Files
pytorch/torch/csrc/distributed/rpc/rref_context.cpp

804 lines
31 KiB
C++

#include <torch/csrc/distributed/rpc/rref_context.h>
#include <torch/csrc/distributed/rpc/rref_proto.h>
#include <torch/csrc/distributed/rpc/utils.h>
#include <sstream>
namespace torch::distributed::rpc {
thread_local std::vector<std::shared_ptr<RRefContext::PendingUserState>>
RRefContext::userTable_;
thread_local bool RRefContext::recording_ = false;
namespace callback {
void confirmPendingUser(
const JitFuture& jitFuture,
const ForkId& expectedForkId) {
if (!jitFuture.hasError()) {
auto msgPtr = jitFuture.constValue().toCustomClass<Message>();
auto msgType = msgPtr->type();
auto rpc = deserializeResponse(*msgPtr, msgType);
auto& rr = dynamic_cast<RemoteRet&>(*rpc);
TORCH_INTERNAL_ASSERT(rr.forkId() == expectedForkId);
} else {
// Handle errors, such as timeouts, by invoking the error handler on the
// rref.
// Note [Best Effort Error handling for Remote calls]:
// When remote calls initiated by rpc.remote() fail, such as with a timeout
// error, we take a best-effort approach to error handling. We handle errors
// when callbacks corresponding to the remote call run, and set the error
// information on the RRef. If the RRef has not been used by the application
// before this process (such as to_here or fork call), then future uses of
// the RRef will appropriately raise errors. However, it is possible that
// the user application will use the RRef before the errors are handled. In
// this case, errors may not be raised as they have not yet been handled.
auto rref_ptr = RRefContext::getInstance().getPendingUser(expectedForkId);
auto errorType = getRPCErrorType(jitFuture);
rref_ptr->handleError(errorType, jitFuture);
}
RRefContext::getInstance().delPendingUser(expectedForkId);
}
c10::intrusive_ptr<RRef> finishCreatingOwnerRRef(
const JitFuture& jitFuture,
const RRefId& rrefId) {
if (jitFuture.hasError()) {
auto& ctx = RRefContext::getInstance();
// We expect to run this callback only after the OwnerRRef has been created,
// since this is only invoked when sending to self.
auto rref_ptr =
fromRRefInterface(ctx.getOwnerRRef(rrefId, /* foreCreated */ true)
->constValue()
.toRRef());
auto errorType = getRPCErrorType(jitFuture);
rref_ptr->handleError(errorType, jitFuture);
// OwnerRRefs do not have a forkId, so don't need to assert here.
auto deletedRRef =
ctx.delForkOfOwner(rref_ptr->rrefId(), rref_ptr->rrefId());
return deletedRRef;
} else {
auto msgPtr = jitFuture.constValue().toCustomClass<Message>();
auto msgType = msgPtr->type();
auto rpc = deserializeResponse(*msgPtr, msgType);
auto& rr = dynamic_cast<RemoteRet&>(*rpc);
TORCH_INTERNAL_ASSERT(
rr.rrefId() == rr.forkId(),
"Expecting an OwnerRRef as RemoteRet but got a fork.");
auto& ctx = RRefContext::getInstance();
auto deletedRRef = ctx.delForkOfOwner(rr.rrefId(), rr.rrefId());
return deletedRRef;
}
}
} // namespace callback
// Keys for RRef-related debug information.
const std::string kNumOwnerRRefs = "num_owner_rrefs";
const std::string kNumPendingFutures = "num_pending_futures";
const std::string kNumPendingUsers = "num_pending_users";
const std::string kNumForks = "num_forks";
RRefContext& RRefContext::getInstance() {
// Leaky singleton to avoid module destructor races.
