Files
pytorch/torch/csrc/profiler/util.cpp
Yuanyuan Chen 0f0b4bf029 [1/N] Remove unused header inclusion (#165763)
This PR removes unused header inclusion in C++ files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165763
Approved by: https://github.com/Skylion007
2025-10-18 05:23:11 +00:00

962 lines
32 KiB
C++

#include <torch/csrc/autograd/function.h>
#include <torch/csrc/profiler/collection.h>
#include <torch/csrc/profiler/util.h>
#include <c10/util/ArrayRef.h>
#include <c10/util/irange.h>
#include <fmt/format.h>
#include <fmt/ranges.h>
#ifdef USE_KINETO
#include <libkineto.h>
#endif
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/c10d/ParamCommsUtils.hpp>
#endif // USE_DISTRIBUTED
namespace torch::profiler::impl {
namespace {
std::optional<bool> soft_assert_raises_;
} // namespace
void setSoftAssertRaises(std::optional<bool> value) {
soft_assert_raises_ = value;
}
bool softAssertRaises() {
return soft_assert_raises_.value_or(false);
}
void logSoftAssert(
// @lint-ignore CLANGTIDY
const char* func,
// @lint-ignore CLANGTIDY
const char* file,
// @lint-ignore CLANGTIDY
uint32_t line,
// @lint-ignore CLANGTIDY
const char* cond,
// @lint-ignore CLANGTIDY
const char* args) {
#ifdef USE_KINETO
std::string error;
error = fmt::format(
"{} SOFT ASSERT FAILED at {}:{}, func: {}, args: {}",
cond,
file,
line,
func,
args);
// TODO: Implement profile_id and group_profile_id as 3rd/4th arguments.
kineto::logInvariantViolation(cond, error, "", "");
#endif
}
void logSoftAssert(
// @lint-ignore CLANGTIDY
const char* func,
// @lint-ignore CLANGTIDY
const char* file,
// @lint-ignore CLANGTIDY
uint32_t line,
// @lint-ignore CLANGTIDY
const char* cond,
// @lint-ignore CLANGTIDY
const std::string& args) {
#ifdef USE_KINETO
std::string error;
error = fmt::format(
"{} SOFT ASSERT FAILED at {}:{}, func: {}, args: {}",
cond,
file,
line,
func,
args);
// TODO: Implement profile_id and group_profile_id as 3rd/4th arguments.
kineto::logInvariantViolation(cond, error, "", "");
#endif
}
// ----------------------------------------------------------------------------
// -- NVTX --------------------------------------------------------------------
// ----------------------------------------------------------------------------
std::string getNvtxStr(
const char* name,
int64_t sequence_nr,
const std::vector<std::vector<int64_t>>& shapes,
at::RecordFunctionHandle op_id,
const std::list<std::pair<at::RecordFunctionHandle, int>>& input_op_ids) {
if (sequence_nr >= -1 || !shapes.empty()) {
std::string str;
if (sequence_nr >= 0) {
str = fmt::format("{}, seq = {}", name, sequence_nr);
} else if (sequence_nr == -1) {
str = name;
} else {
#if defined(USE_ROCM)
// Only ROCM supports < -1 sequence_nr
str = name;
#endif
}
if (op_id > 0) {
str = fmt::format("{}, op_id = {}", str, op_id);
}
if (!shapes.empty()) {
str = fmt::format("{}, sizes = {}", str, shapesToStr(shapes));
}
// Include the op ids of the input edges so
// you can build the network graph
if (!input_op_ids.empty()) {
str = fmt::format(
"{}, input_op_ids = {}", str, inputOpIdsToStr(input_op_ids));
}
return str;
} else {
return name;
}
}
// ----------------------------------------------------------------------------
// -- Op context (shapes, call stack) -----------------------------------------
// ----------------------------------------------------------------------------
std::vector<FileLineFunc> prepareCallstack(
const std::vector<jit::StackEntry>& cs) {
std::vector<FileLineFunc> entries;
entries.reserve(cs.size());
for (const auto& entry : cs) {
auto& range = entry.range;
if (range.source()) {
auto& src = range.source();
if (src && src->filename()) {
