Files
pytorch/torch/distributed/tensor/_redistribute.py
zpcore 3edd94485f [5/N][DTensor device order] Implement graph based redistribution algorithm (#164902)
(Extract out the algorithm from https://github.com/pytorch/pytorch/pull/160266.)

Build a graph to search for the path from source placement to destination placement (with device order). Currently solution introduces too many all-gathers and missing the opportunity for all-to-all when redistribute, especially when we consider the device order.

### How to build the graph:
When operator of Shard, think of collective op as operation on a stack of device axis:
- I, J are tensor dimensions;
- X, Y, Z, Y are ordered mesh dimensions.
<img width="357" height="253" alt="image" src="https://github.com/user-attachments/assets/23bb3cc3-0506-4071-9053-3c525cf0e526" />

Detailed collective op transition is implemented in `DTensorRedistributePlanner.get_next_state`.

### How to find the min cost path:
Assign weight to different type of collective ops and use Dijkstra to find the min cost path from the graph we build.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164902
Approved by: https://github.com/ezyang
2025-10-13 22:03:57 +00:00

961 lines
39 KiB
Python

# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import contextlib
import dataclasses
import itertools
import logging
import weakref
from collections import defaultdict
from collections.abc import Sequence
from functools import cache
from typing import cast, NamedTuple, Optional
import torch
import torch.distributed._functional_collectives as funcol
import torch.distributed.tensor._api as dtensor
from torch.distributed._functional_collectives import _are_we_tracing
from torch.distributed.tensor._dtensor_spec import (
DTensorSpec,
ShardOrder,
ShardOrderEntry,
TensorMeta,
)
from torch.distributed.tensor.device_mesh import DeviceMesh
from torch.distributed.tensor.placement_types import (
Partial,
Placement,
Replicate,
Shard,
)
from torch.utils._debug_mode import get_active_debug_mode
logger = logging.getLogger(__name__)
class _TransformInfo(NamedTuple):
mesh_dim: int
src_dst_placements: tuple[Placement, Placement]
# logical_shape on this mesh dimension
logical_shape: list[int]
# Global cache for DTensorRedistributePlanner instances
_planner_cache: dict[
tuple[weakref.ReferenceType, int], "DTensorRedistributePlanner"
] = {}
def get_redistribute_planner(
device_mesh: DeviceMesh, tensor_dimension: int
) -> "DTensorRedistributePlanner":
"""
Factory function to get or create a DTensorRedistributePlanner instance.
This function provides transparent caching of planner instances based on
device_mesh and tensor_dimension. Multiple calls with the same parameters
will return the same cached instance for better performance.
Args:
device_mesh: The device mesh for the planner
tensor_dimension: Number of tensor dimensions
Returns:
A DTensorRedistributePlanner instance (potentially cached)
"""
cache_key = (weakref.ref(device_mesh), tensor_dimension)
if cache_key not in _planner_cache:
planner = DTensorRedistributePlanner(device_mesh, tensor_dimension)
_planner_cache[cache_key] = planner
return _planner_cache[cache_key]
def clear_redistribute_planner_cache() -> None:
"""Clear the cache of DTensorRedistributePlanner instances."""
_planner_cache.clear()
class DTensorRedistributePlanner:
"""
This class is used to plan the collective calls to transform the local shard
of the DTensor from its current spec to the target spec.
Suppose there are N tensor dimensions and M mesh dimensions, the total
possible state size will be (N+2)*M*M!.
Note: Use get_redistribute_planner() factory function instead of direct
instantiation for automatic caching.
