mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
This series of changes try to cover C style casts into C++ alternatives. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165750 Approved by: https://github.com/Skylion007
333 lines
12 KiB
C++
333 lines
12 KiB
C++
#include <c10/util/DeadlockDetection.h>
|
|
#include <torch/csrc/distributed/rpc/rpc_agent.h>
|
|
|
|
namespace torch::distributed::rpc {
|
|
|
|
RegisterWorkerInfoOnce::RegisterWorkerInfoOnce() {
|
|
// WorkerInfo needs to be registered exactly once. Since the op registration
|
|
// happens in libtorch_python we wrap the class registration in a helper to
|
|
// make sure that if there's multiple copies of Python such as used in
|
|
// torch::deploy we only ever register it once.
|
|
static auto workerInfo = torch::class_<WorkerInfo>("dist_rpc", "WorkerInfo")
|
|
.def(torch::init<std::string, int64_t>());
|
|
}
|
|
|
|
WorkerInfo::WorkerInfo(std::string name, int64_t id)
|
|
: WorkerInfo(std::move(name), static_cast<worker_id_t>(id)) {
|
|
TORCH_CHECK(
|
|
id <= std::numeric_limits<worker_id_t>::max(),
|
|
"RPC worker id ",
|
|
id,
|
|
" out of bound of int16_t.");
|
|
}
|
|
|
|
WorkerInfo::WorkerInfo(std::string name, worker_id_t id)
|
|
: name_(std::move(name)), id_(id) {
|
|
bool validSize = name_.length() < MAX_NAME_LEN && !name_.empty();
|
|
bool validChar =
|
|
std::find_if(name_.begin(), name_.end(), [](char c) {
|
|
return !(std::isalnum(c) || c == '-' || c == '_' || c == ':');
|
|
}) == name_.end();
|
|
TORCH_CHECK(
|
|
validSize && validChar,
|
|
"Worker name must match ^[A-Za-z0-9-_:]*$, "
|
|
"and must be non-empty and shorter than ",
|
|
MAX_NAME_LEN,
|
|
" chars, "
|
|
"but got ",
|
|
name_);
|
|
}
|
|
|
|
// Large Time Duration for waiting on the condition variable until the map is
|
|
// population. Cannot use
|
|
// std::chrono::time_point<std::chrono::steady_clock>::max() due to a known
|
|
// overflow-related bug.
|
|
constexpr auto kLargeTimeDuration = std::chrono::hours(10000);
|
|
|
|
RpcAgent::RpcAgent(
|
|
WorkerInfo workerId,
|
|
std::unique_ptr<RequestCallback> cb,
|
|
std::chrono::milliseconds rpcTimeout)
|
|
: workerInfo_(std::move(workerId)),
|
|
cb_(std::move(cb)),
|
|
rpcTimeout_(rpcTimeout),
|
|
profilingEnabled_(false),
|
|
rpcAgentRunning_(false) {}
|
|
|
|
RpcAgent::~RpcAgent() {
|
|
if (rpcAgentRunning_.load()) {
|
|
shutdown();
|
|
}
|
|
}
|
|
|
|
void RpcAgent::start() {
|
|
rpcAgentRunning_.store(true);
|
|
rpcRetryThread_ = std::thread(&RpcAgent::retryExpiredRpcs, this);
|
|
startImpl();
|
|
}
|
|
|
|
void RpcAgent::shutdown() {
|
|
TORCH_ASSERT_NO_GIL_WITHOUT_PYTHON_DEP();
|
|
std::unique_lock<std::mutex> lock(rpcRetryMutex_);
|
|
rpcAgentRunning_.store(false);
|
|
lock.unlock();
|
|
rpcRetryMapCV_.notify_one();
|
|
if (rpcRetryThread_.joinable()) {
|
|
rpcRetryThread_.join();
|
|
}
|
|
// NOLINTNEXTLINE(clang-analyzer-cplusplus.PureVirtualCall)
|
|
shutdownImpl();
|
|
}
|
|
|
|
c10::intrusive_ptr<JitFuture> RpcAgent::sendWithRetries(
|
|
const WorkerInfo& to,
|
|
c10::intrusive_ptr<Message> message,