auto line =
src->starting_line_no() + src->lineno_for_offset(range.start());
entries.emplace_back(
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
FileLineFunc{*(src->filename()), line, entry.filename});
}
}
}
return entries;
}
std::vector<std::string> callstackStr(const std::vector<FileLineFunc>& cs) {
std::vector<std::string> cs_str;
cs_str.reserve(cs.size());
for (const auto& entry : cs) {
std::stringstream loc;
loc << entry.filename << "(" << entry.line << "): " << entry.funcname;
cs_str.push_back(loc.str());
}
return cs_str;
}
std::string stacksToStr(
const std::vector<std::string>& stacks,
const char* delim) {
std::ostringstream oss;
std::transform(
stacks.begin(),
stacks.end(),
std::ostream_iterator<std::string>(oss, delim),
[](std::string s) -> std::string {
#ifdef _WIN32
// replace the windows backslash with forward slash
std::replace(s.begin(), s.end(), '\\', '/');
#endif
return s;
});
auto rc = oss.str();
return "\"" + rc + "\"";
}
static std::vector<std::vector<int64_t>> flattenList(
const c10::List<c10::IValue>& list) {
std::vector<std::vector<int64_t>> tensor_dims;
for (const c10::IValue& input : list) {
if (input.isTensor()) {
const at::Tensor& tensor = input.toTensor();
if (tensor.defined()) {
tensor_dims.push_back(input.toTensor().sizes().vec());
}
}
}
return tensor_dims;
}
std::vector<std::vector<int64_t>> inputSizes(
const at::RecordFunction& fn,
bool flatten_list_enabled) {
std::vector<std::vector<int64_t>> sizes;
sizes.reserve(fn.inputs().size());
for (const c10::IValue& input : fn.inputs()) {
if (input.isTensor()) {
const at::Tensor& tensor = input.toTensor();
if (tensor.defined()) {
sizes.push_back(input.toTensor().sizes().vec());
} else {
sizes.emplace_back();
}
} else if (input.isList()) {
std::vector<std::vector<int64_t>> tmp_sizes;
if (flatten_list_enabled) {
tmp_sizes = flattenList(input.toList());
}
// Extend the current sizes array by the array returned from input sizes
if (!tmp_sizes.empty()) {
sizes.insert(sizes.end(), tmp_sizes.begin(), tmp_sizes.end());
} else {
sizes.emplace_back();
}
} else {
sizes.emplace_back();
}
}
return sizes;
}
std::string shapesToStr(const std::vector<std::vector<int64_t>>& shapes) {
std::string str("[");
for (const auto t_idx : c10::irange(shapes.size())) {
if (t_idx > 0) {
str = fmt::format("{}, ", str);
}
str = fmt::format("{}{}", str, shapeToStr(shapes[t_idx]));
}
str = fmt::format("{}]", str);
return str;
}
std::string variantShapesToStr(const std::vector<shape>& shapes) {
std::string str("[");
for (const auto t_idx : c10::irange(shapes.size())) {
if (t_idx > 0) {
str = fmt::format("{}, ", str);
}
if (std::holds_alternative<std::vector<int64_t>>(shapes[t_idx])) {
const auto& shape = std::get<std::vector<int64_t>>(shapes[t_idx]);
str = fmt::format("{}{}", str, shapeToStr(shape));
} else if (std::holds_alternative<std::vector<std::vector<int64_t>>>(
shapes[t_idx])) {
const auto& tensor_shape =
std::get<std::vector<std::vector<int64_t>>>(shapes[t_idx]);
if (tensor_shape.size() > TENSOR_LIST_DISPLAY_LENGTH_LIMIT) {
// skip if the tensor list is too long
str = fmt::format("{}[]", str);
continue;
}
str = fmt::format("{}[", str);
for (const auto s_idx : c10::irange(tensor_shape.size())) {
if (s_idx > 0) {
str = fmt::format("{}, ", str);
}
str = fmt::format("{}{}", str, shapeToStr(tensor_shape[s_idx]));
}
str = fmt::format("{}]", str);
}
}
str = fmt::format("{}]", str);
return str;
}
std::string shapeToStr(const std::vector<int64_t>& shape) {
std::string str("[");
for (const auto s_idx : c10::irange(shape.size())) {
if (s_idx > 0) {
str = fmt::format("{}, ", str);
}
str = fmt::format("{}{}", str, shape[s_idx]);
