Files
pytorch/torch/csrc/jit/codegen/fuser/fallback.cpp
lichuyang 53860ef4e1 Better error handling in torch/csrc/jit/codegen/* (#163948)
Refactor error handling by using TORCH_CHECK for improved clarity in constants and scope management in torch/csrc/jit/codegen/*

Fixes some parts of ISSUE #148114

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163948
Approved by: https://github.com/cyyever, https://github.com/FFFrog, https://github.com/albanD
2025-10-02 01:10:09 +00:00

47 lines
1.4 KiB
C++

#include <torch/csrc/jit/codegen/fuser/fallback.h>
#include <ATen/core/functional.h> //fmap
#include <ATen/core/stack.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/codegen/fuser/kernel_cache.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <stdexcept>
namespace torch::jit::fuser {
namespace {
c10::AliasAnalysisKind aliasAnalysisIsSpecialCase() {
return AliasAnalysisKind::INTERNAL_SPECIAL_CASE;
}
} // namespace
// Registers fused operators so that fused graphs can properly generate fallback
// code.
static RegisterOperators reg_fused_operators({Operator(
prim::FusedConcat,
[](const Node* node) -> Operation {
int64_t dim = node->i(attr::dim);
int64_t num_inputs = node->inputs().size();
return [dim, num_inputs](Stack& stack) {
auto result = at::cat(
fmap(
last(stack, num_inputs),
[](const IValue& i) { return i.toTensor(); }),
dim);
drop(stack, num_inputs);
pack(stack, std::move(result));
};
},
aliasAnalysisIsSpecialCase())});
void runFallback(int64_t key, Stack& stack) {
auto maybe_spec = retrieve(key);
TORCH_CHECK(maybe_spec, "Failed to find fusion spec to run fallback.")
InterpreterState{(*maybe_spec)->code()}.run(stack);
}
} // namespace torch::jit::fuser