static RRefContext* context = new RRefContext(RpcAgent::getCurrentRpcAgent());
return *context;
}
std::vector<c10::intrusive_ptr<RRef>> RRefContext::destroyInstance(
bool ignoreRRefLeak) {
auto& ctx = RRefContext::getInstance();
{
std::lock_guard<std::mutex> lock(ctx.destroyedMutex_);
ctx.destroyed_ = true;
}
ctx.checkRRefLeaks(ignoreRRefLeak);
std::vector<c10::intrusive_ptr<RRef>> deletedRRefs;
for (auto& entry : ctx.owners_) {
auto rref = entry.second;
if (rref->isPyObj()) {
deletedRRefs.emplace_back(std::move(rref));
}
}
ctx.owners_.clear();
ctx.pendingOwners_.clear();
return deletedRRefs;
}
void RRefContext::handleException(const JitFuture& jitFuture) {
if (jitFuture.hasError()) {
auto errMsg = jitFuture.tryRetrieveErrorMessage();
VLOG(1) << "Got exception: " << errMsg;
TORCH_CHECK(false, errMsg);
}
}
void RRefContext::handleExceptionSilent(const JitFuture& jitFuture) {
if (jitFuture.hasError()) {
auto errMsg = jitFuture.tryRetrieveErrorMessage();
VLOG(1) << "Got exception: " << errMsg;
TORCH_CHECK_MSG(false, errMsg);
}
}
RRefContext::RRefContext(std::shared_ptr<RpcAgent> agent)
: agent_(std::move(agent)) {}
RRefContext::~RRefContext() {
if (!owners_.empty()) {
VLOG(1) << "Destructing RRefContext with non-empty OwnerRRef set. "
<< "This would likely cause Python deref error. "
<< "Make sure destroyInstance() is invoked before destruction.";
}
}
std::unordered_map<std::string, std::string> RRefContext::getDebugInfo() {
std::unordered_map<std::string, std::string> info;
std::unique_lock<std::mutex> lock(mutex_);
auto ownerSize = owners_.size();
auto numPendingUsers = pendingUsers_.size();
size_t numForks = 0;
for (const auto& owner : forks_) {
numForks += owner.second.size();
}
lock.unlock();
info[kNumOwnerRRefs] = std::to_string(ownerSize);
info[kNumPendingFutures] = std::to_string(numPendingFutures_.load());
info[kNumPendingUsers] = std::to_string(numPendingUsers);
info[kNumForks] = std::to_string(numForks);
return info;
}
void RRefContext::checkRRefLeaks(bool ignoreRRefLeak) {
if (!forks_.empty()) {
std::stringstream ss;
for (auto& entry : forks_) {
const RRefId& rrefId = entry.first;
for (const auto& forkId : entry.second) {
ss << "Leaking RRef " << rrefId << " with fork Id " << forkId << '\n';
}
}
LOG(WARNING)
<< "Detected RRef Leaks during shutdown. This usually "
<< "occurs when the application code still holds references to RRef "
<< "instances when calling shutdown(). If the program has "
<< "completed correctly and the process is exiting, it is OK to "
<< "ignore these leaks. However, if you program will keep running "
<< "after this, these leaks could result in memory leaks on RRef "
<< "owners. Please make sure all RRefs are out of scope and Python "
<< "GC has deleted them before calling shutdown(): \n"
<< ss.str();
if (!ignoreRRefLeak) {
TORCH_CHECK(false, ss.str());
}
}
}
c10::intrusive_ptr<UserRRef> RRefContext::createUserRRef(
worker_id_t ownerId,
const TypePtr& type) {
TORCH_CHECK(ownerId != getWorkerId(), "Cannot create UserRRef on owner.");
// Explicitly creating rrefId before forkId to make sure the order is
// deterministic, as the argument evaluation order is system and compiler
// dependent.
const auto rrefId = genGloballyUniqueId();
const auto forkId = genGloballyUniqueId();
return createUserRRef(ownerId, rrefId, forkId, type);
}
c10::intrusive_ptr<UserRRef> RRefContext::createUserRRef(
worker_id_t ownerId,
const RRefId& rrefId,
const ForkId& forkId,
const TypePtr& type) {
TORCH_CHECK(ownerId != getWorkerId(), "RRef owner cannot create user RRef.");
// RRefContext does not track user RRefs, it will be destructed when there
// is no shared_ptrs pointing to it.