"""
@dataclasses.dataclass(frozen=True, slots=True)
class DistState:
placements: tuple[Placement, ...]
tensor_dim_to_mesh_dim: ShardOrder
_hash: Optional[int] = dataclasses.field(
default=None, init=False, repr=False, compare=False
)
def __str__(self):
return DTensorSpec.format_shard_order_str(
self.placements,
self.tensor_dim_to_mesh_dim,
)
def __repr__(self):
return self.__str__()
def __post_init__(self):
# precompute hash after all attributes are set
object.__setattr__(
self,
"_hash",
self._compute_hash(),
)
def __hash__(self) -> int:
return self._hash if self._hash is not None else self._compute_hash()
def _compute_hash(self) -> int:
return hash(
(
self.placements,
self.tensor_dim_to_mesh_dim,
)
)
def __eq__(self, other: object) -> bool:
if not isinstance(other, DTensorRedistributePlanner.DistState):
return False
if self._hash != other._hash:
return False
return (
self.placements,
self.tensor_dim_to_mesh_dim,
) == (
other.placements,
other.tensor_dim_to_mesh_dim,
)
def _to_tuple(self, x):
"""Convert a nested list structure to a nested tuple structure."""
if isinstance(x, list | tuple):
return tuple(self._to_tuple(item) for item in x)
return x
@staticmethod
def _dict_to_ShardOrder(x: dict[int, list[int]]) -> ShardOrder:
"""Convert dict to ShardOrder"""
return tuple(
ShardOrderEntry(tensor_dim=key, mesh_dims=tuple(value))
for key, value in sorted(x.items())
if value
)
@staticmethod
def _ShardOrder_to_dict(x: ShardOrder) -> dict[int, list[int]]:
"""Convert ShardOrder to dict with tensor dim as key"""
tensor_mesh_dim_dict = defaultdict(list)
for entry in x:
tensor_mesh_dim_dict[entry.tensor_dim] = list(entry.mesh_dims)
return tensor_mesh_dim_dict
@staticmethod
def stringify_transform_infos(
mesh: DeviceMesh,
transform_infos: Sequence[_TransformInfo],
src_placement: tuple[Placement, ...],
src_shard_order: Optional[ShardOrder] = None,
) -> str:
"""
Generate a string representation of the sequence of state transitions
(placements and shard orders) as described by the given transform_info.
Args:
mesh: The DeviceMesh used for the redistribution.
transform_infos: A sequence of _TransformInfo objects describing each
transformation step.
src_placement: The initial tuple of Placement objects.
src_shard_order: (Optional) The initial ShardOrder representing
the mapping of tensor dimensions to mesh dimensions. If None,
the default shard order is computed from src_placement and mesh.
Returns:
A string showing the sequence of DistState transitions, separated by '->'.
"""
assert len(src_placement) == mesh.ndim
if src_shard_order is None:
src_shard_order = DTensorSpec.compute_default_shard_order(src_placement)
cur_placement = list(src_placement)
shard_order_dict = DTensorRedistributePlanner._ShardOrder_to_dict(
src_shard_order
)
cur_state = DTensorRedistributePlanner.DistState(
tuple(cur_placement), src_shard_order
)
state_list = [
cur_state,
]
for transform_info in transform_infos:
src_dim_placement, dst_dim_placement = transform_info.src_dst_placements
if src_dim_placement.is_shard():
src_dim = src_dim_placement.dim # type: ignore[attr-defined]
assert (
src_dim in shard_order_dict and len(shard_order_dict[src_dim]) > 0
)
shard_order_dict[src_dim].pop()
if dst_dim_placement.is_shard():
dst_dim = dst_dim_placement.dim # type: ignore[attr-defined]
if dst_dim not in shard_order_dict:
shard_order_dict[dst_dim] = []
shard_order_dict[dst_dim].append(transform_info.mesh_dim)
cur_placement[transform_info.mesh_dim] = dst_dim_placement
new_state = DTensorRedistributePlanner.DistState(
tuple(cur_placement),
DTensorRedistributePlanner._dict_to_ShardOrder(shard_order_dict),
)
state_list.append(new_state)
return "->".join([str(s) for s in state_list])
def __init__(
self,
device_mesh: DeviceMesh,
tensor_dimension: int,
) -> None:
"""
Initialize DTensorRedistributePlanner.
Args:
device_mesh: The device mesh for this planner
tensor_dimension: Number of tensor dimensions
"""
self.device_mesh = device_mesh
self.coordinate = device_mesh.get_coordinate()
assert self.coordinate is not None
self.tensor_dimension = tensor_dimension
self.setup_collective_cost()
def setup_collective_cost(
self,
all_reduce_cost: int = 4,
all_to_all_cost: int = 1,
all_gather_cost: int = 2,
reduce_scatter_cost: int = 2,
chunk_cost: int = 0,
) -> None:
"""
Set up the cost weights for different collective operations.
