Files
pytorch/torch/distributed/_tools/fsdp2_mem_tracker.py
Maggie Moss 7457d139c5 Add pyrefly suppressions to torch/distributed (7/n) (#165002)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

One more PR after this one.

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the project-excludes field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:
INFO 0 errors (6,884 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165002
Approved by: https://github.com/oulgen
2025-10-09 04:08:25 +00:00

557 lines
24 KiB
Python

from collections.abc import Callable
from copy import deepcopy
from enum import auto, Enum
from functools import partial, wraps
from typing import Any, NamedTuple, Optional, TypeVar, Union
from typing_extensions import ParamSpec, TypeVarTuple, Unpack
import torch
import torch.distributed._tools.fake_collectives
from torch import nn, optim
from torch._guards import active_fake_mode
from torch.distributed._tools.mem_tracker import _RefType, _State, MemTracker
from torch.distributed.fsdp import FSDPModule
from torch.distributed.fsdp._fully_shard._fsdp_param_group import FSDPParamGroup
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils._pytree import tree_map_only
from torch.utils.weak import WeakIdKeyDictionary, weakref
_TOTAL_KEY = "Total"
__all__ = ["FSDPMemTracker"]
_P = ParamSpec("_P")
_R = TypeVar("_R")
_Ts = TypeVarTuple("_Ts")
c10d = torch.ops.c10d
class _FSDPRefType(_RefType):
"""
Enumerates categories of memory usage in FSDP modules, including parameters, gradients, activations,
and optimizer states.
Attributes:
SHARDED_PARAM (str): Memory usage of sharded parameters.
UNSHARDED_PARAM (str): Memory usage of unsharded parameters.
SHARDED_GRAD (str): Memory usage of sharded gradients corresponding to the sharded parameters.
UNSHARDED_GRAD (str): Memory usage of unsharded gradients corresponding to the unsharded parameters.
ACT (str): Memory usage of activations and tensors from forward and AC recomputation.
TEMP (str): Memory usage of temporary tensors during the backward pass including gradients of activations.
ALL_GATHER (str): Memory usage of all_gather output tensor.
REDUCE_SCATTER (str): Memory usage of reduce_scatter input tensor.
OPT (str): Memory usage of tensors storing optimizer states.
INP (str): Memory usage of input tensors.
"""
SHARDED_PARAM = "Sharded Param"
UNSHARDED_PARAM = "Unsharded Param"
BUFFER = "Buffer"
SHARDED_GRAD = "Sharded Grad"
UNSHARDED_GRAD = "Unsharded Grad"
ACT = "Activation"
TEMP = "Temp"
ALL_GATHER = "All Gather"
REDUCE_SCATTER = "Reduce Scatter"
OPT = "OptState"
INP = "Inputs"
class _SavedFSDPMethods(NamedTuple):
pre_backward: Callable
post_backward: Callable
class _FSDPModState(_State):
"""
Enumerates the states of FSDP modules during the forward and backward passes.
"""
BEF_PRE_FW = "Before Pre-Forward"
AFT_PRE_FW = "After Pre-Forward"
BEF_POST_FW = "Before Post-Forward"
AFT_POST_FW = "After Post-Forward"
BEF_PRE_BW = "Before Pre-Backward"
AFT_PRE_BW = "After Pre-Backward"
BEF_POST_BW = "Before Post-Backward"
AFT_POST_BW = "After Post-Backward"
PRE_FW_AC = "Pre-Forward AC"
POST_FW_AC = "Post-Forward AC"
PEAK_FW = "Peak Forward"
PEAK_BW = "Peak Backward"
class _FSDPModMemStats:
"""
A class to store the memory statistics of an FSDP module.
Args:
mod_fqn (str): The fully qualified name of the FSDP module.
Attributes:
snapshots (Dict[_FSDPModState, Dict[torch.device, Dict[str, int]]]): A dictionary of memory snapshots
of the module at different states as defined by ``_FSDPModState``. Each key is a device, and
each value is another dictionary with keys as memory reference types defined by ``_FSDPRefType`` and
values as the memory consumed in bytes.
"""
def __init__(self, mod_fqn: str) -> None:
self.mod_fqn = mod_fqn
self.local_peak: dict[torch.device, int] = {}
self.snapshots: dict[
_FSDPModState, list[dict[torch.device, dict[str, int]]]
] = {}
class _FSDPState(Enum):
PRE_FW = auto()
FW = auto()
POST_FW = auto()
PRE_BW = auto()
BW = auto()
POST_BW = auto()
class FSDPMemTracker(MemTracker):
"""
A ``TorchDispatchMode`` based context manager that extends ``torch.distributed._tools.mem_tracker.MemTracker`` to track
and categorize the peak memory and module-wise memory usage of FSDP modules.