//
// NB: cannot use make_shared here as the constructor of UserRRef is private.
// NB: This UserRRef has not been confirmed by the owner yet. This function's
// call site is responsible for adding this UserRRef to pendingUsers_.
// Currently, there are two call sites.
// (1) The creator user in python_functions.cpp
// (2) The callee user in RRefContext::notifyOwnerAndParentOfFork.
//
// The reason for not adding the pending user here is to put addPendingUser()
// close to where the RPC occurs, and it is more clear to pair it with
// deletePendingUser() in the response callback at the call site.
return c10::make_intrusive<UserRRef>(ownerId, rrefId, forkId, type);
}
void RRefContext::delUser(
const worker_id_t owner,
const RRefId& rrefId,
const ForkId& forkId) {
{
std::lock_guard<std::mutex> lock(destroyedMutex_);
if (!destroyed_) {
// Sending an RRefUserDelete causes the receiver to run delForkOfOwner,
// which is now idempotent. See the comment at RRefContext::delForkOfOwner
// for more details.
++numPendingFutures_;
auto jitFuture = agent_->sendWithRetries(
agent_->getWorkerInfo(owner),
RRefUserDelete(rrefId, forkId).toMessage());
jitFuture->addCallback([this](JitFuture& future) {
handleExceptionSilent(future);
--numPendingFutures_;
});
}
}
std::lock_guard<std::mutex> lock(mutex_);
confirmedUsers_.erase(forkId);
}
void RRefContext::delAllUsersAndUnforkedOwners(
std::chrono::milliseconds timeoutMillis) {
// First, wait for all pending UserRRefs to be confirmed,
// one kind is pendingUsers_, which are shared from Owner,
// the other kind pendingChildren_, which are shared from another User.
std::unordered_map<ForkId, c10::weak_intrusive_ptr<RRef>, ForkId::Hash>
tempConfirmedUsers;
{
std::unique_lock<std::mutex> lock(mutex_);
bool noPending = deleteAllUsersCV_.wait_for(lock, timeoutMillis, [this]() {
return pendingUsers_.empty() && pendingChildren_.empty();
});
if (!noPending) {
LOG(ERROR)
<< "Timed out waiting for pending UserRRefs to be confirmed by owner and parent.";
}
tempConfirmedUsers.swap(confirmedUsers_);
}
// Start sending UserRRef delete messages, after all pendings are confirmed.
// Note, there should be no new forkings in between, because it's assumed that
// this utility is called during graceful shutdown, where no new user RPCs can
// be initiaited anymore.
for (const auto& user : tempConfirmedUsers) {
c10::intrusive_ptr<RRef> rref_ptr = user.second.lock();
if (!rref_ptr) {
continue;
}
// tryDel() below will re-acquire lock, lock must be released here.
rref_ptr->tryDel();
}
// If an rref in the owners_ map has never been forked, we will never get a
// corresponding message from the forking node(s) telling us to delete the
// RRef. Hence we delete the RRef here. This can occur when a remote call is
// sent to self and times out.
{
std::unique_lock<std::mutex> lock(mutex_);
std::vector<RRefId> unforkedOwners;
for (const auto& it : owners_) {
auto rrefId = it.first;
if (forks_.find(rrefId) == forks_.end()) {
// Successful fork of owner was never processed.
unforkedOwners.push_back(rrefId);
}
}
for (auto& rrefId : unforkedOwners) {
LOG(INFO) << "Removing unforked OwnerRRef with RRefId: " << rrefId;
auto iter = owners_.find(rrefId);
TORCH_CHECK(
iter != owners_.end(),
c10::str("Did not find OwnerRRef with RRefId: ", rrefId));
owners_.erase(iter);
}
}
// Wait for this node to process all delete UserRRef messages it may get for
// the OwnerRRefs that exist on this node.