|
|
RpcRetryOptions retryOptions) {
|
|
TORCH_CHECK(retryOptions.maxRetries >= 0, "maxRetries cannot be negative.");
|
|
TORCH_CHECK(
|
|
retryOptions.retryBackoff >= 1,
|
|
"maxRetries cannot be exponentially decaying.");
|
|
TORCH_CHECK(
|
|
retryOptions.rpcRetryDuration.count() >= 0,
|
|
"rpcRetryDuration cannot be negative.");
|
|
|
|
auto originalFuture =
|
|
c10::make_intrusive<JitFuture>(at::AnyClassType::get(), getDevices());
|
|
steady_clock_time_point newTime =
|
|
computeNewRpcRetryTime(retryOptions, /* retryCount */ 0);
|
|
auto firstRetryRpc = std::make_shared<RpcRetryInfo>(
|
|
to,
|
|
message,
|
|
originalFuture,
|
|
/* retryCount */ 0,
|
|
retryOptions);
|
|
auto jitFuture = send(to, std::move(message));
|
|
jitFuture->addCallback([this, newTime, firstRetryRpc](JitFuture& future) {
|
|
rpcRetryCallback(future, newTime, firstRetryRpc);
|
|
});
|
|
|
|
return originalFuture;
|
|
}
|
|
|
|
void RpcAgent::retryExpiredRpcs() {
|
|
// Stores the retried futures so callbacks can be added outside the lock.
|
|
std::vector<
|
|
std::pair<c10::intrusive_ptr<JitFuture>, std::shared_ptr<RpcRetryInfo>>>
|
|
futures;
|
|
// Stores futures and exception messages for non-retriable error-ed futures.
|
|
std::vector<std::pair<c10::intrusive_ptr<JitFuture>, std::string>>
|
|
errorFutures;
|
|
|
|
while (rpcAgentRunning_.load()) {
|
|
std::unique_lock<std::mutex> lock(rpcRetryMutex_);
|
|
|
|
// We must continue sleeping as long as the RPC Agent is running and when
|
|
// either the Retry Map is empty, or when the Retry Map's earliest expiring
|
|
// RPC is set to be retried in the future.
|
|
steady_clock_time_point earliestTimeout =
|
|
std::chrono::steady_clock::now() + kLargeTimeDuration;
|
|
|
|
for (;;) {
|
|
if (!rpcAgentRunning_.load())
|
|
return;
|
|
if (std::chrono::steady_clock::now() >= earliestTimeout)
|
|
break;
|
|
if (!rpcRetryMap_.empty()) {
|
|
earliestTimeout = rpcRetryMap_.begin()->first;
|
|
}
|
|
rpcRetryMapCV_.wait_until(lock, earliestTimeout);
|
|
}
|
|
|
|
// Updating these since something may have been added to the map while this
|
|
// thread was sleeping.
|
|
earliestTimeout = rpcRetryMap_.begin()->first;
|
|
auto& earliestRpcList = rpcRetryMap_.begin()->second;
|
|
|
|
// We iterate through all the RPC's set to be retried at the current
|
|
// timepoint, resend those RPC's, and add the RPC's and their futures to
|
|
// a list to later attach callbacks. These callbacks either schedule
|
|
// the RPC for a future retry or marks it with success/error depending on
|
|
// the outcome of the current send. Then, we clean up the rpcRetryMap_.
|
|
for (auto it = earliestRpcList.begin(); it != earliestRpcList.end();
|
|
/* no increment */) {
|
|
auto& earliestRpc = *it;
|
|
c10::intrusive_ptr<JitFuture> jitFuture;
|
|
|
|
// send() will throw an exception if an RPC is retried while the agent is
|
|
// shutdown. We must catch this exception and mark the original future
|
|
// with an error, since this RPC never succeeded and can no longer be
|
|
// retried.