"""
# those can be turned in a handler considering the tensor dim size
self.all_reduce_cost = all_reduce_cost
self.all_to_all_cost = all_to_all_cost
self.all_gather_cost = all_gather_cost
self.reduce_scatter = reduce_scatter_cost
self.chunk_cost = chunk_cost
def get_next_state(
self,
placements: tuple[Placement, ...],
tensor_mesh_dim_tuple: ShardOrder,
) -> dict["DTensorRedistributePlanner.DistState", int]:
# We map tensor dimensions to device mesh axes, similar to JAX-style
# sharding representation. Notation:
# S(<tensor_dim>)[<list_of_device_dims>] means tensor dimension
# <tensor_dim> is sharded on the listed device mesh axes, where
# <list_of_device_dims> is sorted by device order.
#
# To generalize to arbitrary dimensionality, we use the following notation:
# S(a)[x, ...] : tensor dimension 'a' is sharded on device mesh axes x, ... (variadic, possibly empty)
# R[...] : replicated on the listed device mesh axes (possibly empty)
# P[...] : partial on the listed device mesh axes (possibly empty)
# The ellipsis '...' denotes a variadic wildcard, i.e., zero or more device mesh axes.
#
# Below are possible transitions from one sharding state to another.
# We use `S` for Shard, `R` for Replicate, and `P` for Partial.
#
# Case 1. Shard(a) -> Shard(b), use all-to-all (a2a), applies to:
# S(a)[..., x] -> S(b)[..., x]
# or
# S(a)[..., x, y]S(b)[..., z, k] -> S(a)[..., x]S(b)[..., z, k, y]
# where device order of 'y' > device order of 'z' and 'k'
#
# Case 2. Shard() -> Replicate(), use all-gather, applies to:
# S(a)[..., x, y, z] -> S(a)[..., x, y]
#
# Case 3. Partial() -> Replicate(), use all-reduce, applies to:
# P[..., x, y] -> P[..., y] or P[..., x]
# Note: this case can be disabled because all-reduce technically is not
# a primitive since it combines a reduce-scatter + all-gather.
#
# Case 4. Replicate() -> Shard(), use chunk, applies to:
# S(a)[..., z] -> S(a)[..., z, y] (`a` can be any tensor dim). Note that
# 'y' must be after 'z'.
#
# Case 5. Partial() -> Shard(), use reduce-scatter, applies to:
# P[..., x, y] -> P[..., x]S(a)[..., y] or P[..., x, y] -> P[..., y]S(a)[..., x]
#
# Case 6. Replicate() -> Partial(), local math op, applies to:
# R* -> P[..., x]
#
# NB: Device order in Partial placement doesn't take impact. We should be able
# to operate on any Partial mesh dim.
# list of [DistState, cost]
all_next_state: dict[DTensorRedistributePlanner.DistState, int] = {}
tensor_mesh_dim_dict = DTensorRedistributePlanner._ShardOrder_to_dict(
tensor_mesh_dim_tuple
)
######################################################################
# handle case 1: Shard(a) -> Shard(b)
# For S(a), S(b), only the last device order of S(a) and S(b) can be a2a
# interchangeably.
# convert sparse tuple
for entry in tensor_mesh_dim_tuple:
src_tensor_dim = entry.tensor_dim
for dst_tensor_dim in range(self.tensor_dimension):
if src_tensor_dim == dst_tensor_dim:
continue
# try move the last sharded device dim from
# Shard(src_tensor_dim) to Shard(dst_tensor_dim)
move_mesh_dim = tensor_mesh_dim_dict[src_tensor_dim].pop()
tensor_mesh_dim_dict[dst_tensor_dim].append(move_mesh_dim)
new_placements = list(placements)
new_placements[move_mesh_dim] = Shard(dst_tensor_dim)
dist_state = self.DistState(
self._to_tuple(new_placements),
DTensorRedistributePlanner._dict_to_ShardOrder(
tensor_mesh_dim_dict
),
)
all_next_state[dist_state] = self.all_to_all_cost
# reset content for next iteration
tensor_mesh_dim_dict[src_tensor_dim].append(move_mesh_dim)
tensor_mesh_dim_dict[dst_tensor_dim].pop()