}
str = fmt::format("{}]", str);
return str;
}
std::string inputOpIdsToStr(
const std::list<std::pair<at::RecordFunctionHandle, int>>& input_op_ids) {
std::string str("[");
int idx = 0;
for (const auto& op_id_info_pair : input_op_ids) {
if (idx++ > 0) {
str = fmt::format("{}, ", str);
}
// (OpId,OutputNr)
str = fmt::format(
"{}({},{})", str, op_id_info_pair.first, op_id_info_pair.second);
}
str = fmt::format("{}]", str);
return str;
}
std::string strListToStr(const std::vector<std::string>& types) {
if (types.empty()) {
return "[]";
} else {
std::ostringstream oss;
std::transform(
types.begin(),
types.end(),
std::ostream_iterator<std::string>(oss, ", "),
[](const std::string& s) -> std::string { return "\"" + s + "\""; });
auto rc = oss.str();
rc.erase(rc.length() - 2); // remove last ", "
return "[" + rc + "]";
}
}
std::string ivalueToStr(const c10::IValue& val, bool isString) {
std::stringstream ss;
if (val.isNone()) {
return "\"None\"";
} else {
ss.str("");
if (isString) {
ss << "\"";
}
ss << val;
if (isString) {
ss << "\"";
}
std::string mystr = ss.str();
// For boolean the values that ivalue gives is "True" and "False" but
// json only takes "true" and "false" so we convert the string to lower case
if (val.isBool()) {
for (char& c : mystr) {
c = static_cast<char>(std::tolower(c));
}
}
// A double quote can cause issues with the chrome tracing so force
// all inputs to not contain more than the 2 we add in this function
auto count = std::count(mystr.begin(), mystr.end(), '"');
return count > 2 ? "\"None\"" : mystr;
}
}
std::string ivalueListToStr(const std::vector<c10::IValue>& list) {
std::vector<std::string> concrete_str_inputs;
std::stringstream ss;
for (const auto& val : list) {
if (val.isNone()) {
concrete_str_inputs.emplace_back("");
} else {
ss.str("");
ss << val;
concrete_str_inputs.emplace_back(ss.str());
}
}
return strListToStr(concrete_str_inputs);
}
std::vector<std::string> inputTypes(const at::RecordFunction& fn) {
std::vector<std::string> types;
types.reserve(fn.inputs().size());
for (const c10::IValue& input : fn.inputs()) {
if (input.isTensor()) {
const at::Tensor& tensor = input.toTensor();
if (tensor.defined()) {
types.push_back(
static_cast<std::string>(input.toTensor().dtype().name()));
} else {
types.emplace_back();
}
} else if (input.isScalar() || input.isList()) {
types.push_back(input.tagKind());
} else {
types.emplace_back();
}
}
return types;
}
// ----------------------------------------------------------------------------
// -- NCCL Metadata -----------------------------------------------------------
// ----------------------------------------------------------------------------
static constexpr int32_t kTruncatLength = 30;
template <typename ListLikeType>
static inline std::string format_list(
ListLikeType list,
bool truncate,
bool with_escaped_quotes = true) {
if (truncate && list.size() > kTruncatLength) {
if (with_escaped_quotes == true) {
auto x = fmt::format(
"\"[{}, ..., {}]\"",
fmt::join(list.begin(), list.begin() + kTruncatLength - 1, ", "),
*std::prev(list.end()));
return x;
} else {
auto x = fmt::format(
"[{}, ..., {}]",
fmt::join(list.begin(), list.begin() + kTruncatLength - 1, ", "),
*std::prev(list.end()));
return x;
}
}
if (with_escaped_quotes == true) {
auto x = fmt::format("\"[{}]\"", fmt::join(list.begin(), list.end(), ", "));
return x;
} else {
auto x = fmt::format("[{}]", fmt::join(list.begin(), list.end(), ", "));
return x;
}
}
std::pair<bool, std::variant<int, std::vector<int>>> findStartAddrForTensors(
const c10::IValue& val) {
if (val.isTensor()) {
// Store hints about where the input starts in memory.
