Files
pytorch/torch/distributed/_pycute/layout.py
Yuanyuan Chen fdab48a7c1 Enable all PIE rules on ruff (#165814)
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796  Enum contains duplicate value: {value}
PIE808  Unnecessary start argument in range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
2025-10-18 07:36:18 +00:00

468 lines
18 KiB
Python

#################################################################################################
#
# Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
"""
Definition of CuTe Layouts and functions to manipulate them which works with the order
of lexicographic instead of co-lexicographic as implemented in the original layout.py
"""
from itertools import chain
from typing import Optional, TypeAlias, Union
from typing_extensions import TypeIs
from .int_tuple import (
crd2idx,
flatten,
has_none,
IntTuple,
is_int,
is_tuple,
product,
slice_,
suffix_product,
)
# Type aliases
LayoutOrIntTuple: TypeAlias = Union["Layout", IntTuple]
LayoutProfile: TypeAlias = Optional[Union[tuple[object, ...], "Layout"]]
LayoutInput: TypeAlias = Optional[Union["Layout", IntTuple, tuple[object, ...]]]
CoordinateType: TypeAlias = Optional[
Union[int, IntTuple, tuple[object, ...]]
] # Input for slice_ and crd2idx functions
class LayoutBase:
pass
def is_layout(x: object) -> TypeIs["Layout"]:
return isinstance(x, LayoutBase)
class Layout(LayoutBase):
def __init__(self, _shape: IntTuple, _stride: Optional[IntTuple] = None) -> None:
self.shape = _shape
if _stride is None:
self.stride = suffix_product(self.shape)
else:
self.stride = _stride
# operator ==
def __eq__(self, other: object) -> bool:
if not isinstance(other, Layout):
return False
return self.shape == other.shape and self.stride == other.stride
# operator len(L) (len [rank] like tuples)
def __len__(self) -> int:
if is_tuple(self.shape):
return len(self.shape)
else:
return 1
# operator () (map coord to idx)
def __call__(self, *args: CoordinateType) -> Union["Layout", int]:
"""
Map a logical coordinate to a linear index (Coord has no Underscore slice operators)
OR
Slice the layout and return the sublayout (Coord has an Underscore slice op)
Follow the same behavior of `Layout::operator(Coord const&)` in cute C++
"""
if has_none(args):
if len(args) == 1:
return Layout(slice_(args[0], self.shape), slice_(args[0], self.stride))
else:
return Layout(slice_(args, self.shape), slice_(args, self.stride))
else:
if len(args) == 1:
return crd2idx(args[0], self.shape, self.stride) # type: ignore[arg-type]
else:
return crd2idx(args, self.shape, self.stride) # type: ignore[arg-type]
# operator [] (get-i like tuples)
def __getitem__(self, i: int) -> "Layout":
if is_tuple(self.shape):
return Layout(self.shape[i], self.stride[i]) # type: ignore[index]
else:
assert i == 0
return Layout(self.shape, self.stride)
# size(layout) Size of the domain
def size(self) -> int:
return product(self.shape)
# cosize(layout) Size of the codomain
def cosize(self) -> int:
return self(self.size() - 1) + 1 # type: ignore[operator]
# print and str
def __str__(self) -> str:
return f"{self.shape}:{self.stride}"
# error msgs and representation
def __repr__(self) -> str:
return f"Layout({self.shape},{self.stride})"
# Make Layout from a list of layouts (each layout it's own mode in the result)
def make_layout(*layouts: Union[Layout, tuple[Layout, ...]]) -> Layout:
if len(layouts) == 1 and not is_layout(layouts[0]):
layouts = layouts[0]
shape, stride = zip(*((a.shape, a.stride) for a in layouts)) # type: ignore[union-attr]
return Layout(shape, stride)
# Size of the domain
def size(layout: LayoutOrIntTuple) -> int:
if is_layout(layout):
return layout.size()
return product(layout)
# Size of the codomain
def cosize(layout: Layout) -> int:
return layout.cosize()
# Layout coalesce -- flatten and combine as many modes as possible while preserving the int-to-int function
def coalesce(layout: Layout, profile: LayoutProfile = None) -> Layout:
if is_tuple(profile):
assert len(layout) >= len(profile)
return make_layout(
chain(
(coalesce(layout[i], profile[i]) for i in range(len(profile))), # type: ignore[arg-type]
(layout[i] for i in range(len(profile), len(layout))),
)
)
result_shape = [1]
result_stride = [0]