# TODO(zpcore): support discovering submesh to prevent padding when
# tensor dim is not divisible by the mesh dim.
######################################################################
# handle case 2: Shard() -> Replicate()
for entry in tensor_mesh_dim_tuple:
src_tensor_dim = entry.tensor_dim
move_mesh_dim = tensor_mesh_dim_dict[src_tensor_dim].pop()
new_placements = list(placements)
new_placements[move_mesh_dim] = Replicate()
dist_state = self.DistState(
self._to_tuple(new_placements),
DTensorRedistributePlanner._dict_to_ShardOrder(tensor_mesh_dim_dict),
)
tensor_mesh_dim_dict[src_tensor_dim].append(move_mesh_dim)
all_next_state[dist_state] = self.all_gather_cost
######################################################################
# handle case 3: Partial() -> Replicate()
for src_mesh_dim, placement in enumerate(placements):
if not isinstance(placement, Partial):
continue
new_placements = list(placements)
new_placements[src_mesh_dim] = Replicate()
dist_state = self.DistState(
self._to_tuple(new_placements), tensor_mesh_dim_tuple
)
all_next_state[dist_state] = self.all_reduce_cost
######################################################################
# handle case 4: Replicate() -> Shard()
for mesh_dim, placement in enumerate(placements):
if not isinstance(placement, Replicate):
continue
for dst_tensor_dim in range(self.tensor_dimension):
# try convert placement[mesh_dim] to Shard(dst_tensor_dim)
new_placements = list(placements)
new_placements[mesh_dim] = Shard(dst_tensor_dim)
tensor_mesh_dim_dict[dst_tensor_dim].append(mesh_dim)
dist_state = self.DistState(
self._to_tuple(new_placements),
DTensorRedistributePlanner._dict_to_ShardOrder(
tensor_mesh_dim_dict
),
)
all_next_state[dist_state] = self.chunk_cost
tensor_mesh_dim_dict[dst_tensor_dim].pop()
######################################################################
# handle case 5: Partial() -> Shard()
for mesh_dim, placement in enumerate(placements):
if not isinstance(placement, Partial):
continue
for dst_tensor_dim in range(self.tensor_dimension):
# try convert placement[mesh_dim] to Shard(dst_tensor_dim)
new_placements = list(placements)
new_placements[mesh_dim] = Shard(dst_tensor_dim)
tensor_mesh_dim_dict[dst_tensor_dim].append(mesh_dim)
dist_state = self.DistState(
self._to_tuple(new_placements),
DTensorRedistributePlanner._dict_to_ShardOrder(
tensor_mesh_dim_dict
),
)
all_next_state[dist_state] = self.reduce_scatter
tensor_mesh_dim_dict[dst_tensor_dim].pop()
######################################################################
# handle case 6: Replicate() -> Partial(), default to partial(sum)
for mesh_dim, placement in enumerate(placements):
if not isinstance(placement, Replicate):
continue
new_placements = list(placements)
new_placements[mesh_dim] = Partial()
dist_state = self.DistState(
self._to_tuple(new_placements), tensor_mesh_dim_tuple
)
all_next_state[dist_state] = self.chunk_cost
return all_next_state
# TODO(zpcore): if the dst_state contains special placement like
# `_MaskPartial`, we will never reach that state. Need to support this case.
def find_min_cost_path(
self, src_state: DistState, dst_state: DistState
) -> list["DTensorRedistributePlanner.DistState"]:
"""
Find the min cost path from src_state to dst_state using Dijkstra's
algorithm.