It tracks the peak memory usage across all the devices of all the FSDP modules in the module tree and categorizes
the tensor memory usage as defined by ``_FSDPRefType``. Further, it captures memory `snapshots` at different stages of
the module execution defined by ``_FSDPModState``.
Attributes:
memory_tracking: A weakref key dictionary to store the memory statistics of each module. Each key is a reference
to a module, and each value is a ``_FSDPModMemStats`` object that stores the memory statistics of the module.
Args:
mod (torch.nn.Module): The root FSDP module to be tracked.
optm (torch.optim.Optimizer, optional): The optimizer to be tracked.
Note: Please refer to ``torch.distributed._tools.mem_tracker.MemTracker`` to learn about the limitations.
Example usage
.. code-block:: python
module = ...
optimizer = ...
inp = ...
fmt = FSDPMemTracker(module, optimizer)
fmt.track_inputs((inp,))
with fmt:
optimizer.zero_grad()
loss = module(inp)
print("After Forward:")
fmt.display_snapshot("current")
loss.backward()
optimizer.step()
fmt.display_snapshot("peak")
fmt.display_modulewise_snapshots(depth=3, units="MB")
"""
def __init__(
self,
mod: torch.nn.Module,
optm: Optional[torch.optim.Optimizer] = None,
) -> None:
super().__init__()
assert isinstance(mod, FSDPModule), "FSDPMemTracker only supports FSDP modules"
self._root_mod = mod
self._optm = optm
self._fsdp_mod_to_saved_methods: WeakIdKeyDictionary = WeakIdKeyDictionary()
self._fsdp_state: _FSDPState = _FSDPState.PRE_FW
self._ref_class: type[_RefType] = _FSDPRefType
def _instrument_fsdp_sharded_params_grads(
self, fsdp_param_group: FSDPParamGroup
) -> None:
# Track sharded params and grads after initialization
for fsdp_param in fsdp_param_group.fsdp_params:
self._update_and_maybe_create_winfos(
fsdp_param.sharded_param,
_FSDPRefType.SHARDED_PARAM,
)
sharded_grad = fsdp_param.sharded_param.grad
if sharded_grad is not None:
self._update_and_maybe_create_winfos(
sharded_grad,
_FSDPRefType.SHARDED_GRAD,
)
def _fsdp_state_pre_forward(
self,
fsdp_mod: FSDPModule,
orig_fsdp_state_pre_fw: Callable[_P, tuple[tuple[Unpack[_Ts]], dict[str, Any]]],
) -> Callable[_P, tuple[tuple[Unpack[_Ts]], dict[str, Any]]]:
# We capture memory snapshots before and after ``FSDPState._pre_forward`` to attribute the `unsharded` params
# and `all_gather` buffers. There are three cases:
# Case 1: If the module is not in the ``memory_tracking`` dictionary, create a new ``_FSDPModMemStats``
# instance for the module and add it to the ``memory_tracking`` dictionary.
# Case 2: If the module is already in the ``memory_tracking`` dictionary and we are in backward, this means
# we are in the AC region. We check if this is the top most module in the AC region. If it is,
# we store a weak reference and set the flag ``_in_ac`` to True.
# Case 3: If the module is already in the ``memory_tracking`` dictionary and we are in forward, this means
# this module is called for the second time. If it is a root module, that means we are in the next
# iteration and we error out. If it is not a root module, that means it's a submodule that is being
# used multiple times in the same iteration, which we allow and track.
# For Case 1 and 3, we also initialize the ``local_peak`` and ``PEAK_FW`` snapshot for the module.
# For Case 2 we only capture 1 snapshot after ``FSDPState._pre_forward`` runs because it is a no-op.
@wraps(orig_fsdp_state_pre_fw)
def inner(
*args: _P.args, **kwargs: _P.kwargs
) -> tuple[tuple[Unpack[_Ts]], dict[str, Any]]:
self._fsdp_state = _FSDPState.PRE_FW
mod_fqn = self._mod_tracker.get_known_fqn(fsdp_mod)
assert mod_fqn is not None
if fsdp_mod not in self.memory_tracking:
mod_stat = _FSDPModMemStats(mod_fqn)
self.memory_tracking[fsdp_mod] = mod_stat
snapshot = self.get_tracker_snapshot()
mod_stat.local_peak = {
dev: dev_snap[_TOTAL_KEY] for dev, dev_snap in snapshot.items()
}
mod_stat.snapshots.setdefault(_FSDPModState.PEAK_FW, []).append(
snapshot
)
mod_stat.snapshots.setdefault(_FSDPModState.BEF_PRE_FW, []).append(
deepcopy(snapshot)
)
elif not self._mod_tracker.is_bw:
parents = self._mod_tracker.parents - {mod_fqn}
if len(parents) == 1 and "Global" in parents:
raise NotImplementedError(
"FSDPMemTracker does not support memory tracking for multiple iterative calls."