# Since we now follow lexicographic order, we need to process from right to left.
# And to make implementation more efficient, we append to the end of list and reverse it in the end.
for shape, stride in zip(
reversed(flatten(layout.shape)), reversed(flatten(layout.stride))
):
# skip their shape-1s
if shape == 1:
continue
# replace our shape-1 with anything
elif result_shape[-1] == 1:
result_shape[-1] = shape
result_stride[-1] = stride
# merge modes if the shape*stride match
elif result_shape[-1] * result_stride[-1] == stride:
result_shape[-1] = result_shape[-1] * shape
# append a new mode
else:
result_shape.append(shape)
result_stride.append(stride)
if len(result_shape) == 1:
return Layout(result_shape[0], result_stride[0])
else:
result_shape.reverse()
result_stride.reverse()
return Layout(tuple(result_shape), tuple(result_stride))
# Layout filter -- replace all stride-0 modes with size-1 and then coalesce to remove them
def filter(layout: Layout, profile: LayoutProfile = None) -> Layout:
if is_tuple(profile):
assert len(layout) >= len(profile)
return make_layout(
chain(
(filter(layout[i], profile[i]) for i in range(len(profile))), # type: ignore[arg-type]
(layout[i] for i in range(len(profile), len(layout))),
)
)
result_shape = []
result_stride = []
for shape, stride in zip(flatten(layout.shape), flatten(layout.stride)):
# skip their shape-1s and stride-0s
if not (shape == 1 or stride == 0):
result_shape.append(shape)
result_stride.append(stride)
if len(result_shape) == 0:
return Layout(1, 0)
else:
return coalesce(Layout(tuple(result_shape), tuple(result_stride)))
# Layout composition
# Use tuples-of-layouts to perform this operation by-mode and None as no-op
def composition(layoutA: Layout, layoutB: LayoutInput) -> Layout:
if layoutB is None:
return layoutA
elif is_int(layoutB):
return composition(layoutA, Layout(layoutB))
elif is_tuple(layoutB):
assert len(layoutA) >= len(layoutB)
return make_layout(
chain(
(composition(layoutA[i], layoutB[i]) for i in range(len(layoutB))), # type: ignore[arg-type]
(layoutA[i] for i in range(len(layoutB), len(layoutA))),
)
)
elif is_tuple(layoutB.shape):
return make_layout(composition(layoutA, layoutB_i) for layoutB_i in layoutB) # type: ignore[arg-type, attr-defined]
if layoutB.stride == 0:
return Layout(layoutB.shape, 0)
else:
result_shape = []
result_stride = []
rest_shape = layoutB.shape
rest_stride = layoutB.stride
flat_A = coalesce(layoutA)