Args:
src_state: The source state
dst_state: The destination state
Returns:
A list of states representing the min cost path from src_state to
dst_state
"""
import heapq
# priority queue (cost, counter, state, path) for Dijkstra's algorithm
# use counter to break ties and avoid comparing DistState objects
counter = 0
pq: list[
tuple[
int,
int,
DTensorRedistributePlanner.DistState,
list[DTensorRedistributePlanner.DistState],
]
] = [(0, counter, src_state, [src_state])]
visited = set()
while pq:
cost, _, current_state, path = heapq.heappop(pq)
if current_state == dst_state:
return path
if current_state in visited:
continue
visited.add(current_state)
# get all possible next states and their costs
next_states = self.get_next_state(
current_state.placements, current_state.tensor_dim_to_mesh_dim
)
for next_state, transition_cost in next_states.items():
if next_state not in visited:
new_cost = cost + transition_cost
new_path = path + [next_state]
counter += 1
heapq.heappush(pq, (new_cost, counter, next_state, new_path))
raise AssertionError(
f"No path found from src_state {src_state} to dst_state {dst_state}"
)
def get_logical_shape(
self,
src_state: "DTensorRedistributePlanner.DistState",
mesh_dim: int,
full_tensor_shape: tuple[int, ...],
) -> list[int]:
new_logical_shape = list(full_tensor_shape)
assert self.coordinate is not None
for entry in src_state.tensor_dim_to_mesh_dim:
tensor_dim = entry.tensor_dim
mesh_dims = entry.mesh_dims
assert len(mesh_dims) > 0
for mdim in mesh_dims:
if mdim == mesh_dim:
continue
new_size = Shard.local_shard_size_and_offset(
new_logical_shape[tensor_dim],
self.device_mesh.size(mesh_dim=mdim),
self.coordinate[mdim],
)[0]
new_logical_shape[tensor_dim] = new_size
return new_logical_shape
def generate_graph_based_transform_infos(
self,
src_spec: DTensorSpec,
dst_spec: DTensorSpec,
full_tensor_shape: tuple[int, ...],
) -> list[_TransformInfo]:
assert src_spec.shard_order is not None and dst_spec.shard_order is not None
src_state = self.DistState(src_spec.placements, src_spec.shard_order)
dst_state = self.DistState(dst_spec.placements, dst_spec.shard_order)
transform_infos: list[_TransformInfo] = []
state_path = self.find_min_cost_path(src_state, dst_state)
for cur_state, nxt_state in itertools.pairwise(state_path):
# find the mesh_dim that is different between cur_state and nxt_state
if cur_state.placements != nxt_state.placements:
update_mesh_dim = -1
for mesh_dim, (cur_placement, nxt_placement) in enumerate(
zip(cur_state.placements, nxt_state.placements)
):
if cur_placement != nxt_placement:
if update_mesh_dim != -1:
raise AssertionError(
"Multiple mesh_dims are different between cur_state and nxt_state"
)
update_mesh_dim = mesh_dim
logical_shape = self.get_logical_shape(
cur_state, mesh_dim, full_tensor_shape
)
transform_infos.append(
_TransformInfo(
mesh_dim=update_mesh_dim,
src_dst_placements=(cur_placement, nxt_placement),
logical_shape=logical_shape,
)
)
return transform_infos
def generate_greedy_transform_infos(
self,
src_spec: DTensorSpec,
dst_spec: DTensorSpec,
) -> list[_TransformInfo]:
"""
Generate the transform infos from the source placements to the target placements.
To transform from source to target placement it might have multiple steps, i.e. it
might decompose Si -> Sj into Si -> R -> Sj.
This would detect if there're mis-aligned/nested shardings between src/dst placements.
E.g. Suppose the redistribution to perform is (Shard(0), Shard(0)) -> (Replicate(), Shard(0)),
in this case Shard(0) -> Shard(0) for mesh dimension 1 actually needs resharding, because in
the former is a nested-sharding of a tensor already already sharded dimension 0, whereas
the latter is the first sharding on tensor dimension 0.
