Files
pytorch/torch/distributions/exponential.py
Maggie Moss b13cd141b3 Add pyrefly suppressions (#164748)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the `project-excludes` field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:

0 errors (4,263 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164748
Approved by: https://github.com/oulgen
2025-10-07 17:31:18 +00:00

96 lines
2.7 KiB
Python

# mypy: allow-untyped-defs
from typing import Optional, Union
import torch
from torch import Tensor
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all
from torch.types import _Number, _size
__all__ = ["Exponential"]
class Exponential(ExponentialFamily):
r"""
Creates a Exponential distribution parameterized by :attr:`rate`.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = Exponential(torch.tensor([1.0]))
>>> m.sample() # Exponential distributed with rate=1
tensor([ 0.1046])
Args:
rate (float or Tensor): rate = 1 / scale of the distribution
"""
# pyrefly: ignore # bad-override
arg_constraints = {"rate": constraints.positive}
support = constraints.nonnegative
has_rsample = True
_mean_carrier_measure = 0
@property
def mean(self) -> Tensor:
return self.rate.reciprocal()
@property
def mode(self) -> Tensor:
return torch.zeros_like(self.rate)
@property
def stddev(self) -> Tensor:
return self.rate.reciprocal()
@property
def variance(self) -> Tensor:
return self.rate.pow(-2)
def __init__(
self,
rate: Union[Tensor, float],
validate_args: Optional[bool] = None,
) -> None:
(self.rate,) = broadcast_all(rate)
batch_shape = torch.Size() if isinstance(rate, _Number) else self.rate.size()
super().__init__(batch_shape, validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Exponential, _instance)
batch_shape = torch.Size(batch_shape)
new.rate = self.rate.expand(batch_shape)
super(Exponential, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
def rsample(self, sample_shape: _size = torch.Size()) -> Tensor:
shape = self._extended_shape(sample_shape)
return self.rate.new(shape).exponential_() / self.rate
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
return self.rate.log() - self.rate * value
def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return 1 - torch.exp(-self.rate * value)
def icdf(self, value):
return -torch.log1p(-value) / self.rate
def entropy(self):
return 1.0 - torch.log(self.rate)
@property
def _natural_params(self) -> tuple[Tensor]:
return (-self.rate,)
# pyrefly: ignore # bad-override
def _log_normalizer(self, x):
return -torch.log(-x)