mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283 Test plan: dmypy restart && python3 scripts/lintrunner.py -a pyrefly check step 1: delete lines in the pyrefly.toml file from the `project-excludes` field step 2: run pyrefly check step 3: add suppressions, clean up unused suppressions before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199 after: 0 errors (4,263 ignored) Pull Request resolved: https://github.com/pytorch/pytorch/pull/164748 Approved by: https://github.com/oulgen
94 lines
2.6 KiB
Python
94 lines
2.6 KiB
Python
# mypy: allow-untyped-defs
|
|
import math
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
from torch import inf, Tensor
|
|
from torch.distributions import constraints
|
|
from torch.distributions.cauchy import Cauchy
|
|
from torch.distributions.transformed_distribution import TransformedDistribution
|
|
from torch.distributions.transforms import AbsTransform
|
|
|
|
|
|
__all__ = ["HalfCauchy"]
|
|
|
|
|
|
class HalfCauchy(TransformedDistribution):
|
|
r"""
|
|
Creates a half-Cauchy distribution parameterized by `scale` where::
|
|
|
|
X ~ Cauchy(0, scale)
|
|
Y = |X| ~ HalfCauchy(scale)
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
|
>>> m = HalfCauchy(torch.tensor([1.0]))
|
|
>>> m.sample() # half-cauchy distributed with scale=1
|
|
tensor([ 2.3214])
|
|
|
|
Args:
|
|
scale (float or Tensor): scale of the full Cauchy distribution
|
|
"""
|
|
|
|
arg_constraints = {"scale": constraints.positive}
|
|
# pyrefly: ignore # bad-override
|
|
support = constraints.nonnegative
|
|
has_rsample = True
|
|
# pyrefly: ignore # bad-override
|
|
base_dist: Cauchy
|
|
|
|
def __init__(
|
|
self,
|
|
scale: Union[Tensor, float],
|
|
validate_args: Optional[bool] = None,
|
|
) -> None:
|
|
base_dist = Cauchy(0, scale, validate_args=False)
|
|
super().__init__(base_dist, AbsTransform(), validate_args=validate_args)
|
|
|
|
def expand(self, batch_shape, _instance=None):
|
|
new = self._get_checked_instance(HalfCauchy, _instance)
|
|
return super().expand(batch_shape, _instance=new)
|
|
|
|
@property
|
|
def scale(self) -> Tensor:
|
|
return self.base_dist.scale
|
|
|
|
@property
|
|
def mean(self) -> Tensor:
|
|
return torch.full(
|
|
self._extended_shape(),
|
|
math.inf,
|
|
dtype=self.scale.dtype,
|
|
device=self.scale.device,
|
|
)
|
|
|
|
@property
|
|
def mode(self) -> Tensor:
|
|
return torch.zeros_like(self.scale)
|
|
|
|
@property
|
|
def variance(self) -> Tensor:
|
|
return self.base_dist.variance
|
|
|
|
def log_prob(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
value = torch.as_tensor(
|
|
value, dtype=self.base_dist.scale.dtype, device=self.base_dist.scale.device
|
|
)
|
|
log_prob = self.base_dist.log_prob(value) + math.log(2)
|
|
log_prob = torch.where(value >= 0, log_prob, -inf)
|
|
return log_prob
|
|
|
|
def cdf(self, value):
|
|
if self._validate_args:
|
|
self._validate_sample(value)
|
|
return 2 * self.base_dist.cdf(value) - 1
|
|
|
|
def icdf(self, prob):
|
|
return self.base_dist.icdf((prob + 1) / 2)
|
|
|
|
def entropy(self):
|
|
return self.base_dist.entropy() - math.log(2)
|