|
|
try {
|
|
jitFuture = send(earliestRpc->to_, earliestRpc->message_);
|
|
futures.emplace_back(jitFuture, earliestRpc);
|
|
} catch (std::exception& e) {
|
|
// We must store the futures and exception messages here and only mark
|
|
// the futures with an error after releasing the lock.
|
|
errorFutures.emplace_back(earliestRpc->originalFuture_, e.what());
|
|
}
|
|
|
|
// A callback will be attached to all futures for the retries in this
|
|
// list. Thus they will either be rescheduled for future retries or they
|
|
// will be marked as complete. We can safely delete them from the retry
|
|
// Map for the current timepoint.
|
|
it = earliestRpcList.erase(it);
|
|
}
|
|
|
|
// If there are no more RPC's set to be retried at the current timepoint,
|
|
// we can remove the corresponding unordered_set from the retry map.
|
|
if (earliestRpcList.empty()) {
|
|
rpcRetryMap_.erase(earliestTimeout);
|
|
}
|
|
|
|
lock.unlock();
|
|
// We attach callbacks to the futures outside of the lock to prevent
|
|
// potential deadlocks.
|
|
for (const auto& it : futures) {
|
|
auto jitFuture = it.first;
|
|
auto earliestRpc = it.second;
|
|
steady_clock_time_point newTime = computeNewRpcRetryTime(
|
|
earliestRpc->options_, earliestRpc->retryCount_);
|
|
earliestRpc->retryCount_++;
|
|
|
|
jitFuture->addCallback([this, newTime, earliestRpc](JitFuture& future) {
|
|
rpcRetryCallback(future, newTime, earliestRpc);
|
|
});
|
|
}
|
|
futures.clear();
|
|
|
|
// For exceptions caught while retrying RPC's above, we set those futures
|
|
// with errors now that we have released the lock.
|
|
for (const auto& it : errorFutures) {
|
|
auto errorFuture = it.first;
|
|
auto errorMsg = it.second;
|
|
errorFuture->setError(
|
|
std::make_exception_ptr(std::runtime_error(errorMsg)));
|
|
}
|
|
errorFutures.clear();
|
|
}
|
|
}
|
|
|
|
void RpcAgent::rpcRetryCallback(
|
|
JitFuture& jitFuture,
|
|
steady_clock_time_point newTime,
|
|
std::shared_ptr<RpcRetryInfo> earliestRpc) {
|
|
if (jitFuture.hasError()) {
|
|
// Adding one since we want to include the original send as well and not
|
|
// just the retry count.
|
|
LOG(INFO) << "Send try " << (earliestRpc->retryCount_ + 1) << " failed";
|
|
if (!rpcAgentRunning_.load()) {
|
|
// If the RPC Agent has shutdown, we cannot retry messages. Thus we mark
|
|
// the future with an error since the RPC was never completed
|
|
// successfully.
|
|
earliestRpc->originalFuture_->setError(jitFuture.exception_ptr());
|
|
} else if (earliestRpc->retryCount_ < earliestRpc->options_.maxRetries) {
|
|
// If the previous future completed with an error and we haven't
|
|
// completed maxRetries send attempts, we move the earliestRpc
|
|
// struct to a new time point in the retry map (effectively
|
|
// scheduling it for a future retry.)
|
|
{
|
|
std::lock_guard<std::mutex> retryMapLock(rpcRetryMutex_);
|
|
rpcRetryMap_[newTime].emplace(std::move(earliestRpc));
|
|
}
|
|
// The retry thread waits for the map to be populated. Thus we notify
|
|
// once an item has been added.
|
|
rpcRetryMapCV_.notify_one();
|
|
} else {
|
|
// We have completed maxRetries send attempts. We're now marking
|
|
// the future with an error.
|
|
std::string errorMessage = c10::str(
|
|
"The RPC has not succeeded after the specified number of max retries (",
|
|
earliestRpc->options_.maxRetries,
|
|
").");
|
|
earliestRpc->originalFuture_->setError(
|
|
std::make_exception_ptr(std::runtime_error(errorMessage)));
|
|
}
|
|
} else {
|
|
// This try succeeded, so we can make the original future as complete.