// Useful for debugging memory access patterns.
const auto& tensor = val.toTensor();
const int result = getTensorStartHint(tensor);
return {false, result};
} else if (val.isTuple()) {
const auto& val_tuple = val.toTupleRef().elements();
size_t tuple_size = val_tuple.size();
std::vector<int> responses;
responses.reserve(tuple_size);
for (const auto j : c10::irange(tuple_size)) {
auto [is_list, res] = findStartAddrForTensors(val_tuple[j]);
if (is_list) {
const auto& vec_res = std::get<std::vector<int>>(res);
responses.insert(responses.end(), vec_res.begin(), vec_res.end());
} else {
responses.push_back(std::get<int>(res));
}
}
return {true, responses};
} else if (val.isList()) {
const auto& val_list = val.toList();
size_t list_size = val_list.size();
std::vector<int> responses;
responses.reserve(list_size);
for (const auto j : c10::irange(list_size)) {
auto [is_list, res] = findStartAddrForTensors(val_list[j]);
if (is_list) {
auto const& vec_res = std::get<std::vector<int>>(res);
responses.insert(responses.end(), vec_res.begin(), vec_res.end());
} else {
responses.push_back(std::get<int>(res));
}
}
return {true, responses};
} else {
// push back an invalid value for indices representing non-tensor inputs
return {false, -1};
}
}
std::unordered_map<std::string, std::string> saveNcclMeta(
// @lint-ignore CLANGTIDY
const at::RecordFunction& fn,
// @lint-ignore CLANGTIDY
const SaveNcclMetaConfig& config) {
std::unordered_map<std::string, std::string> map;
#ifdef USE_DISTRIBUTED
auto debugInfo = dynamic_cast<ParamCommsDebugInfo*>(
c10::ThreadLocalDebugInfo::get(c10::DebugInfoKind::PARAM_COMMS_INFO));
if (config.introspectMetadata) {
if (debugInfo == nullptr) {
LOG(WARNING) << "ParamCommsDebugInfo not available for function: "
<< fn.name();
return map;
}
auto& collective_name = debugInfo->getCollectiveName();
map.emplace(kCommsName, fmt::format("\"{}\"", collective_name));
map.emplace(
kDtype, fmt::format("\"{}\"", c10::toString(debugInfo->getDType())));
map.emplace(kInMsgNelems, std::to_string(debugInfo->getInMessageNelems()));
map.emplace(
kOutMsgNelems, std::to_string(debugInfo->getOutMessageNelems()));
auto& inSplitSizes = debugInfo->getInputSplitSizes();
map.emplace(kInSplit, format_list(inSplitSizes, config.truncate));
auto& outSplitSizes = debugInfo->getOutputSplitSizes();
map.emplace(kOutSplit, format_list(outSplitSizes, config.truncate));
auto globalRankStart = debugInfo->getGlobalRankStart();
if (globalRankStart >= 0) {
map.emplace(kGlobalRankStart, std::to_string(globalRankStart));
}
auto globalRankStride = debugInfo->getGlobalRankStride();
if (globalRankStride > 0) {
map.emplace(kGlobalRankStride, std::to_string(globalRankStride));
}
map.emplace(kGroupSize, std::to_string(debugInfo->getWorldSize()));
auto& group_name = debugInfo->getProcessGroupName();
if (!group_name.empty()) {
map.emplace(kProcessGroupName, fmt::format("\"{}\"", group_name));
}
auto& group_desc = debugInfo->getProcessGroupDesc();
if (!group_desc.empty()) {
map.emplace(kProcessGroupDesc, fmt::format("\"{}\"", group_desc));
}
auto& groupRanks = debugInfo->getGroupRanks();
map.emplace(kGroupRanks, format_list(groupRanks, config.truncate));
auto rank = debugInfo->getRank();
map.emplace(kRank, std::to_string(rank));
int nRanks = static_cast<int>(groupRanks.size());
if (collective_name == "send") {
if (rank >= 0 && rank < nRanks) {
map.emplace(kP2pDst, std::to_string(groupRanks[rank]));
}
} else if (collective_name == "recv") {
if (rank >= 0 && rank < nRanks) {
map.emplace(kP2pSrc, std::to_string(groupRanks[rank]));
}
}
}
if (get_record_tensor_addrs_enabled()) {
std::vector<std::string> addressList;
if (config.introspectInputs) {
auto num_inputs = fn.num_inputs();
const auto inputs = fn.inputs();
if (checkFunctionInputsForLogging(fn)) {
// need to account for Stack mode where the inputs are at the end.
