mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Apply more clang-tidy fixes. There was a bug introduced by #144014 due to incorrect namespace concatenation which is reverted here. Pull Request resolved: https://github.com/pytorch/pytorch/pull/144448 Approved by: https://github.com/albanD
143 lines
4.3 KiB
C++
143 lines
4.3 KiB
C++
#include <torch/csrc/utils/throughput_benchmark.h>
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <torch/csrc/jit/python/pybind_utils.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
|
|
namespace torch::throughput_benchmark {
|
|
|
|
std::ostream& operator<<(
|
|
std::ostream& os,
|
|
const BenchmarkExecutionStats& value) {
|
|
return os << "Average latency / iter (ms): " << value.latency_avg_ms
|
|
<< "\n Total number of iters: " << value.num_iters;
|
|
}
|
|
|
|
void ThroughputBenchmark::addInput(py::args args, py::kwargs kwargs) {
|
|
CHECK(script_module_.initialized() ^ module_.initialized());
|
|
if (script_module_.initialized()) {
|
|
script_module_.addInput(std::move(args), std::move(kwargs));
|
|
} else {
|
|
CHECK(module_.initialized());
|
|
module_.addInput(std::move(args), std::move(kwargs));
|
|
}
|
|
}
|
|
|
|
py::object ThroughputBenchmark::runOnce(
|
|
const py::args& args,
|
|
const py::kwargs& kwargs) {
|
|
CHECK(script_module_.initialized() ^ module_.initialized());
|
|
if (script_module_.initialized()) {
|
|
c10::IValue result;
|
|
{
|
|
pybind11::gil_scoped_release no_gil_guard;
|
|
result = script_module_.runOnce(args, kwargs);
|
|
}
|
|
return jit::toPyObject(std::move(result));
|
|
} else {
|
|
CHECK(module_.initialized());
|
|
return module_.runOnce(args, kwargs);
|
|
}
|
|
}
|
|
|
|
ThroughputBenchmark::ThroughputBenchmark(const jit::Module& script_module)
|
|
: script_module_(script_module) {}
|
|
|
|
ThroughputBenchmark::ThroughputBenchmark(py::object module)
|
|
: module_(std::move(module)) {}
|
|
|
|
BenchmarkExecutionStats ThroughputBenchmark::benchmark(
|
|
const BenchmarkConfig& config) const {
|
|
CHECK(script_module_.initialized() ^ module_.initialized());
|
|
// Main benchmark thread doesn't hold the GIL after scheduling worker threads
|
|
// But for now we don't release it as we will be implicitly manipulating with
|
|
// py::object ref. counts in the case of nn.Module benchmarking.
|
|
if (script_module_.initialized()) {
|
|
return script_module_.benchmark(config);
|
|
} else {
|
|
CHECK(module_.initialized());
|
|
TORCH_WARN(
|
|
"Starting benchmark on an nn.Module. This can be slow due "
|
|
"to Python GIL.For proper inference simulation you might want to switch to "
|
|
"a ScriptModule instead");
|
|
return module_.benchmark(config);
|
|
}
|
|
}
|
|
|
|
namespace detail {
|
|
|
|
template <>
|
|
void ScriptModuleBenchmark::runOnce(ScriptModuleInput&& input) const {
|
|
CHECK(initialized_);
|
|
// TODO: provide guarantees that compiler won't optimize this out
|
|
model_.get_method("forward").function()(std::move(input));
|
|
}
|
|
|
|
template <>
|
|
ScriptModuleOutput ScriptModuleBenchmark::runOnce(
|
|
const py::args& args,
|
|
const py::kwargs& kwargs) const {
|
|
CHECK(initialized_);
|
|
auto& function = model_.get_method("forward").function();
|
|
ScriptModuleInput stack = jit::createStackForSchema(
|
|
function.getSchema(), args, kwargs, model_._ivalue());
|
|
return function(std::move(stack));
|
|
}
|
|
|
|
template <>
|
|
// NOLINTNEXTLINE(*-rvalue-reference-param-not-moved)
|
|
void ModuleBenchmark::runOnce(ModuleInput&& input) const {
|
|
CHECK(initialized_);
|
|
pybind11::gil_scoped_acquire gil_guard;
|
|
model_(*input.args, **input.kwargs);
|
|
}
|
|
|
|
template <>
|
|
ModuleOutput ModuleBenchmark::runOnce(
|
|
const py::args& args,
|
|
const py::kwargs& kwargs) const {
|
|
CHECK(initialized_);
|
|
pybind11::gil_scoped_acquire gil_guard;
|
|
return model_(*args, **kwargs);
|
|
}
|
|
|
|
template <>
|
|
// NOLINTNEXTLINE(*-rvalue-reference-param-not-moved)
|
|
void ScriptModuleBenchmark::addInput(py::args&& args, py::kwargs&& kwargs) {
|
|
jit::Stack stack = jit::createStackForSchema(
|
|
model_.get_method("forward").function().getSchema(),
|
|
args,
|
|
kwargs,
|
|
model_._ivalue());
|
|
inputs_.emplace_back(std::move(stack));
|
|
}
|
|
|
|
template <>
|
|
void ScriptModuleBenchmark::addInput(ScriptModuleInput&& input) {
|
|
input.insert(input.begin(), model_._ivalue());
|
|
inputs_.emplace_back(std::move(input));
|
|
}
|
|
|
|
template <>
|
|
void ModuleBenchmark::addInput(py::args&& args, py::kwargs&& kwargs) {
|
|
inputs_.emplace_back(std::move(args), std::move(kwargs));
|
|
}
|
|
|
|
template <>
|
|
ModuleInput cloneInput<ModuleInput>(const ModuleInput& input) {
|
|
pybind11::gil_scoped_acquire gil_guard;
|
|
py::args args = input.args;
|
|
py::kwargs kwargs = input.kwargs;
|
|
return {std::move(args), std::move(kwargs)};
|
|
}
|
|
|
|
template <>
|
|
ScriptModuleInput cloneInput<ScriptModuleInput>(
|
|
const ScriptModuleInput& input) {
|
|
return input;
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
} // namespace torch::throughput_benchmark
|