"""
# logical shape records the logic tensor shape on the mesh dimension
# this is useful to ensure uneven sharding gets correct output shape
assert self.coordinate is not None
initial_logical_shape = list(src_spec.shape)
mesh_dims_to_logical_shape = [initial_logical_shape]
transform_infos: list[_TransformInfo] = []
if self.device_mesh.ndim == 1:
# if device_mesh is 1D, redistribute is a simple direct
# transformation
transform_infos.append(
_TransformInfo(
mesh_dim=0,
src_dst_placements=(src_spec.placements[0], dst_spec.placements[0]),
logical_shape=initial_logical_shape,
)
)
return transform_infos
# Handle multi-dim device mesh placement redistribution First, we need
# to build the logical shape for each mesh dim for correct allgather
# uneven shards on each mesh dim (with dynamic padding)
for i, src in enumerate(src_spec.placements):
current_logical_shape = mesh_dims_to_logical_shape[i]
if isinstance(src, Shard):
if i < self.device_mesh.ndim - 1:
# calculate and save the logical shape for this sharding
mesh_dim_size = self.device_mesh.size(mesh_dim=i)
local_shard_size, _ = src._local_shard_size_and_offset(
current_logical_shape[src.dim],
mesh_dim_size,
self.coordinate[i],
)
new_logical_shape = list(current_logical_shape)
new_logical_shape[src.dim] = local_shard_size
mesh_dims_to_logical_shape.append(new_logical_shape)
else:
mesh_dims_to_logical_shape.append(current_logical_shape)
# Next, we need to derive the transform infos from src to dst
# placements, here we use a greedy search with step by step state
# transformations
current_placements = list(src_spec.placements)
target_placements = list(dst_spec.placements)
if src_spec.num_shards > 1:
# If src_spec have sharding, it could potentially have sharding that
# is misaligned with dst_spec a common case of this is nested
# sharding (i.e. (S(0), S(0)) -> (R, S(0))). In those cases, we
# first traverse from inner placement to outer placement to detect
# misaligned shardings and properly replicate nested sharding first.
for mesh_dim in reversed(range(len(current_placements))):
current = current_placements[mesh_dim]
target = target_placements[mesh_dim]
# If target is not Shard, we can directly redistribute since we
# are traversing from innner to outer placements here
if isinstance(target, Shard):
# If target is Shard, check for nested sharding on the
# tensor dim BEFORE the current mesh_dim
shard_dim = target.dim
current_mesh_sharding, target_mesh_sharding = [], []
for i, (s, p) in enumerate(
zip(current_placements, target_placements)
):
if i >= mesh_dim:
break
if s.is_shard(shard_dim):
current_mesh_sharding.append(i)
if p.is_shard(shard_dim):
target_mesh_sharding.append(i)
if current_mesh_sharding != target_mesh_sharding:
# if current/target_placements have misaligned sharding
# on the tensor dim BEFORE the current mesh_dim, we need
# to replicate the tensor on the mesh dim first to clear
# the nested sharding
target = Replicate()
if current != target:
transform_infos.append(
_TransformInfo(
mesh_dim=mesh_dim,
src_dst_placements=(current, target),
logical_shape=mesh_dims_to_logical_shape[mesh_dim],
)
)
current_placements[mesh_dim] = target
# We always traverse from outer placement to inner placement to collect
# the remaining needed transform infos (i.e. the replication from nested
# sharding might need to further perform resharding to Shard again)
for mesh_dim, (current, target) in enumerate(
zip(current_placements, target_placements)
):
if current != target:
transform_infos.append(
_TransformInfo(
mesh_dim=mesh_dim,
src_dst_placements=(current, target),
logical_shape=mesh_dims_to_logical_shape[mesh_dim],
)
)
current_placements[mesh_dim] = target
return transform_infos
def _gen_transform_infos_non_cached(
src_spec: DTensorSpec,
dst_spec: DTensorSpec,
use_graph_based_transform: Optional[bool] = None,
) -> list[_TransformInfo]:
transform_infos: list[_TransformInfo] = []