size_t input_start = inputs.size() - num_inputs;
for (const auto i : c10::irange(input_start, inputs.size())) {
const c10::IValue& val = inputs[i];
auto [is_list, result] = findStartAddrForTensors(val);
if (is_list) {
auto const& list_result = std::get<std::vector<int>>(result);
addressList.push_back(
format_list(list_result, config.truncate, false));
} else {
auto scalar_result = std::get<int>(result);
addressList.push_back(std::to_string(scalar_result));
}
// today we record a lot of metadata in record_param_comms that shows
// up as inputs. here we only need the addresses of the first inputs,
// which are the real tensor inputs to the collective call. So let's
// break out of the loop here.
break;
}
map.emplace(kInTensorsStart, format_list(addressList, false));
addressList.clear();
}
}
if (config.introspectOutputs) {
const auto& outputs = fn.outputs();
auto num_outputs = fn.num_outputs();
if (checkFunctionOutputsForLogging(fn)) {
// need to account for Stack mode where the outputs are at the end.
size_t output_start = outputs.size() - num_outputs;
for (const auto i : c10::irange(output_start, outputs.size())) {
const c10::IValue& val = outputs[i];
auto [is_list, result] = findStartAddrForTensors(val);
if (is_list) {
auto const& list_result = std::get<std::vector<int>>(result);
addressList.push_back(
format_list(list_result, config.truncate, false));
} else {
auto scalar_result = std::get<int>(result);
addressList.push_back(std::to_string(scalar_result));
}
}
map.emplace(kOutTensorsStart, format_list(addressList, false));
addressList.clear();
}
}
}
#endif // USE_DISTRIBUTED
return map;
}
// ----------------------------------------------------------------------------
// -- FLOPS -------------------------------------------------------------------
// ----------------------------------------------------------------------------
static constexpr auto kConv2dStride = 3;
static constexpr auto kConv2dPadding = 4;
static constexpr auto kConv2dDilation = 5;
static constexpr auto kConv2dGroups = 6;
// List of supported operators
static constexpr auto kConv2dOp = "aten::conv2d";
static constexpr auto kMMOp = "aten::mm";
static constexpr auto kAddMMOp = "aten::addmm";
static constexpr auto kMulOp = "aten::mul";
static constexpr auto kAddOp = "aten::add";
static constexpr auto kBMMOp = "aten::bmm";
static constexpr auto kBAddBMMOp = "aten::baddbmm";
static constexpr auto kInputSize = "input_size";
static constexpr auto kWeightSize = "weight_size";
static constexpr auto kGroups = "groups";
static constexpr auto kPadding = "padding";
static constexpr auto kStride = "stride";
static constexpr auto kDilation = "dilation";
static constexpr auto kMatSize = "mat_size";
static constexpr auto kMat1Size = "mat1_size";
static constexpr auto kMat2Size = "mat2_size";
static std::vector<c10::IntArrayRef> getInputSizes(
const std::string& op_name,
size_t min_size,
c10::ArrayRef<const c10::IValue> inputs,
const c10::ArrayRef<int>& should_be_tensor) {
std::stringstream ss;
if (inputs.size() < min_size) {
ss << "Failed to save extra arguments for flops computation of op "