{
std::unique_lock<std::mutex> lock(mutex_);
bool noOwner = deleteAllUsersCV_.wait_for(
lock, timeoutMillis, [this]() { return owners_.empty(); });
if (!noOwner) {
LOG(ERROR) << "Timed out waiting for pending OwnerRRefs to be deleted.";
}
}
}
c10::intrusive_ptr<RRef> RRefContext::getOrCreateRRef(
const RRefForkData& rrefForkData,
const TypePtr& type) {
auto& ownerId = rrefForkData.ownerId_;
auto& rrefId = rrefForkData.rrefId_;
auto& forkId = rrefForkData.forkId_;
if (ownerId == getWorkerId()) {
return getOrCreateOwnerRRef(rrefId, type);
} else {
return createUserRRef(ownerId, rrefId, forkId, type);
}
}
c10::intrusive_ptr<OwnerRRef> RRefContext::getOrCreateOwnerRRef(
const RRefId& rrefId,
const TypePtr& type) {
std::lock_guard<std::mutex> lock(mutex_);
const auto iter = owners_.find(rrefId);
if (iter == owners_.end()) {
// Scenario (1) the first time this owner knows about this RRef
//
// NB: cannot use make_shared here as the constructor of OwnerRRef is
// private.
auto rref = c10::make_intrusive<OwnerRRef>(
getWorkerId(), rrefId, type, agent_->getDevices());
owners_[rref->rrefId()] = rref;
const auto pendingOwnerIter = pendingOwners_.find(rrefId);
if (pendingOwnerIter != pendingOwners_.end()) {
// cast to RRefInterface to hold it into IValue
auto rrefPtr = fromOwnerRRef(rref);
pendingOwnerIter->second->markCompleted(IValue(rrefPtr));
pendingOwners_.erase(pendingOwnerIter);
}
return rref;
} else {
// Scenario (2) retrieving an existing RRef
auto ownerRRef = fromRRefInterface(iter->second);
// Now double check if the two types match
//
// Why we are special casing the check for tensor type here?
// this is because tensor types might get specialized on tensors when
// we pass inputs to the function, i.e. TensorType can filled with
// specific shape info, requires_grad info, etc. so the OwerRRef we
// found might already have those infos, but the `type` we passed in
// here is a plain TensorType, they are not equal relationship:
// specialized TensorType <: plain TensorType
//
// In RPC we don't care the difference as we Ser/De with just the
// plain TensorType. This is not a issue for UserRRef creation either,
// since Tensor can only get specialized with a previous run of local
// JIT function, and we shouldn't preserve the specialized SubTensorType
// information on other workers because it's only information only.
if (type->isSubtypeOf(*TensorType::get())) {
TORCH_INTERNAL_ASSERT(
ownerRRef->type()->isSubtypeOf(*TensorType::get()),
"Expect OwnerRRef to be a sub-type of TensorType, but got ",
ownerRRef->type()->repr_str());
} else {
TORCH_INTERNAL_ASSERT(
*ownerRRef->type() == *type,
"OwnerRRef type is ",
ownerRRef->type()->repr_str(),
", expected type is ",
type->repr_str());
}
return ownerRRef;
}
}
c10::intrusive_ptr<OwnerRRef> RRefContext::createOwnerRRef(
const TypePtr& type) {
// Don't add this OnwerRRef to the owners_ map yet, otherwise
// it will never be removed from there. Instead, only add it to the
// map in prepareChildFork, in case this local RRef is being passed
// to another worker.
return c10::make_intrusive<OwnerRRef>(
getWorkerId(), genGloballyUniqueId(), type, agent_->getDevices());
}
c10::intrusive_ptr<JitFuture> RRefContext::getOwnerRRef(
const RRefId& rrefId,
bool forceCreated) {
std::unique_lock<std::mutex> lock(mutex_);
const auto iter = owners_.find(rrefId);
if (iter == owners_.end()) {
if (forceCreated) {
TORCH_INTERNAL_ASSERT(
false,
c10::str("Expected OwnerRRef with id ", rrefId, " to be created."));
}
// Scenario (1) RRef is used before it is created
const auto pendingOwnerIter = pendingOwners_.find(rrefId);
if (pendingOwnerIter == pendingOwners_.end()) {
// Note: The type passed into RRefType::create() does not matter here, as
// the future is marked as completed with the RRef of the specific type
// in getOrCreateOwnerRRef().
