Files
pytorch/torch/csrc/distributed/c10d/Functional.cpp
2025-10-02 20:34:49 +00:00

635 lines
22 KiB
C++

#include <ATen/ATen.h>
#include <ATen/core/op_registration/op_registration.h>
#include <c10/core/DispatchKey.h>
#include <torch/csrc/autograd/custom_function.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/distributed/c10d/Functional.hpp>
#include <torch/csrc/distributed/c10d/GroupRegistry.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <utility>
namespace {
const std::unordered_map<std::string, c10d::ReduceOp> str_to_reduce_op = {
{"sum", c10d::ReduceOp(c10d::ReduceOp::RedOpType::SUM)},
{"avg", c10d::ReduceOp(c10d::ReduceOp::RedOpType::AVG)},
{"product", c10d::ReduceOp(c10d::ReduceOp::RedOpType::PRODUCT)},
{"min", c10d::ReduceOp(c10d::ReduceOp::RedOpType::MIN)},
{"max", c10d::ReduceOp(c10d::ReduceOp::RedOpType::MAX)},
{"band", c10d::ReduceOp(c10d::ReduceOp::RedOpType::BAND)},
{"bor", c10d::ReduceOp(c10d::ReduceOp::RedOpType::BOR)},
{"bxor", c10d::ReduceOp(c10d::ReduceOp::RedOpType::BXOR)},
// TODO: support premul_sum
// {"premul_sum", c10d::ReduceOp(c10d::ReduceOp::RedOpType::PREMUL_SUM)},
{"unused", c10d::ReduceOp(c10d::ReduceOp::RedOpType::UNUSED)}};
c10d::ReduceOp to_reduce_op(const std::string& reduce_op) {
auto it = str_to_reduce_op.find(reduce_op);
TORCH_CHECK(
it != str_to_reduce_op.end(), "Unrecognized reduce_op: ", reduce_op);
return it->second;
}
at::Tensor allocate_all_gather_output(
const at::Tensor& input,
int64_t group_size) {
TORCH_CHECK(input.is_contiguous());
auto output_size = input.sizes().vec();
if (output_size.empty()) {
output_size.push_back(group_size);
} else {
output_size[0] *= group_size;
}
return at::empty(
output_size,
at::TensorOptions().dtype(input.dtype()).device(input.device()));
}
at::Tensor allocate_reduce_scatter_output(
const at::Tensor& input,
const int64_t group_size) {
TORCH_CHECK(input.is_contiguous());
auto output_size = input.sizes().vec();
if (output_size[0] % group_size != 0) {
LOG(WARNING) << "The first dimension of the reduce_scatter input ("
<< output_size[0] << ") is not divisible by the group size ("
<< group_size << ").";
}
output_size[0] /= group_size;
return at::empty(
output_size,
at::TensorOptions().dtype(input.dtype()).device(input.device()));
}
} // namespace
namespace c10d {
at::Tensor& all_reduce_(
at::Tensor& input,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::string reduce_op,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::string group_name) {
c10d::AllreduceOptions opts;
opts.reduceOp = to_reduce_op(reduce_op);
std::vector<at::Tensor> inputs{input};
auto group = c10d::resolve_process_group(group_name);
auto work = group->allreduce(inputs, opts);
c10d::register_work(input, work);
return input;
}
at::Tensor all_reduce(
const at::Tensor& input,
std::string reduce_op,
std::string group_name) {
if (input.is_complex()) {
TORCH_CHECK(
// TODO - ideally use 'to_reduce_op' helper but it currently errors on
// premul_sum
reduce_op == "sum" || reduce_op == "avg" || reduce_op == "premul_sum" ||
reduce_op == "unused",
"all_reduce: reduce_op ",
reduce_op,
" does not support complex tensors");
}
auto input_real = input.is_complex() ? at::view_as_real(input) : input;
auto output = input_real.clone(at::MemoryFormat::Contiguous);
auto output_ret =
all_reduce_(output, std::move(reduce_op), std::move(group_name));
return input.is_complex() ? at::view_as_complex(output_ret) : output_ret;
}
std::vector<at::Tensor> all_reduce_coalesced_(
std::vector<at::Tensor> inputs,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::string reduce_op,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::string group_name) {
c10d::AllreduceCoalescedOptions opts;
opts.reduceOp = to_reduce_op(reduce_op);
auto group = c10d::resolve_process_group(group_name);
auto work = group->allreduce_coalesced(inputs, opts);
for (const auto& tensor : inputs) {
c10d::register_work(tensor, work);
}
return inputs;
}
std::vector<at::Tensor> all_reduce_coalesced(
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::vector<at::Tensor> inputs,
std::string reduce_op,
std::string group_name) {
std::vector<at::Tensor> outputs;
outputs.reserve(inputs.size());
for (const auto& tensor : inputs) {
outputs.push_back(tensor.clone(at::MemoryFormat::Contiguous));
}
return all_reduce_coalesced_(
outputs, std::move(reduce_op), std::move(group_name));
}
std::vector<at::Tensor> all_gather_into_tensor_coalesced(
std::vector<at::Tensor> inputs,