# when left layout is multi-dimensional sublayout, aka, self = (a,b,...,c):(x,y,...,z), layout = s:d,
# for integral s and d means that we want:
# (1) “remove” the first d elements from left, starting from rightmost. (This will increase the stride.)
# (2) “keep” the first s of those strided elements. (This does not affect the stride.)
# For example, if self = (6,2):(2,1), layout = (3:2)
# Step 1: remove the first 2 elements from self with stride increase, i.e., (6,2):(2,1) -> (6,1):(2,2)
# Step 2: keep the first 3 of those strided elements, i.e., (6,1):(2,2) -> (3,1):(2,2)
# Because we are going lexicographically, we go through left layout from right to left.
for curr_shape, curr_stride in zip(
reversed(flatten(flat_A.shape)[1:]), reversed(flatten(flat_A.stride)[1:])
):
assert curr_shape % rest_stride == 0 or rest_stride % curr_shape == 0 # type: ignore[operator]
new_shape = min(max(1, curr_shape // rest_stride), rest_shape) # type: ignore[operator]
if new_shape != 1:
result_shape.append(new_shape) # Append to end, will reverse later
result_stride.append(rest_stride * curr_stride)
rest_shape = rest_shape // new_shape # type: ignore[operator]
rest_stride = -(
-rest_stride // curr_shape # type: ignore[operator]
) # Python exclusive impl: "//" is always floor div so == ceil_div(abs(rest_stride), curr_shape) * signum(rest_stride)
# When left has single-size sublayout or reach the last sublayout, aka, left = a:b, layout = s:d,
# the result is rather trivial: left o layout = a:b o s:d = s:(b*d).
# For example, if self = (6:2), layout = (3:2), the result is (3:(2*2)) = (3:4).
if rest_shape != 1 or len(result_shape) == 0:
result_shape.append(rest_shape) # Append to end, will reverse later
result_stride.append(rest_stride * flatten(flat_A.stride)[0])
# Reverse the lists because we build lists in reverse order (append to end), this way it is more efficient.
result_shape.reverse()
result_stride.reverse()
if len(result_shape) == 1:
return Layout(result_shape[0], result_stride[0]) # type: ignore[arg-type]
else:
return Layout(tuple(result_shape), tuple(result_stride)) # type: ignore[arg-type]
# Layout complement
def complement(layout: LayoutOrIntTuple, max_idx: int = 1) -> Layout:
if is_int(layout):
return complement(Layout(layout))
result_shape = []
result_stride = []
current_idx = 1
sorted_DS = sorted(zip(flatten(layout.stride), flatten(layout.shape))) # type: ignore[union-attr]
for stride, shape in sorted_DS:
if stride == 0 or shape == 1:
continue
in_bound = current_idx <= shape * stride
# To support symbolic value which can't be evaluated now
assert (type(in_bound) is not bool) or in_bound
result_shape.append(stride // current_idx)
result_stride.append(current_idx)
current_idx = shape * stride
result_shape.append((max_idx + current_idx - 1) // current_idx) # ceil_div
result_stride.append(current_idx)
# This is different from original pycute implementation, because we want to follow the lexicographic order here
# where the right-most dimension is the innermost dimension (smallest stride).
result_shape.reverse()
result_stride.reverse()
return coalesce(Layout(tuple(result_shape), tuple(result_stride)))
# Layout right inverse
def right_inverse(layout: Optional[LayoutOrIntTuple]) -> Optional[Layout]:
if layout is None:
return None
elif is_int(layout):
return Layout(layout)
result_shape = []
result_stride = []
current_idx = 1
flat_shape = flatten(layout.shape) # type: ignore[union-attr]
flat_stride = flatten(layout.stride) # type: ignore[union-attr]
sorted_DSA = sorted(zip(flat_stride, flat_shape, suffix_product(flat_shape))) # type: ignore[arg-type]
for stride, shape, rstride in sorted_DSA:
if shape == 1:
continue
if current_idx != stride:
break
result_shape.append(shape)
result_stride.append(rstride)