<< op_name << ", min size: " << min_size
<< ", actual size: " << inputs.size();
TORCH_WARN(ss.str());
return {};
}
std::vector<c10::IntArrayRef> inputSizes = {};
for (auto index : should_be_tensor) {
if (!inputs[index].isTensor()) {
ss << "Failed to save extra arguments for flops computation of op "
<< op_name << ", input[" << index << "] must be a tensor.";
TORCH_WARN(ss.str());
return {};
}
at::Tensor t = inputs[index].toTensor();
if (t.is_nested()) {
ss << "Failed to save extra arguments for flops computation of op "
<< op_name << " with input[" << index << "] as nested tensor.";
TORCH_WARN(ss.str());
return {};
}
inputSizes.emplace_back(t.sizes());
}
return inputSizes;
}
std::unordered_map<std::string, c10::IValue> saveExtraArgs(
const at::RecordFunction& fn) {
// for specific types of fn, return the saved extra args for computing flops
std::unordered_map<std::string, c10::IValue> map;
auto inputs = fn.inputs();
std::string fname(fn.name());
if (inputs.empty()) {
// Input shape is unavailable, return empty map
return map;
}
if (fname == kConv2dOp) {
const auto inputSizes =
getInputSizes(fname, kConv2dGroups + 1, inputs, {0, 1});
if (inputSizes.empty()) {
return map;
}
if (inputSizes[1].size() != 4) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because it requires a 4D kernel tensor.");
return map;
}
map[kInputSize] = at::IValue(inputSizes[0]);
map[kWeightSize] = at::IValue(inputSizes[1]);
map[kStride] = inputs[kConv2dStride];
map[kPadding] = inputs[kConv2dPadding];
map[kDilation] = inputs[kConv2dDilation];
map[kGroups] = inputs[kConv2dGroups];
} else if (fname == kMMOp) {
const auto inputSizes = getInputSizes(fname, 2, inputs, {0, 1});
if (inputSizes.empty()) {
return map;
}
map[kMat1Size] = at::IValue(inputSizes[0]);
map[kMat2Size] = at::IValue(inputSizes[1]);
} else if (fname == kAddMMOp) {
const auto inputSizes = getInputSizes(fname, 3, inputs, {0, 1, 2});
if (inputSizes.empty()) {
return map;
}
// Exact FLOP count depends on scaling factors alpha and beta but
// just assume these are +=1.
// (similar to http://www.netlib.org/lapack/lawnspdf/lawn41.pdf,
// "Operations Count for the BLAS and LAPACK", Table 3, SGEMM)
map[kMat1Size] = at::IValue(inputSizes[1]);
map[kMat2Size] = at::IValue(inputSizes[2]);
} else if (fname == kMulOp) {
const auto inputSizes = getInputSizes(fname, 1, inputs, {0});
if (inputSizes.empty()) {
return map;
}
map[kMatSize] = at::IValue(inputSizes[0]);
} else if (fname == kAddOp) {
const auto inputSizes = getInputSizes(fname, 1, inputs, {0});
if (inputSizes.empty()) {
return map;
}
map[kMatSize] = at::IValue(inputSizes[0]);
} else if (fname == kBMMOp) {
const auto inputSizes = getInputSizes(fname, 2, inputs, {0, 1});
if (inputSizes.empty()) {
return map;
}
map[kMat1Size] = at::IValue(inputSizes[0]);
map[kMat2Size] = at::IValue(inputSizes[1]);
} else if (fname == kBAddBMMOp) {
const auto inputSizes = getInputSizes(fname, 3, inputs, {0, 1, 2});
if (inputSizes.empty()) {
return map;
}
// Exact FLOP count depends on scaling factors alpha and beta but
// just assume these are +=1.
