mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Follows #131671 Pull Request resolved: https://github.com/pytorch/pytorch/pull/136439 Approved by: https://github.com/kwen2501
87 lines
3.7 KiB
C++
87 lines
3.7 KiB
C++
#pragma once
|
|
|
|
#include <c10/core/Device.h>
|
|
#include <c10/core/Event.h>
|
|
#include <c10/core/Stream.h>
|
|
#include <torch/csrc/autograd/profiler.h>
|
|
#include <torch/csrc/distributed/rpc/rpc_command_base.h>
|
|
#include <torch/csrc/jit/serialization/pickle.h>
|
|
#include <torch/csrc/utils/byte_order.h>
|
|
|
|
namespace torch::distributed::rpc {
|
|
|
|
// Parse error message and return RPCErrorType based on the message.
|
|
TORCH_API RPCErrorType getRPCErrorType(const JitFuture& jitFuture);
|
|
// Create an error string given the error description and error type
|
|
TORCH_API std::string makeRPCError(
|
|
const std::string& rpcErrorStr,
|
|
RPCErrorType errorType);
|
|
|
|
// Given an RPC message received as a request over the wire, deserialize it into
|
|
// the appropriate 'RpcCommandBase' type.
|
|
TORCH_API std::unique_ptr<RpcCommandBase> deserializeRequest(
|
|
const Message& request);
|
|
|
|
// Given an RPC message received as a response over the wire, deserialize it
|
|
// into the appropriate 'RpcCommandBase' type, if the response is
|
|
// FORWARD_AUTOGRAD_RESP type, unwrap it, attach recvBackward() functions
|
|
// to received tensors and set the wrappedMsgType to its wrapped message type.
|
|
TORCH_API std::unique_ptr<RpcCommandBase> deserializeResponse(
|
|
const Message& response,
|
|
MessageType& wrappedMsgType);
|
|
|
|
// Given an RPC message received as a response over the wire, deserialize it
|
|
// into the valid IValue if the message is for a script rpc result,
|
|
// otherwise deserialize it into dummy none ivalue that will never be used.
|
|
// In this deserialization, we also attach recv rpc backward functions if
|
|
// needed.
|
|
IValue deserializeResptoIValueInternal(
|
|
RpcCommandBase& rpc,
|
|
MessageType messageType);
|
|
TORCH_API IValue deserializeRespToIValue(const Message& message);
|
|
|
|
// Note: format is subject to change and intended for RPCs.
|
|
// For saving persistently to disk, use torch::save().
|
|
TORCH_API std::string wireSerialize(
|
|
const std::vector<char>& payload,
|
|
const std::vector<at::Tensor>& tensors);
|
|
|
|
TORCH_API std::pair<std::vector<char>, std::vector<at::Tensor>> wireDeserialize(
|
|
const void* data,
|
|
size_t data_size);
|
|
|
|
// We use vector<char> as the type of blobs because it's what rpc::Message uses
|
|
// for its payload, even though it has the disadvantage that it cannot be
|
|
// allocated with uninitialized memory: it is always zeroed out.
|
|
|
|
// Some Tensors are effectively views of larger Tensors, where only a small
|
|
// subset of the Storage data is referenced. This normally is good and avoids
|
|
// copies when kept locally, but if we naively push the whole Storage over the
|
|
// wire, we'll end up with excess network traffic. This change clones tensors if
|
|
// we'd save at least half the data, and over a minimum hurdle.
|
|
TORCH_API c10::List<at::Tensor> cloneSparseTensors(
|
|
const std::vector<at::Tensor>& tensors);
|
|
|
|
// Combines an original payload and wrapped payload into the original payload.
|
|
// Used to generate the overall payload for the wrapped RPC.
|
|
TORCH_API void writeWrappedPayload(
|
|
std::vector<char>& originalPayload,
|
|
std::vector<char>& additionalPayload);
|
|
|
|
// Reads the additional, wrapped payload from a wrapped RPC off of the input
|
|
// payload. After this, payload will contain the payload of the original,
|
|
// un-wrapped RPC.
|
|
TORCH_API std::vector<at::IValue> readWrappedPayload(
|
|
std::vector<char>& payload,
|
|
const rpc::Message& message);
|
|
|
|
// Takes a list of events from autograd profiler and populates them into
|
|
// profiledEvents to be carried over RPC.
|
|
TORCH_API void populateRemoteProfiledEvents(
|
|
std::vector<torch::autograd::profiler::LegacyEvent>& profiledEvents,
|
|
const torch::autograd::profiler::ProfilerConfig& profilerConfig,
|
|
const std::vector<std::vector<torch::autograd::profiler::LegacyEvent>>&
|
|
eventLists);
|
|
|
|
} // namespace torch::distributed::rpc
|