" Either use ``reset_mod_stats`` to clear module memory stats for the previous iteration"
" or file a github issue if you need this feature."
)
# pyrefly: ignore # bad-assignment
args, kwargs = orig_fsdp_state_pre_fw(*args, **kwargs)
fsdp_state = fsdp_mod._get_fsdp_state()
if fsdp_param_group := fsdp_state._fsdp_param_group:
for fsdp_param in fsdp_param_group.fsdp_params:
self._update_and_maybe_create_winfos(
fsdp_param.unsharded_param,
_FSDPRefType.UNSHARDED_PARAM,
)
mod_stat = self.memory_tracking[fsdp_mod]
if self._mod_tracker.is_bw:
state = _FSDPModState.PRE_FW_AC
if self._ac_mod is None:
self._ac_mod = weakref.ref(fsdp_mod)
self._in_ac = True
else:
state = _FSDPModState.AFT_PRE_FW
mod_stat.snapshots.setdefault(state, []).append(self.get_tracker_snapshot())
self._fsdp_state = _FSDPState.FW
return args, kwargs
return inner
def _fsdp_state_post_forward(
self,
fsdp_mod: FSDPModule,
orig_fsdp_state_post_fw: Callable[_P, _R],
) -> Callable[_P, _R]:
# We capture memory snapshots before and after ``FSDPState._post_forward`` to capture the resharded state
# if ``reshard_after_forward`` is not ``False``. There are two cases:
# Case 1: This is called in backward, which means we are in the AC region. If this is the top most module
# in the AC region, we set the flag ``_in_ac`` to False.
# Case 2: This is called in forward.
@wraps(orig_fsdp_state_post_fw)
def inner(*args: _P.args, **kwargs: _P.kwargs) -> _R:
mod_stat = self.memory_tracking[fsdp_mod]
if self._mod_tracker.is_bw:
state = _FSDPModState.POST_FW_AC
if self._ac_mod is not None and self._ac_mod() is fsdp_mod:
self._ac_mod = None
self._in_ac = False
else:
state = _FSDPModState.BEF_POST_FW
mod_stat.snapshots.setdefault(state, []).append(self.get_tracker_snapshot())
self._fsdp_state = _FSDPState.POST_FW
output = orig_fsdp_state_post_fw(*args, **kwargs)
if not self._mod_tracker.is_bw:
mod_stat.snapshots.setdefault(_FSDPModState.AFT_POST_FW, []).append(
self.get_tracker_snapshot()
)
return output
return inner
def _fsdp_param_group_pre_backward(
self,
fsdp_mod: FSDPModule,
orig_fsdp_param_group_pre_backward: Callable[_P, Any],
) -> Callable[_P, None]:
# We capture memory snapshots before and after ``FSDPParamGroup.pre_backward`` to capture the pre-fetching
# and unsharding of params. We also initialize ``local_peak`` and ``PEAK_BW`` snapshot for the module.
@wraps(orig_fsdp_param_group_pre_backward)
def inner(*args: _P.args, **kwargs: _P.kwargs) -> None:
self._fsdp_state = _FSDPState.PRE_BW
mod_stat = self.memory_tracking[fsdp_mod]
snapshot = self.get_tracker_snapshot()
mod_stat.local_peak = {
dev: dev_snap[_TOTAL_KEY] for dev, dev_snap in snapshot.items()
}
mod_stat.snapshots.setdefault(_FSDPModState.PEAK_BW, []).append(snapshot)
mod_stat.snapshots.setdefault(_FSDPModState.BEF_PRE_BW, []).append(
deepcopy(snapshot)
)
orig_fsdp_param_group_pre_backward(*args, **kwargs)
mod_stat.snapshots.setdefault(_FSDPModState.AFT_PRE_BW, []).append(
self.get_tracker_snapshot()
)
self._fsdp_state = _FSDPState.BW
return inner
def _fsdp_param_group_post_backward(
self,
fsdp_mod: FSDPModule,
orig_fsdp_param_group_post_backward: Callable[_P, Any],
) -> Callable[_P, None]:
# We capture the memory snapshots before and after ``FSDPParamGroup.post_backward`` to track and attribute
# the `unsharded` grads before the post backward and then `sharded` grads and `reduce_scatter` buffers
# after the post backward.
@wraps(orig_fsdp_param_group_post_backward)
def inner(*args: _P.args, **kwargs: _P.kwargs) -> None:
fsdp_state = fsdp_mod._get_fsdp_state()
if fsdp_param_group := fsdp_state._fsdp_param_group:
for fsdp_param in fsdp_param_group.fsdp_params:
unsharded_grad = fsdp_param._unsharded_param.grad
if unsharded_grad is not None:
self._update_and_maybe_create_winfos(
unsharded_grad,
_FSDPRefType.UNSHARDED_GRAD,
update_existing=True,
)
mod_stat = self.memory_tracking[fsdp_mod]
mod_stat.snapshots.setdefault(_FSDPModState.BEF_POST_BW, []).append(
self.get_tracker_snapshot()
)
self._fsdp_state = _FSDPState.POST_BW
orig_fsdp_param_group_post_backward(*args, **kwargs)
if fsdp_param_group := fsdp_state._fsdp_param_group:
for fsdp_param in fsdp_param_group.fsdp_params:
sharded_grad = fsdp_param.sharded_param.grad
if sharded_grad is not None:
self._update_and_maybe_create_winfos(
sharded_grad,
_FSDPRefType.SHARDED_GRAD,
)
mod_stat.snapshots.setdefault(_FSDPModState.AFT_POST_BW, []).append(
self.get_tracker_snapshot()
)
return inner
def _instrument_fsdp_module(self) -> None:
# We uninstall the existing `FSDPState._pre_forward` and `FSDPState._post_forward` hooks and install
# our own hooks that wrap them. We choose this over monkey-patching `FSDPParamGroup.pre_forward` and
# `FSDPParamGroup.post_forward` because during AC these won't be called.
# TODO(@sanketpurandare): This will need to be modified after this PR (https://github.com/pytorch/pytorch/pull/127786)
# lands. For backward we monkey-patch the `FSDPParamGroup.pre_backward` and `FSDPParamGroup.post_backward`.
# pyrefly: ignore # missing-attribute
for module in self._root_mod.modules():
if isinstance(module, FSDPModule):
fsdp_state = module._get_fsdp_state()
if fsdp_param_group := fsdp_state._fsdp_param_group:
self._instrument_fsdp_sharded_params_grads(fsdp_param_group)
fsdp_state._pre_forward_hook_handle.remove()
fsdp_state._post_forward_hook_handle.remove()
fsdp_state._pre_forward_hook_handle = (
# pyrefly: ignore # missing-attribute
module.register_forward_pre_hook(
self._fsdp_state_pre_forward(
module, fsdp_state._pre_forward
),
prepend=True,
with_kwargs=True,
)
)
# pyrefly: ignore # missing-attribute
fsdp_state._post_forward_hook_handle = module.register_forward_hook(
self._fsdp_state_post_forward(module, fsdp_state._post_forward),
prepend=False,
always_call=True,
)
self._fsdp_mod_to_saved_methods[module] = _SavedFSDPMethods(
fsdp_param_group.pre_backward,
fsdp_param_group.post_backward,
)
fsdp_param_group.pre_backward = self._fsdp_param_group_pre_backward( # type: ignore[assignment]
module, fsdp_param_group.pre_backward
)
fsdp_param_group.post_backward = ( # type: ignore[assignment]
self._fsdp_param_group_post_backward(
module, fsdp_param_group.post_backward
)
)
# pyrefly: ignore # missing-attribute
for buffer in self._root_mod.buffers():
self._update_and_maybe_create_winfos(
buffer,
_FSDPRefType.BUFFER,
)
def _instrument_optimizer(self) -> None:
# Register a hook on the optimizer step to track the optimizer states.
# The pre-hook is to set the flag ``_in_opt`` to True. The post-hook unsets the flag,
# and also tracks any optimizer states that are created during the optimizer step.
if self._optm is not None:
self._track_optimizer_states(_FSDPRefType.OPT, self._optm)
def _opt_step_pre_hook(
optimizer: optim.Optimizer, args: Any, kwargs: Any
) -> None:
self._in_opt = True
def _opt_step_post_hook(
optimizer: optim.Optimizer, args: Any, kwargs: Any
) -> None:
self._track_optimizer_states(_FSDPRefType.OPT, optimizer)
self._in_opt = False
self._optimizer_hook_handles = (
self._optm.register_step_pre_hook(_opt_step_pre_hook),
self._optm.register_step_post_hook(_opt_step_post_hook),
)
def _register_module_and_optimizer_hooks(self) -> None:
self._instrument_fsdp_module()
self._instrument_optimizer()
def _deregister_module_and_optimizer_hooks(self) -> None:
for (
fsdp_mod,
saved_methods,
) in self._fsdp_mod_to_saved_methods.items():
fsdp_state = fsdp_mod._get_fsdp_state()
fsdp_state._pre_forward_hook_handle.remove()
fsdp_state._post_forward_hook_handle.remove()
fsdp_state._pre_forward_hook_handle = fsdp_mod.register_forward_pre_hook(
fsdp_state._pre_forward, prepend=True, with_kwargs=True
)
fsdp_state._post_forward_hook_handle = fsdp_mod.register_forward_hook(
fsdp_state._post_forward, prepend=False
)
if fsdp_param_group := fsdp_state._fsdp_param_group:
fsdp_param_group.pre_backward = saved_methods.pre_backward
fsdp_param_group.post_backward = saved_methods.post_backward
self._fsdp_mod_to_saved_methods.clear()
if self._optimizer_hook_handles is not None:
for handle in self._optimizer_hook_handles:
handle.remove()
self._optimizer_hook_handles = None
def track_inputs(self, inputs: tuple[Any, ...]) -> None:
"""
This is used to track the input tensors to the model and annotate them as ``Inputs``.
Args:
inputs (Tuple[Any]): A tuple containing the input data. This can include tensors
as well as other data types. Only tensors will be tracked.
"""
def _track_inputs(t: torch.Tensor) -> None:
self._update_and_maybe_create_winfos(
t,
_FSDPRefType.INP,
)
tree_map_only(torch.Tensor, _track_inputs, inputs)
def track_external(
self, *external: Union[nn.Module, optim.Optimizer, torch.Tensor]
) -> None:
"""This is no-op for ``FSDPMemTracker``"""
def __enter__(self) -> "FSDPMemTracker":
if self._depth == 0:
self._register_module_and_optimizer_hooks()
self._track_resize()
self._track_dtensor_dispatch()
self._peak_mem_snap = self.get_tracker_snapshot()
self._peak_mem = {
dev: dev_snap[_TOTAL_KEY]
for dev, dev_snap in self._peak_mem_snap.items()
}
self._mod_tracker.__enter__()
TorchDispatchMode.__enter__(self)
self._depth += 1
return self
def __exit__(self, *args: Any) -> None:
self._depth -= 1
if self._depth == 0:
self._deregister_module_and_optimizer_hooks()
self._restore_resize()
self._restore_dtensor_dispatch()
self._mod_tracker.__exit__(*args)
TorchDispatchMode.__exit__(self, *args)
def __torch_dispatch__(self, func, types, args=..., kwargs=None): # type: ignore[no-untyped-def]
if (
func == torch.ops._c10d_functional.wait_tensor.default
and active_fake_mode()
):
# N.B: This is a hacky way to override the Meta IMPL of wait_tensor. The original impl returns
# a new tensor which does not happen in eager mode, when a wait_tensor is called.
# pyrefly: ignore # unsupported-operation
res = args[0]
else:
res = func(*args, **kwargs or {})
# If we are tracking an optimizer state, we use the optimizer reference type.
# If we are in backward region and not in AC region, we use the backward reference type.
# Else we use the forward reference type.
if self._in_opt:
reftype = _FSDPRefType.OPT
elif self._mod_tracker.is_bw and not self._in_ac:
reftype = _FSDPRefType.TEMP
else:
reftype = _FSDPRefType.ACT
if func == c10d._allgather_base_.default and self._fsdp_state in [
_FSDPState.PRE_FW,
_FSDPState.PRE_BW,
]:
# pyrefly: ignore # unsupported-operation
output_tensor = args[0]
self._update_and_maybe_create_winfos(
output_tensor,
_FSDPRefType.ALL_GATHER,
update_existing=True,
)
if (
func == c10d._reduce_scatter_base_.default
and self._fsdp_state == _FSDPState.POST_BW
):
# pyrefly: ignore # unsupported-operation
input_tensor = args[1]
self._update_and_maybe_create_winfos(
input_tensor,
_FSDPRefType.REDUCE_SCATTER,
update_existing=True,
)
tree_map_only(torch.Tensor, partial(self._track, reftype), res)
peak_state = (
_FSDPModState.PEAK_BW if self._mod_tracker.is_bw else _FSDPModState.PEAK_FW
)
self._update_peak_stats(peak_state)
return res