// (similar to http://www.netlib.org/lapack/lawnspdf/lawn41.pdf,
// "Operations Count for the BLAS and LAPACK", Table 3, SGEMM)
map[kMat1Size] = at::IValue(inputSizes[1]);
map[kMat2Size] = at::IValue(inputSizes[2]);
}
return map;
}
uint64_t computeFlops(
const std::string& op_name,
const std::unordered_map<std::string, c10::IValue>& extra_args) {
if (op_name == kConv2dOp) {
if (extra_args.find(kInputSize) == extra_args.end() ||
extra_args.find(kWeightSize) == extra_args.end() ||
extra_args.find(kGroups) == extra_args.end() ||
extra_args.find(kPadding) == extra_args.end() ||
extra_args.find(kStride) == extra_args.end() ||
extra_args.find(kDilation) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for aten::conv2d requires groups, padding, stride, dilation, input_size, and weight_size in saved arguments.");
return 0;
}
auto input_sizes_ref = extra_args.at(kInputSize);
auto kernel_sizes_ref = extra_args.at(kWeightSize);
auto groups_ref = extra_args.at(kGroups);
auto padding_ref = extra_args.at(kPadding);
auto stride_ref = extra_args.at(kStride);
auto dilation_ref = extra_args.at(kDilation);
if (!input_sizes_ref.isIntList() || !kernel_sizes_ref.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because it requires input and weight tensor sizes.");
return 0;
}
if (!padding_ref.isIntList() || !stride_ref.isIntList() ||
!dilation_ref.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because it requires padding, stride, and dilation values.");
return 0;
}
const auto input_sizes = input_sizes_ref.toDimVector();
const auto kernel_sizes = kernel_sizes_ref.toDimVector();
const uint64_t groups = groups_ref.toInt();
const std::vector<int64_t> padding = padding_ref.toIntVector();
const std::vector<int64_t> stride = stride_ref.toIntVector();
const std::vector<int64_t> dilation = dilation_ref.toIntVector();
if (input_sizes.size() != 4 || kernel_sizes.size() != 4) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because both input and weight must be size 4.");
return 0;
}
if (!groups) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because group size must not be 0.");
return 0;
}
if (padding.size() != 2 || dilation.size() != 2) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because both padding and dilation must be size 2.");
return 0;
}
if (stride.size() != 2 || (stride[0] * stride[1] == 0)) {
TORCH_WARN(
"Failed to compute flops for op aten::conv2d because stride must be size 2 and cannot be 0.");
return 0;
}
// format of the input is defined in
// torch.ao.nn.quantized.functional.conv2d()
const uint64_t conv2d_multiply_factor = 2;
auto [minibatch, in_channels, input_h, input_w] = std::make_tuple(
input_sizes[0], input_sizes[1], input_sizes[2], input_sizes[3]);
auto [out_channels, _, kernel_h, kernel_w] = std::make_tuple(
kernel_sizes[0], kernel_sizes[1], kernel_sizes[2], kernel_sizes[3]);
uint64_t output_h =
(input_h + 2 * padding[0] - dilation[0] * (kernel_h - 1) - 1) /
stride[0] +
1;
uint64_t output_w =
(input_w + 2 * padding[1] - dilation[1] * (kernel_w - 1) - 1) /
stride[1] +
1;
return conv2d_multiply_factor * minibatch * output_h * output_w * kernel_h *
kernel_w * in_channels * out_channels / groups;
} else if (op_name == kMMOp || op_name == kAddMMOp) {
if (extra_args.find(kMat1Size) == extra_args.end() ||
extra_args.find(kMat2Size) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for ",
op_name,
" requires mat1_size and mat2_size in saved arguments.");
return 0;
}
auto mat1_sizes_ref = extra_args.at(kMat1Size);
auto mat2_sizes_ref = extra_args.at(kMat2Size);
if (!mat1_sizes_ref.isIntList() || !mat2_sizes_ref.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op ",
op_name,
" because it requires mat1_size and mat2_size to be IntList.");
return 0;
}
const auto mat1_size = mat1_sizes_ref.toDimVector();
const auto mat2_size = mat2_sizes_ref.toDimVector();
if (mat1_size.empty()) {
return 0;
}
int64_t overlap_dim = mat1_size.back();