|
|
earliestRpc->originalFuture_->markCompleted(
|
|
jitFuture.value(), jitFuture.storages());
|
|
}
|
|
}
|
|
|
|
const WorkerInfo& RpcAgent::getWorkerInfo() const {
|
|
return workerInfo_;
|
|
}
|
|
|
|
std::shared_ptr<RpcAgent> RpcAgent::currentRpcAgent_ = nullptr;
|
|
|
|
bool RpcAgent::isCurrentRpcAgentSet() {
|
|
return std::atomic_load(¤tRpcAgent_) != nullptr;
|
|
}
|
|
|
|
std::shared_ptr<RpcAgent> RpcAgent::getCurrentRpcAgent() {
|
|
std::shared_ptr<RpcAgent> agent = std::atomic_load(¤tRpcAgent_);
|
|
TORCH_CHECK(
|
|
agent,
|
|
"Current RPC agent is not set! Did you initialize the RPC "
|
|
"framework (e.g. by calling `rpc.init_rpc`)?");
|
|
return agent;
|
|
}
|
|
|
|
void RpcAgent::setCurrentRpcAgent(std::shared_ptr<RpcAgent> rpcAgent) {
|
|
if (rpcAgent) {
|
|
std::shared_ptr<RpcAgent> previousAgent;
|
|
// Use compare_exchange so that we don't actually perform the exchange if
|
|
// that would trigger the assert just below. See:
|
|
// https://en.cppreference.com/w/cpp/atomic/atomic_compare_exchange
|
|
std::atomic_compare_exchange_strong(
|
|
¤tRpcAgent_, &previousAgent, std::move(rpcAgent));
|
|
TORCH_INTERNAL_ASSERT(
|
|
previousAgent == nullptr, "Current RPC agent is set!");
|
|
} else {
|
|
// We can't use compare_exchange (we don't know what value to expect) but we
|
|
// don't need to, as the only case that would trigger the assert is if we
|
|
// replaced nullptr with nullptr, which we can just do as it has no effect.
|
|
std::shared_ptr<RpcAgent> previousAgent =
|
|
std::atomic_exchange(¤tRpcAgent_, std::move(rpcAgent));
|
|
TORCH_INTERNAL_ASSERT(
|
|
previousAgent != nullptr, "Current RPC agent is not set!");
|
|
}
|
|
}
|
|
|
|
void RpcAgent::setTypeResolver(std::shared_ptr<TypeResolver> typeResolver) {
|
|
typeResolver_ = std::move(typeResolver);
|
|
}
|
|
|
|
std::shared_ptr<TypeResolver> RpcAgent::getTypeResolver() {
|
|
TORCH_INTERNAL_ASSERT(typeResolver_, "Type resolver is not set!");
|
|
return typeResolver_;
|
|
}
|
|
|
|
void RpcAgent::enableGILProfiling(bool flag) {
|
|
profilingEnabled_ = flag;
|
|
}
|
|
|
|
bool RpcAgent::isGILProfilingEnabled() {
|
|
return profilingEnabled_.load();
|
|
}
|
|
|
|
DeviceMap RpcAgent::getDeviceMap(const WorkerInfo& /* unused */) const {
|
|
// Default implementation has no device map.
|
|
return {};
|
|
}
|
|
|
|
const std::vector<c10::Device>& RpcAgent::getDevices() const {
|
|
// By default the agent is CPU-only.
|
|
static const std::vector<c10::Device> noDevices = {};
|
|
return noDevices;
|
|
}
|
|
|
|
std::unordered_map<std::string, std::string> RpcAgent::getDebugInfo() {
|
|
/* This would later include more info other than metrics for eg: may include
|
|
stack traces for the threads owned by the agent */
|
|
// Default implementation: return getMetrics().
|
|
return getMetrics();
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, const WorkerInfo& workerInfo) {
|
|
return os << "WorkerInfo(id=" << workerInfo.id_
|
|
<< ", name=" << workerInfo.name_ << ")";
|
|
}
|
|
|
|
} // namespace torch::distributed::rpc
|