device_mesh = src_spec.device_mesh
src_shard_order = src_spec.shard_order
dst_shard_order = dst_spec.shard_order
# DTensorSpec should automatically generate shard_order, and it can be () if
# no shard.
assert src_shard_order is not None and dst_shard_order is not None
if use_graph_based_transform is None:
if all(
DTensorSpec.is_default_device_order(order)
for order in (src_shard_order, dst_shard_order)
):
use_graph_based_transform = False
else:
# switch to graph search algorithm if the device order is not the default
use_graph_based_transform = True
drp = get_redistribute_planner(device_mesh, len(src_spec.shape))
if use_graph_based_transform:
transform_infos = drp.generate_graph_based_transform_infos(
src_spec, dst_spec, src_spec.shape
)
else:
transform_infos = drp.generate_greedy_transform_infos(src_spec, dst_spec)
return transform_infos
@cache
def _gen_transform_infos(
src_spec: DTensorSpec,
dst_spec: DTensorSpec,
use_graph_based_transform: Optional[bool] = None,
) -> list[_TransformInfo]:
return _gen_transform_infos_non_cached(
src_spec, dst_spec, use_graph_based_transform
)
def redistribute_local_tensor(
local_tensor: torch.Tensor,
current_spec: DTensorSpec,
target_spec: DTensorSpec,
*,
async_op: bool = False,
is_backward: bool = False,
use_graph_based_transform: Optional[bool] = None,
) -> torch.Tensor:
"""
This redistribute the local tensor (torch.Tensor) from the current DTensorSpec to
the target DTensorSpec, which involves the necessary collective calls to transform
the local shard of the DTensor from its current spec to the target spec.
"""
if current_spec.mesh != target_spec.mesh:
# TODO: alltoall/permute reshuffling to change device_mesh if they are not the same
raise NotImplementedError("Cross device mesh comm not supported yet!")
new_local_tensor = local_tensor
device_mesh = current_spec.mesh
my_coordinate = device_mesh.get_coordinate()
if my_coordinate is None:
# if rank is not part of mesh, we skip redistribute and simply return local_tensor,
# which should be an empty tensor
return local_tensor
if _are_we_tracing():
transform_infos = _gen_transform_infos_non_cached(
current_spec, target_spec, use_graph_based_transform
)
else:
transform_infos = _gen_transform_infos(
current_spec, target_spec, use_graph_based_transform
)
debug_mode = get_active_debug_mode()
redistribute_context = (
debug_mode.record_redistribute_calls( # type: ignore[union-attr]
local_tensor,
current_spec.placements,
target_spec.placements,
DTensorRedistributePlanner.stringify_transform_infos(
device_mesh,
transform_infos,
current_spec.placements,
current_spec.shard_order,
),
)
if debug_mode is not None
else contextlib.nullcontext()
)
with redistribute_context:
for transform_info in transform_infos:
i = transform_info.mesh_dim
current, target = transform_info.src_dst_placements
num_chunks = device_mesh.size(mesh_dim=i)
if current == target:
# short cut, just use the original local tensor
new_local_tensor = local_tensor
continue
if num_chunks == 1:
# short cut, if there's only one shard, we don't need to do any collective
# comm, just use the original local tensor
new_local_tensor = local_tensor
continue
if target.is_replicate():
# Case 1: target is Replicate
if current.is_partial():
partial_spec = cast(Partial, current)
new_local_tensor = partial_spec._reduce_value(
local_tensor, device_mesh, i
)
elif current.is_shard():
current_placement = cast(Shard, current)
new_local_tensor = current_placement._to_replicate_tensor(
local_tensor, device_mesh, i, transform_info.logical_shape
)
else:
raise RuntimeError(
f"redistribute from {current} to {target} not supported yet"
)
elif target.is_shard():
# Case 2: target is Shard
target_placement = cast(Shard, target)
if current.is_partial():
partial_spec = cast(Partial, current)
new_local_tensor = partial_spec._reduce_shard_value(
local_tensor, device_mesh, i, target_placement
)
elif current.is_replicate():
# split the tensor and return the corresponding cloned local shard
new_local_tensor = target_placement._replicate_to_shard(
local_tensor, device_mesh, i, my_coordinate[i]
)
else:
assert current.is_shard(), (
f"Current placement should be shard but found {current}"
)
shard_spec = cast(Shard, current)
if shard_spec.dim != target_placement.dim:
new_local_tensor = shard_spec._to_new_shard_dim(
local_tensor,
device_mesh,
i,
transform_info.logical_shape,
target_placement.dim,
)
elif target.is_partial():
if current.is_replicate():
partial_spec = cast(Partial, target)