// We need to set devices here, even if they won't be used by the value
// (an RRef object doesn't contain any tensors, it just provides means to
// retrieve them) because we need them to be propagated/ to child futures.
// This is silly and we should find a way to avoid this.
auto futureOwner = c10::make_intrusive<JitFuture>(
RRefType::create(c10::AnyType::get()), agent_->getDevices());
pendingOwners_[rrefId] = futureOwner;
return futureOwner;
} else {
return pendingOwnerIter->second;
}
} else {
// Scenario (2) retrieving an existing RRef
// Marks IValue Future as completed with the RRef IValue.
auto owner = iter->second;
auto rrefPtr = fromOwnerRRef(owner);
// We need to set devices here, even if they won't be used by the value (an
// RRef object doesn't contain any tensors, it just provides means to
// retrieve them) because we need them to be propagated/ to child futures.
// This is silly and we should find a way to avoid this.
auto futureOwner = c10::make_intrusive<JitFuture>(
RRefType::create(owner->type()), agent_->getDevices());
futureOwner->markCompleted(IValue(rrefPtr));
return futureOwner;
}
}
RRefForkData RRefContext::prepareChildFork(
const c10::intrusive_ptr<RRef>& rref) {
// If we know that rref creation on the owner has timed out, raise it to the
// user here, otherwise continue with pickling.
TORCH_CHECK(
!rref->getTimedOut(),
"RRef creation via rpc.remote() timed out, and it "
"is possible that the RRef on the owner node does not exist.");
auto rrefForkData = rref->fork();
if (rref->isOwner()) {
// Note [Early Fork Registration]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// If the parent (caller) is the owner, directly register the fork, instead
// of waiting for another RREF_FORK_REQUEST or RREF_CHILD_ACCEPT message. An
// Alternative is adding the fork when the callee user ACKs. However, before
// that, the owner still have to adds the OwnerRRef into some map to keep it
// alive (e.g., in pendingChildren_). Hence, adding the fork here or in the
// ACK does not making any difference but only add complexity.
// TODO: When adding failure retries and timeout, this fork needs to be
// deleted if the owner does not receive the ACK within the timeout.
addForkOfOwner(rrefForkData.rrefId_, rrefForkData.forkId_);
// ensure that this RRef is in the owners_ list to keep it alive.
// this is needed for OwnerRRefs that were created locally.
{
std::lock_guard<std::mutex> lock(mutex_);
owners_[rref->rrefId()] = rref;
}
} else {
// Note [Useful Phantom Fork ID for User to Owner Call]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// If the callee of dist.remote or dist.rpc is the owner of this RRef, the
// callee will not create a fork using this rrefForkData.forkId_, because
// the owner will only keep one `OwnerRRef` instance and will not create any
// `UserRRef` instances. However, this rrefForkData.forkId_ is still
// necessary, as the caller user needs to keep this `UserRRef` alive until
// it gets the ACK from the callee owner. Otherwise, the delete message
// could arrive at the owner before this dist.rpc or dist.remote call, which
// could potentially trigger the `OwnerRRef` to be deleted before running
// the user code.
addPendingChild(rrefForkData.forkId_, rref);
}
return rrefForkData;
}
void RRefContext::notifyOwnerAndParentOfFork(
const ForkId& forkId,
worker_id_t parent,
const c10::intrusive_ptr<RRef>& rref) {
// Fork is shared from owner.
if (parent == rref->owner()) {
if (parent == agent_->getWorkerInfo().id_) {
// Owner sending RRef to self, remove the forkId as it was added during
// pickling
auto deletedRRef = delForkOfOwner(rref->rrefId(), forkId);
if (deletedRRef) {
TORCH_INTERNAL_ASSERT(
deletedRRef->rrefId() == rref->rrefId(),
"Deleting a fork of ",
rref->rrefId(),
" triggered deleting the OwnerRRef of ",
deletedRRef->rrefId());
// NB: not necessary to reset deletedRRef as rref is another shared_ptr
// instance pointing to the same OwnerRRef.
