):
r"""
Creates a ExpRelaxedCategorical parameterized by
:attr:`temperature`, and either :attr:`probs` or :attr:`logits` (but not both).
Returns the log of a point in the simplex. Based on the interface to
:class:`OneHotCategorical`.
Implementation based on [1].
See also: :func:`torch.distributions.OneHotCategorical`
Args:
temperature (Tensor): relaxation temperature
probs (Tensor): event probabilities
logits (Tensor): unnormalized log probability for each event
[1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
(Maddison et al., 2017)
[2] Categorical Reparametrization with Gumbel-Softmax
(Jang et al., 2017)
"""
# pyrefly: ignore # bad-override
arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector}
support = (
constraints.real_vector
) # The true support is actually a submanifold of this.
has_rsample = True
def __init__(
self,
temperature: Tensor,
probs: Optional[Tensor] = None,
logits: Optional[Tensor] = None,
validate_args: Optional[bool] = None,
) -> None:
self._categorical = Categorical(probs, logits)
self.temperature = temperature
batch_shape = self._categorical.batch_shape
event_shape = self._categorical.param_shape[-1:]
super().__init__(batch_shape, event_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(ExpRelaxedCategorical, _instance)
batch_shape = torch.Size(batch_shape)
new.temperature = self.temperature
new._categorical = self._categorical.expand(batch_shape)
super(ExpRelaxedCategorical, new).__init__(
batch_shape, self.event_shape, validate_args=False
)
new._validate_args = self._validate_args
return new
def _new(self, *args, **kwargs):
return self._categorical._new(*args, **kwargs)
@property
def param_shape(self) -> torch.Size:
return self._categorical.param_shape
@property
def logits(self) -> Tensor:
return self._categorical.logits
@property
def probs(self) -> Tensor:
return self._categorical.probs
def rsample(self, sample_shape: _size = torch.Size()) -> Tensor:
shape = self._extended_shape(sample_shape)
uniforms = clamp_probs(
torch.rand(shape, dtype=self.logits.dtype, device=self.logits.device)
)
gumbels = -((-(uniforms.log())).log())
scores = (self.logits + gumbels) / self.temperature
return scores - scores.logsumexp(dim=-1, keepdim=True)
def log_prob(self, value):
K = self._categorical._num_events
if self._validate_args:
self._validate_sample(value)
logits, value = broadcast_all(self.logits, value)
log_scale = torch.full_like(
self.temperature, float(K)
).lgamma() - self.temperature.log().mul(-(K - 1))
score = logits - value.mul(self.temperature)
score = (score - score.logsumexp(dim=-1, keepdim=True)).sum(-1)
return score + log_scale
class RelaxedOneHotCategorical(TransformedDistribution):
r"""
Creates a RelaxedOneHotCategorical distribution parametrized by
:attr:`temperature`, and either :attr:`probs` or :attr:`logits`.
This is a relaxed version of the :class:`OneHotCategorical` distribution, so
its samples are on simplex, and are reparametrizable.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = RelaxedOneHotCategorical(torch.tensor([2.2]),
... torch.tensor([0.1, 0.2, 0.3, 0.4]))
>>> m.sample()
tensor([ 0.1294, 0.2324, 0.3859, 0.2523])
Args:
temperature (Tensor): relaxation temperature
probs (Tensor): event probabilities
logits (Tensor): unnormalized log probability for each event
"""
arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector}
# pyrefly: ignore # bad-override
support = constraints.simplex
has_rsample = True
# pyrefly: ignore # bad-override
base_dist: ExpRelaxedCategorical
def __init__(
self,
temperature: Tensor,
probs: Optional[Tensor] = None,
logits: Optional[Tensor] = None,
validate_args: Optional[bool] = None,
) -> None:
base_dist = ExpRelaxedCategorical(
temperature, probs, logits, validate_args=validate_args
)
super().__init__(base_dist, ExpTransform(), validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(RelaxedOneHotCategorical, _instance)
return super().expand(batch_shape, _instance=new)
@property
def temperature(self) -> Tensor:
return self.base_dist.temperature
@property
def logits(self) -> Tensor:
return self.base_dist.logits
@property
def probs(self) -> Tensor:
return self.base_dist.probs