current_idx = shape * stride
result_shape.reverse()
result_stride.reverse()
return coalesce(Layout(tuple(result_shape), tuple(result_stride)))
# Layout left inverse
def left_inverse(layout: Optional[LayoutOrIntTuple]) -> Optional[Layout]:
if layout is None:
return None
elif is_int(layout):
return Layout(layout)
return right_inverse(make_layout(complement(layout), layout)) # type: ignore[arg-type]
# Split a layout by the composition of B and the "rest"
# Use tuples-of-layouts to perform this operation by-mode and None as no-op
def logical_divide(layoutA: Layout, layoutB: LayoutInput) -> Layout:
if layoutB is None:
return layoutA
elif is_int(layoutB):
return logical_divide(layoutA, Layout(layoutB))
elif is_tuple(layoutB):
assert len(layoutA) >= len(layoutB)
return make_layout(
chain(
(
logical_divide(layoutA[i], layoutB[i]) # type: ignore[arg-type]
for i in range(len(layoutB))
),
(layoutA[i] for i in range(len(layoutB), len(layoutA))),
)
)
return composition(
layoutA,
make_layout(layoutB, complement(layoutB, size(layoutA))),
)
# Reproduce a layoutA over a layoutB
# Use tuples-of-layouts to perform this operation by-mode and None as no-op
def logical_product(layoutA: Layout, layoutB: LayoutInput) -> Layout:
if layoutB is None:
return layoutA
elif is_int(layoutB):
return logical_divide(layoutA, Layout(layoutB))
elif is_tuple(layoutB):
assert len(layoutA) >= len(layoutB)
return make_layout(
chain(
(
logical_product(layoutA[i], layoutB[i]) # type: ignore[arg-type]
for i in range(len(layoutB))
),
(layoutA[i] for i in range(len(layoutB), len(layoutA))),
)
)
return make_layout(
layoutA,
composition(complement(layoutA, size(layoutA) * cosize(layoutB)), layoutB),
)
# Gather the modes from a hierarchical logical_divide or logical_product
def hier_unzip(
splitter: object,
layoutA: Layout,
layoutB: LayoutInput,
) -> Layout:
if layoutB is None:
return make_layout(Layout(1, 0), layoutA)
elif is_tuple(layoutB):
assert len(layoutA) >= len(layoutB)
# A layout with shape ((A,a),(B,b),(C,c))
split = make_layout(
hier_unzip(splitter, layoutA[i], layoutB[i]) # type: ignore[arg-type]
for i in range(len(layoutB))
)
# Gather to shape ((A,B,C,...),(a,b,c,...,y,z))
return make_layout(
make_layout(split[i][0] for i in range(len(layoutB))), # type: ignore[arg-type]
make_layout(
chain( # type: ignore[arg-type]
(split[i][1] for i in range(len(layoutB))),
(layoutA[i] for i in range(len(layoutB), len(layoutA))),
)
),
)
# splitter must return a rank-2 layout
return splitter(layoutA, layoutB) # type: ignore[operator]
# Apply logical divide hierarchically and gather the split modes into two modes
def zipped_divide(layoutA: Layout, layoutB: LayoutInput) -> Layout:
return hier_unzip(logical_divide, layoutA, layoutB)
# Perform logical divide hierarchically and gather tiles (B-layouts) into a new mode
def tiled_divide(layoutA: Layout, layoutB: LayoutInput) -> Layout:
result = zipped_divide(layoutA, layoutB)
return make_layout([result[0]] + [result[1][i] for i in range(len(result[1]))]) # type: ignore[arg-type]
# Apply logical product hierarchically and gather the split modes into two modes
def zipped_product(layoutA: Layout, layoutB: LayoutInput) -> Layout:
return hier_unzip(logical_product, layoutA, layoutB)
# Perform logical product hierarchically and gather tiles (B-layouts) into a new mode
def tiled_product(layoutA: Layout, layoutB: LayoutInput) -> Layout:
result = zipped_product(layoutA, layoutB)
return make_layout([result[0]] + [result[1][i] for i in range(len(result[1]))]) # type: ignore[arg-type]
def slice_and_offset(crd: tuple[object, ...], layout: Layout) -> tuple[Layout, int]:
return (
Layout(slice_(crd, layout.shape), slice_(crd, layout.stride)),
crd2idx(crd, layout.shape, layout.stride), # type: ignore[arg-type]
)