# skip the replicate to partial transformation when we are in backward pass
# In this case we keep the grad as replicate, this is because we don't
# want to convert the replicated gradients back to partial, although
# that's logically conform with the same layout, converting the gradients
# back to partial is actually useless as you would have to do reduce later
# which would be more expensive than keeping it replicate! For this reason,
# we keep the replicate grad here.
new_local_tensor = (
partial_spec._partition_value(local_tensor, device_mesh, i)
if not is_backward
else local_tensor
)
elif current.is_shard():
if not is_backward:
raise RuntimeError(
f"redistribute from {current} to {target} not supported yet"
)
# for backward shard -> partial, we just need to convert the shard to replicate
current_placement = cast(Shard, current)
new_local_tensor = current_placement._to_replicate_tensor(
local_tensor, device_mesh, i, transform_info.logical_shape
)
else:
# partial -> partial no op, should never hit
new_local_tensor = local_tensor
if not async_op and isinstance(
new_local_tensor, funcol.AsyncCollectiveTensor
):
new_local_tensor = new_local_tensor.wait()
local_tensor = new_local_tensor
return new_local_tensor
class Redistribute(torch.autograd.Function):
@staticmethod
def forward( # type: ignore[override]
# pyre-fixme[2]: Parameter must be annotated.
ctx,
input: "dtensor.DTensor",
device_mesh: DeviceMesh,
placements: tuple[Placement, ...],
async_op: bool = False,
forward_dtype: Optional[torch.dtype] = None,
backward_dtype: Optional[torch.dtype] = None,
):
ctx.async_op = async_op
ctx.backward_dtype = backward_dtype
ctx.original_dtype = input._local_tensor.dtype
if forward_dtype is not None and forward_dtype != input._local_tensor.dtype:
local_tensor = input._local_tensor.to(dtype=forward_dtype)
current_spec = DTensorSpec(
mesh=device_mesh,
placements=input._spec.placements,
tensor_meta=TensorMeta(
shape=input.shape,
stride=input.stride(),
dtype=forward_dtype,
),
)
else:
local_tensor = input._local_tensor
current_spec = input._spec
ctx.current_spec = current_spec
if current_spec.placements != placements:
target_spec = DTensorSpec(
device_mesh, placements, tensor_meta=current_spec.tensor_meta
)
output = redistribute_local_tensor(
local_tensor, current_spec, target_spec, async_op=async_op
)
else:
# use the same local tensor if placements are the same.
output = local_tensor
target_spec = current_spec
return dtensor.DTensor(
output,
target_spec,
requires_grad=input.requires_grad,
)
@staticmethod
def backward(ctx, grad_output: "dtensor.DTensor"): # type: ignore[override]
previous_spec = ctx.current_spec
async_op = ctx.async_op
backward_dtype = ctx.backward_dtype or ctx.original_dtype
if backward_dtype != grad_output._local_tensor.dtype:
local_tensor = grad_output._local_tensor.to(dtype=backward_dtype)
current_spec = DTensorSpec(
mesh=grad_output._spec.device_mesh,
placements=grad_output._spec.placements,
tensor_meta=TensorMeta(
shape=grad_output.shape,
stride=grad_output.stride(),
dtype=backward_dtype,
),
)
previous_spec = DTensorSpec(
mesh=previous_spec.device_mesh,
placements=previous_spec.placements,
tensor_meta=current_spec.tensor_meta,
)
else:
local_tensor = grad_output._local_tensor
current_spec = grad_output._spec
output = redistribute_local_tensor(
local_tensor,
current_spec,
previous_spec,
async_op=async_op,
is_backward=True,
)
if output.dtype != ctx.original_dtype:
output = output.to(ctx.original_dtype)
# normalize the target placement to replicate if it is partial
normalized_placements: list[Placement] = []
for previous_placement in previous_spec.placements:
if previous_placement.is_partial():
# keep target placement to replicate instead of partial in this case
normalized_placements.append(Replicate())
else:
normalized_placements.append(previous_placement)
spec = DTensorSpec(
previous_spec.device_mesh,
tuple(normalized_placements),
tensor_meta=TensorMeta(
shape=grad_output.shape,
stride=grad_output.stride(),
dtype=output.dtype,
),
)
output_dtensor = dtensor.DTensor(
output,
spec,
requires_grad=grad_output.requires_grad,
)
return (
output_dtensor,
None,
None,
None,
None,
None,
)