int64_t group_size,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::string group_name) {
std::vector<at::Tensor> outputs;
outputs.reserve(inputs.size());
for (const auto& tensor : inputs) {
TORCH_CHECK(tensor.is_contiguous());
outputs.push_back(allocate_all_gather_output(tensor, group_size));
}
auto group = c10d::resolve_process_group(group_name);
auto work = group->allgather_into_tensor_coalesced(outputs, inputs);
for (const auto& tensor : outputs) {
c10d::register_work(tensor, work);
}
return outputs;
}
at::Tensor all_gather_into_tensor(
const at::Tensor& input,
int64_t group_size,
std::string group_name) {
TORCH_CHECK(input.is_contiguous());
auto real_input = input.is_complex() ? at::view_as_real(input) : input;
std::vector<at::Tensor> inputs{real_input};
auto output = all_gather_into_tensor_coalesced(
inputs, group_size, std::move(group_name))[0];
return input.is_complex() ? at::view_as_complex(output) : output;
}
at::Tensor& all_gather_into_tensor_out(
at::Tensor& input,
int64_t group_size,
const std::string& group_name,
at::Tensor& output) {
TORCH_CHECK(input.is_contiguous());
c10d::AllgatherOptions opts;
auto group = c10d::resolve_process_group(group_name);
auto work = group->_allgather_base(output, input, opts);
c10d::register_work(output, work);
return output;
}
std::vector<at::Tensor> reduce_scatter_tensor_coalesced(
std::vector<at::Tensor> inputs,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::string reduce_op,
int64_t group_size,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::string group_name) {
c10d::ReduceScatterOptions opts;
opts.reduceOp = to_reduce_op(reduce_op);
std::vector<at::Tensor> outputs;
outputs.reserve(inputs.size());
for (const auto& tensor : inputs) {
TORCH_CHECK(tensor.is_contiguous());
outputs.push_back(allocate_reduce_scatter_output(tensor, group_size));
}
auto group = c10d::resolve_process_group(group_name);
auto work = group->reduce_scatter_tensor_coalesced(outputs, inputs, opts);
for (const auto& tensor : outputs) {
c10d::register_work(tensor, work);
}
return outputs;
}
at::Tensor reduce_scatter_tensor(
const at::Tensor& input,
std::string reduce_op,
int64_t group_size,
std::string group_name) {
TORCH_CHECK(input.is_contiguous());
if (input.is_complex()) {
auto real_input = at::view_as_real(input);
std::vector<at::Tensor> inputs{real_input};
return at::view_as_complex(reduce_scatter_tensor_coalesced(
inputs, std::move(reduce_op), group_size, std::move(group_name))[0]);
}
std::vector<at::Tensor> inputs{input};
return reduce_scatter_tensor_coalesced(
inputs, std::move(reduce_op), group_size, std::move(group_name))[0];
}
at::Tensor all_to_all_single(
const at::Tensor& input,
c10::SymIntArrayRef _output_split_sizes,
c10::SymIntArrayRef _input_split_sizes,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::string group_name) {
std::vector<int64_t> output_split_sizes;
std::vector<int64_t> input_split_sizes;
output_split_sizes.reserve(_output_split_sizes.size());
input_split_sizes.reserve(_input_split_sizes.size());
for (const auto& size : _output_split_sizes) {
output_split_sizes.emplace_back(size.expect_int());
}
for (const auto& size : _input_split_sizes) {
input_split_sizes.emplace_back(size.expect_int());
}
TORCH_CHECK(input.is_contiguous());
std::vector<int64_t> output_sizes = input.sizes().vec();
output_sizes[0] = std::accumulate(
output_split_sizes.begin(), output_split_sizes.end(), int64_t(0));
auto output = input.new_empty(output_sizes);
auto group = c10d::resolve_process_group(group_name);
auto work = group->alltoall_base(
output,
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<at::Tensor&>(input),
output_split_sizes,
input_split_sizes);
c10d::register_work(output, work);
return output;
}
// NOLINTNEXTLINE(performance-unnecessary-value-param)
at::Tensor& broadcast_(at::Tensor& input, int64_t src, std::string group_name) {
c10d::BroadcastOptions opts;
opts.rootRank = src;
auto input_real = input.is_complex() ? at::view_as_real(input) : input;
std::vector<at::Tensor> inputs{input_real};
auto group = c10d::resolve_process_group(group_name);
auto work = group->broadcast(inputs, opts);
c10d::register_work(input, work);
return input;
}
at::Tensor broadcast(
const at::Tensor& input,
int64_t src,
std::string group_name) {
auto output = input.clone(at::MemoryFormat::Contiguous);
return broadcast_(output, src, std::move(group_name));
}
} // namespace c10d
TORCH_LIBRARY(_c10d_functional, m) {