}
} else {
// If the parent is the owner, this fork has already been added into the
// forks_ map when the owner sends the message to the callee user.
// Hence, it is not necessary to send another RREF_CHILD_ACCEPT or
// RREF_FORK_REQUEST back to the owner. See Note [Early Fork
// Registration].
std::lock_guard<std::mutex> lock(mutex_);
addConfirmedUser(forkId, rref);
}
return;
}
// Fork is shared from user.
if (rref->isOwner()) {
// See Note [Useful Phantom Fork ID for User to Owner Call]
// In this case, the owner is the caller, and it does not add the fork id
// into forks_. Because, there will be no real `UserRRef` associated
// with this fork ID.
++numPendingFutures_;
auto jitFuture = agent_->sendWithRetries(
agent_->getWorkerInfo(parent), RRefChildAccept(forkId).toMessage());
jitFuture->addCallback([this](JitFuture& future) {
handleExceptionSilent(future);
--numPendingFutures_;
});
} else {
++numPendingFutures_;
auto jitFuture = agent_->sendWithRetries(
agent_->getWorkerInfo(rref->owner()),
RRefForkRequest(rref->rrefId(), forkId).toMessage());
addPendingUser(forkId, rref);
jitFuture->addCallback([this, forkId, parent](JitFuture& future) {
handleException(future);
this->finishForkRequest(forkId, parent);
// Decrease after calling finishForkRequest because, as that creates a new
// future, it might otherwise cause the count to briefly go to zero.
--numPendingFutures_;
});
}
}
void RRefContext::addPendingChild(
const ForkId& forkId,
const c10::intrusive_ptr<RRef>& rref) {
// see Note [Early Fork Registration]
// If the parent is the owner, it should directly add the child UserRRef as a
// fork.
TORCH_INTERNAL_ASSERT(
!rref->isOwner(), "OwnerRRef should not have a pending child.");
std::lock_guard<std::mutex> lock(mutex_);
TORCH_INTERNAL_ASSERT(
pendingChildren_.find(forkId) == pendingChildren_.end(),
"Inconsistent states: attempt to add the same child fork twice.");
pendingChildren_[forkId] = rref;
}
void RRefContext::delPendingChild(const ForkId& forkId) {
c10::intrusive_ptr<RRef> deletedUser;
{
std::lock_guard<std::mutex> lock(mutex_);
auto iter = pendingChildren_.find(forkId);
// We first check whether the child exists in pendingChildren_. It's
// possible the child may have been removed by a previous send attempt, and
// this check (as opposed to an assertion here) ensures that messages that
// trigger this function are idempotent.
if (iter != pendingChildren_.end()) {
// Since this UserRRef is removed from the map,
// the refcount of this UserRRef could reach to 0,
// so the "destructor", `release_resources()`, might be called,
// in which the lock is acquired again.
// So it must be destructed with the lock released.
// Meet this constraint by creating a temporary pointer to increase the
// refcount, extending its lifetime until lock released.
deletedUser = iter->second; // Increase refcount.
pendingChildren_.erase(iter); // Decrease refcount.
} else {
LOG(INFO) << "Ignoring duplicate request to delete child UserRRef with "
<< "ForkId = " << forkId;
}
}
deleteAllUsersCV_.notify_all();
// The refcount of this UserRRef could reach to 0,
// so the "destructor", release_resources(), might be called,
// in which the lock is acquired again,
// so must destruct it with the lock released.
deletedUser.reset(); // Decrease refcount.