if (overlap_dim == 0) {
return 0;
}
const uint64_t gemm_multiply_factor = 2;
uint64_t flops = 1;
for (int64_t dim : mat1_size) {
flops *= dim;
}
flops /= overlap_dim;
for (int64_t dim : mat2_size) {
flops *= dim;
}
flops *= gemm_multiply_factor;
return flops;
} else if (op_name == kBMMOp || op_name == kBAddBMMOp) {
if (extra_args.find(kMat1Size) == extra_args.end() ||
extra_args.find(kMat2Size) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for ",
op_name,
" requires mat1_size and mat2_size in saved arguments.");
return 0;
}
auto mat1_sizes_ref = extra_args.at(kMat1Size);
auto mat2_sizes_ref = extra_args.at(kMat2Size);
if (!mat1_sizes_ref.isIntList() || !mat2_sizes_ref.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op ",
op_name,
" because it requires mat1_size and mat2_size to be IntList.");
return 0;
}
const auto mat1_size = mat1_sizes_ref.toDimVector();
const auto mat2_size = mat2_sizes_ref.toDimVector();
if (mat1_size.empty()) {
return 0;
}
int64_t batch_size = mat1_size.front();
if (batch_size == 0) {
return 0;
}
int64_t overlap_dim = mat1_size.back();
if (overlap_dim == 0) {
return 0;
}
const uint64_t gemm_multiply_factor = 2;
uint64_t flops = 1;
for (int64_t dim : mat1_size) {
flops *= dim;
}
flops /= overlap_dim;
flops /= batch_size;
for (int64_t dim : mat2_size) {
flops *= dim;
}
flops *= gemm_multiply_factor;
return flops;
} else if (op_name == kMulOp) {
if (extra_args.find(kMatSize) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for aten::mul.Tensor requires mat_size in saved arguments.");
return 0;
}
auto mat_sizes = extra_args.at(kMatSize);
if (!mat_sizes.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op aten::mul because it requires mat_size to be IntList.");
return 0;
}
const auto mat_size = mat_sizes.toDimVector();
uint64_t flops = 1;
for (int64_t dim : mat_size) {
flops *= dim;
}
return flops;
} else if (op_name == kAddOp) {
if (extra_args.find(kMatSize) == extra_args.end()) {
TORCH_WARN(
"Calculating flops for aten::add.Tensor requires mat_size in saved arguments.");
return 0;
}
auto mat_sizes = extra_args.at(kMatSize);
if (!mat_sizes.isIntList()) {
TORCH_WARN(
"Failed to compute flops for op aten::add because it requires mat_size to be IntList.");
return 0;
}
const auto mat_size = mat_sizes.toDimVector();
uint64_t flops = 1;
for (int64_t dim : mat_size) {
flops *= dim;
}
return flops;
}
return 0;
}
// A function that takes an IValue
// and returns a conventional string representation of the IValue
// Currently it returns int representation of the last 20 bits of the address
// value
int getTensorStartHint(const at::Tensor& t) {
const auto tensor_impl = t.unsafeGetTensorImpl();
uintptr_t storage_addr = 0;
storage_addr = reinterpret_cast<uintptr_t>(tensor_impl->storage().data());
int last_bits = static_cast<int>(storage_addr & 0xFFFFF);
return last_bits;
}
bool checkFunctionOutputsForLogging(const at::RecordFunction& fn) {
const auto& outputs = fn.outputs();
auto num_outputs = fn.num_outputs();
VLOG(2) << "outputs: " << num_outputs << " " << outputs.size() << '\n';
// We have two cases: for unboxed kernel, we have num_outputs ==
// outputs.size() for boxed kernel using stack, there could be more elements
// on the stack from previous ops.
// TORCH_INTERNAL_ASSERT(num_outputs <= outputs.size());
if (num_outputs > outputs.size()) {
return false;
}
return true;
}
bool checkFunctionInputsForLogging(const at::RecordFunction& fn) {
auto num_inputs = fn.num_inputs();
const auto inputs = fn.inputs();
VLOG(2) << "inputs: " << num_inputs << " " << inputs.size() << '\n';
// We have two cases: for unboxed kernel, we have num_inputs ==
// inputs.size() for boxed kernel using stack, there could be more elements
// on the stack from previous ops.
// TORCH_INTERNAL_ASSERT(num_inputs <= inputs.size());
if (num_inputs > inputs.size()) {
return false;
}
return true;
}
} // namespace torch::profiler::impl