mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 21:49:24 +08:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156318 Approved by: https://github.com/albanD
112 lines
3.6 KiB
C++
112 lines
3.6 KiB
C++
#pragma once
|
|
#include <ATen/core/ivalue.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <torch/csrc/jit/python/pybind_utils.h>
|
|
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
|
|
namespace py = pybind11;
|
|
|
|
namespace c10::ivalue {
|
|
|
|
// concrete ivalue Holder that hold a py::object
|
|
struct C10_EXPORT ConcretePyObjectHolder final : PyObjectHolder {
|
|
public:
|
|
static c10::intrusive_ptr<PyObjectHolder> create(py::object py_obj) {
|
|
return c10::make_intrusive<ConcretePyObjectHolder>(std::move(py_obj));
|
|
}
|
|
|
|
static c10::intrusive_ptr<PyObjectHolder> create(const py::handle& handle) {
|
|
py::gil_scoped_acquire ag;
|
|
return c10::make_intrusive<ConcretePyObjectHolder>(
|
|
handle.cast<py::object>());
|
|
}
|
|
|
|
PyObject* getPyObject() override {
|
|
return py_obj_.ptr();
|
|
}
|
|
|
|
InferredType tryToInferType() override {
|
|
pybind11::gil_scoped_acquire ag;
|
|
return torch::jit::tryToInferType(py_obj_);
|
|
}
|
|
|
|
IValue toIValue(const TypePtr& type, std::optional<int32_t> N = std::nullopt)
|
|
override {
|
|
pybind11::gil_scoped_acquire ag;
|
|
return torch::jit::toIValue(py_obj_, type, N);
|
|
}
|
|
|
|
std::string toStr() override {
|
|
pybind11::gil_scoped_acquire ag;
|
|
return py::str(py_obj_);
|
|
}
|
|
|
|
std::vector<at::Tensor> extractTensors() override {
|
|
// We could implement this entirely in C++ via pybind11 but it turns out to
|
|
// be substantially slower. Namely, the total time taken by markCompleted on
|
|
// a CUDAFuture is 21.5us with this implementation, but goes up to 58.7us
|
|
// when using C++. The reason is unclear.
|
|
try {
|
|
pybind11::gil_scoped_acquire ag;
|
|
|
|
#if IS_PYBIND_2_13_PLUS
|
|
PYBIND11_CONSTINIT static py::gil_safe_call_once_and_store<py::object>
|
|
storage;
|
|
auto& extractorFn =
|
|
storage
|
|
.call_once_and_store_result([]() -> py::object {
|
|
return py::module_::import("torch._jit_internal")
|
|
.attr("_extract_tensors");
|
|
})
|
|
.get_stored();
|
|
#else
|
|
static py::object& extractorFn = *new py::object(
|
|
py::module::import("torch._jit_internal").attr("_extract_tensors"));
|
|
#endif
|
|
|
|
return extractorFn(py_obj_).cast<std::vector<at::Tensor>>();
|
|
} catch (py::error_already_set& e) {
|
|
auto err = std::runtime_error(
|
|
c10::str("Cannot extract tensors from value: ", e.what()));
|
|
{
|
|
pybind11::gil_scoped_acquire ag;
|
|
e.restore();
|
|
PyErr_Clear();
|
|
}
|
|
throw std::runtime_error(err);
|
|
}
|
|
}
|
|
|
|
// Note [Destructing py::object]
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
//
|
|
// (1) Why py_obj_ = py::none(); does not work. Because we also need to
|
|
// acquire GIL when destructing py::object of None that de-references None.
|
|
// https://docs.python.org/3/c-api/none.html#c.Py_RETURN_NONE
|
|
//
|
|
// https://stackoverflow.com/questions/15287590/why-should-py-increfpy-none-be-required-before-returning-py-none-in-c
|
|
//
|
|
// (2) Why we need to call dec_ref() explicitly. Because py::object of
|
|
// nullptr, on destruction, effectively does nothing because of it calls
|
|
// Py_XDECREF(NULL) underlying.
|
|
// https://docs.python.org/3/c-api/refcounting.html#c.Py_XDECREF
|
|
~ConcretePyObjectHolder() override {
|
|
pybind11::gil_scoped_acquire ag;
|
|
py_obj_.dec_ref();
|
|
// explicitly setting PyObject* to nullptr to prevent py::object's dtor to
|
|
// decref on the PyObject again.
|
|
py_obj_.ptr() = nullptr;
|
|
}
|
|
|
|
// explicit construction to avoid erroneous implicit conversion and
|
|
// copy-initialization
|
|
explicit ConcretePyObjectHolder(py::object py_obj)
|
|
: py_obj_(std::move(py_obj)) {}
|
|
|
|
private:
|
|
py::object py_obj_;
|
|
};
|
|
|
|
} // namespace c10::ivalue
|