}
void RRefContext::addPendingUser(
const ForkId& forkId,
const c10::intrusive_ptr<RRef>& rref) {
TORCH_INTERNAL_ASSERT(
!rref->isOwner(), "Attempt to add an OwnerRRef as a pending User.");
auto state = std::make_shared<PendingUserState>(rref);
if (recording_) {
// adding and waiting for pending users are guaranteed to be called from the
// same thread, but deleting pending users will be called from another
// thread. As the delPendingUser will not be able to access the same
// thread_local variable, we cannot address this problem by making
// pendingUsers_ thread_local. Instead, pendingUsers_ and userTable_ share
// the same PendingUserState shared_ptr.
userTable_.push_back(state);
}
std::lock_guard<std::mutex> lock(mutex_);
TORCH_INTERNAL_ASSERT(
pendingUsers_.find(forkId) == pendingUsers_.end(),
"Inconsistent states: attempt to add the same UserRRef twice.");
pendingUsers_.emplace(
std::piecewise_construct,
std::forward_as_tuple(forkId),
std::forward_as_tuple(state));
}
void RRefContext::delPendingUser(const ForkId& forkId) {
std::shared_ptr<PendingUserState> deletedState = nullptr;
{
std::lock_guard<std::mutex> lock(mutex_);
auto iter = pendingUsers_.find(forkId);
TORCH_INTERNAL_ASSERT(
iter != pendingUsers_.end(),
"Inconsistent states: attempt to delete a non-exist UserRRef.");
// There are two reasons for keeping the deleted PendingUserState alive
// until exiting the critical section.
// (1) Since this UserRRef is removed from the map, the refcount of this
// UserRRef could reach to 0. So the resource destructor
// (`release_resources()`) might be called, in which the lock is
// acquired again. Hence, it must be destructed with the lock released.
// To meet this constraint, we intentionally create a temporary pointer
// to increase the refcount of the deleted PendingUserState, extending
// its lifetime until lock released.
// (2) Since #34497, a user function only runs after all RRefs in the
// arguments are confirmed by their owners, which is done by adding the
// RPC processing logic as a callback to the UserRRef ready future. So,
// calling `confirm` on the PendingUserState could trigger pending user
// functions, which might in turn acquire the lock in RRefContext.
// Hence, we must release the lock to prevent deadlock.
// NB: Another option is to use reentrant lock. However, it is better for
// the developers to fully understand the locking behavior instead of
// hiding the subtle logic using a reentrant lock.
deletedState = iter->second; // Increase refcount
addConfirmedUser(forkId, iter->second->rref_);
pendingUsers_.erase(iter); // Decrease refcount.
}
deletedState->confirm();
deleteAllUsersCV_.notify_all();
deletedState.reset(); // Decrease refcount.
}
void RRefContext::addConfirmedUser(
const ForkId& forkId,
const c10::intrusive_ptr<RRef>& rref) {
// Notice, caller need to hold the mutex for confirmedUsers_.
// std::lock_guard<std::mutex> lock(mutex_);
confirmedUsers_.emplace(
std::piecewise_construct,
std::forward_as_tuple(forkId),
std::forward_as_tuple(rref));
}
c10::intrusive_ptr<RRef> RRefContext::getPendingUser(const ForkId& forkId) {
std::lock_guard<std::mutex> lock(mutex_);
auto it = pendingUsers_.find(forkId);
if (it == pendingUsers_.end()) {
TORCH_INTERNAL_ASSERT(
false, "Pending user with forkId ", forkId, " not found");
}
return it->second->rref_;
}
void RRefContext::recordThreadLocalPendingRRefs() {
TORCH_INTERNAL_ASSERT(
userTable_.empty(),
"User RRef Table should be empty when start recording");
recording_ = true;
}
c10::intrusive_ptr<JitFuture> RRefContext::waitForThreadLocalPendingRRefs() {
// We need to set devices here, even if they won't be used by the value (it's
// a bool, it doesn't contain tensors!) because we need them to be propagated
// to child futures. This is silly and we should find a way to avoid this.
auto jitFuturePtr =
c10::make_intrusive<JitFuture>(BoolType::get(), agent_->getDevices());
if (userTable_.empty()) {
jitFuturePtr->markCompleted(true);
} else {
auto remainingRRefs =
std::make_shared<std::atomic<uint64_t>>(userTable_.size());
for (auto& state : userTable_) {
state->confirmationFuture_->addCallback(
[jitFuturePtr, remainingRRefs](JitFuture& /* unused */) {
auto localCount = remainingRRefs->fetch_sub(1);
if (localCount == 1) {
jitFuturePtr->markCompleted(true);
}
});
}
userTable_.clear();
}
recording_ = false;
return jitFuturePtr;
}
void RRefContext::clearRecordedPendingRRefsOnError() {
userTable_.clear();
recording_ = false;
}
void RRefContext::finishForkRequest(const ForkId& forkId, worker_id_t parent) {
delPendingUser(forkId);
++numPendingFutures_;
auto jitFuture = agent_->sendWithRetries(
agent_->getWorkerInfo(parent), RRefChildAccept(forkId).toMessage());
jitFuture->addCallback([this](JitFuture& future) {
handleExceptionSilent(future);
--numPendingFutures_;
});
}
void RRefContext::addSelfAsFork(c10::intrusive_ptr<OwnerRRef>& rref) {
std::lock_guard<std::mutex> lock(mutex_);
const auto& rrefId = rref->rrefId();
owners_[rrefId] = rref;
auto& rrefForks = forks_[rrefId];
TORCH_INTERNAL_ASSERT(
rrefForks.find(rrefId) == rrefForks.end(),
"Attempt to add self as fork twice ",
rrefId);
rrefForks.insert(rrefId);
}
void RRefContext::addForkOfOwner(const RRefId& rrefId, const ForkId& forkId) {
std::lock_guard<std::mutex> lock(mutex_);
auto& rrefForks = forks_[rrefId];
TORCH_INTERNAL_ASSERT(
rrefForks.find(forkId) == rrefForks.end(),
"Got fork notification twice on the same RRef ",
forkId);
rrefForks.insert(forkId);
}
void RRefContext::addForkOfOwnerIfNotPresent(
const RRefId& rrefId,
const ForkId& forkId) {
std::lock_guard<std::mutex> lock(mutex_);
auto& rrefForks = forks_[rrefId];
// We first check whether the child exists in rrefForks. It's possible
// the child may have been added by a previous send attempt, and this check
// (as opposed to an assertion here) ensures that messages that trigger this
// function are idempotent.
if (rrefForks.find(forkId) == rrefForks.end()) {
rrefForks.insert(forkId);
} else {
LOG(INFO) << "Ignoring duplicate request to add Fork of OwnerRRef with "
<< "RRefId = " << rrefId << ", ForkId = " << forkId;
}
}
c10::intrusive_ptr<RRef> RRefContext::delForkOfOwner(
const RRefId& rrefId,
const ForkId& forkId) {
c10::intrusive_ptr<RRef> deletedRRef;
bool ownerReduced = false;
// There were previously multiple TORCH_CHECKs in this function that checked
// whether the passed in fork was known by the user and whether the fork had
// already been deleted. These assertions are now replaced with nested if
// statements to ensure this function is idempotent. This makes it safe to
// retry RRefUserDelete messages.
{
std::lock_guard<std::mutex> lock(mutex_);
auto rrefIter = forks_.find(rrefId);
if (rrefIter != forks_.end()) {
auto& rrefForks = rrefIter->second;
auto forkIter = rrefForks.find(forkId);
if (forkIter != rrefForks.end()) {
rrefForks.erase(forkId);
} else {
LOG(INFO)
<< "Could not find UserRRef instance, "
<< "RRefId = " << rrefId << ", ForkId = " << forkId
<< ", likely because it was deleted by a previously retried message";
}
if (rrefForks.empty()) {
auto ownerIter = owners_.find(rrefId);
if (ownerIter != owners_.end()) {
deletedRRef = ownerIter->second;
owners_.erase(ownerIter);
ownerReduced = true;
}
forks_.erase(rrefIter);
}
} else {
LOG(INFO)
<< "Could not find OwnerRRef with RRefId = " << rrefId
<< ", likely because it was deleted by a previously retried message";
}
}
if (ownerReduced) {
deleteAllUsersCV_.notify_all();
}
return deletedRRef;
}
} // namespace torch::distributed::rpc