m.def(
"all_reduce(Tensor input, str reduce_op, str group_name) -> Tensor",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd, c10d::all_reduce),
{at::Tag::pt2_compliant_tag});
m.def(
"all_reduce_(Tensor(a!) input, str reduce_op, str group_name) -> Tensor(a!)",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd, c10d::all_reduce_),
{at::Tag::pt2_compliant_tag});
m.def(
"all_reduce_coalesced(Tensor[] inputs, str reduce_op, str group_name) -> Tensor[]",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd,
c10d::all_reduce_coalesced),
{at::Tag::pt2_compliant_tag});
m.def(
"all_reduce_coalesced_(Tensor[](a!) inputs, str reduce_op, str group_name) -> Tensor[](a!)",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd,
c10d::all_reduce_coalesced_),
{at::Tag::pt2_compliant_tag});
m.def(
"all_gather_into_tensor_out(Tensor input, int group_size, str group_name, *, Tensor(a!) out) -> Tensor(a!)",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd,
c10d::all_gather_into_tensor_out),
{at::Tag::pt2_compliant_tag, at::Tag::needs_contiguous_strides});
m.def(
"all_gather_into_tensor(Tensor input, int group_size, str group_name) -> Tensor",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd,
c10d::all_gather_into_tensor),
{at::Tag::pt2_compliant_tag, at::Tag::needs_contiguous_strides});
m.def(
"all_gather_into_tensor_coalesced(Tensor[] inputs, int group_size, str group_name) -> Tensor[]",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd,
c10d::all_gather_into_tensor_coalesced),
{at::Tag::pt2_compliant_tag, at::Tag::needs_contiguous_strides});
m.def(
"reduce_scatter_tensor(Tensor input, str reduce_op, int group_size, str group_name) -> Tensor",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd,
c10d::reduce_scatter_tensor),
{at::Tag::pt2_compliant_tag, at::Tag::needs_contiguous_strides});
m.def(
"reduce_scatter_tensor_coalesced(Tensor[] inputs, str reduce_op, int group_size, str group_name) -> Tensor[]",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd,
c10d::reduce_scatter_tensor_coalesced),
{at::Tag::pt2_compliant_tag, at::Tag::needs_contiguous_strides});
m.def(
"all_to_all_single("
"Tensor input, "
"SymInt[] output_split_sizes, "
"SymInt[] input_split_sizes, "
"str group_name) -> Tensor",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd, c10d::all_to_all_single),
{at::Tag::pt2_compliant_tag, at::Tag::needs_contiguous_strides});
m.def(
"broadcast(Tensor input, int src, str group_name) -> Tensor",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd, c10d::broadcast),
{at::Tag::pt2_compliant_tag});
m.def(
"broadcast_(Tensor(a!) input, int src, str group_name) -> Tensor(a!)",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd, c10d::broadcast_),
{at::Tag::pt2_compliant_tag});
m.def(
"wait_tensor(Tensor tensor) -> Tensor",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd, c10d::wait_tensor),
{at::Tag::pt2_compliant_tag});
}
namespace {
class AllToAllSingle : public torch::autograd::Function<AllToAllSingle> {
public:
static torch::autograd::Variable forward(
torch::autograd::AutogradContext* ctx,
const at::Tensor& input,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
at::SymIntArrayRef output_split_sizes,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
at::SymIntArrayRef input_split_sizes,
// NOLINTNEXTLINE(performance-unnecessary-value-param)
std::string group_name) {
// swap sizes for backwards pass
ctx->saved_data["output_split_sizes"] = input_split_sizes.vec();
ctx->saved_data["input_split_sizes"] = output_split_sizes.vec();
ctx->saved_data["group_name"] = group_name;
return c10::Dispatcher::singleton()
.findSchemaOrThrow("_c10d_functional::all_to_all_single", "")
.typed<decltype(c10d::all_to_all_single)>()
.call(input, output_split_sizes, input_split_sizes, group_name);
}
static torch::autograd::variable_list backward(
torch::autograd::AutogradContext* ctx,
const torch::autograd::variable_list& grad_out_list) {
std::vector<c10::SymInt> output_split_sizes =
ctx->saved_data["output_split_sizes"].toSymIntVector();
std::vector<c10::SymInt> input_split_sizes =
ctx->saved_data["input_split_sizes"].toSymIntVector();
const std::string& group_name = ctx->saved_data["group_name"].toStringRef();
DCHECK(grad_out_list.size() == 1);
auto grad_out = grad_out_list[0].contiguous();
auto out =
c10::Dispatcher::singleton()
.findSchemaOrThrow("_c10d_functional::all_to_all_single", "")
.typed<decltype(c10d::all_to_all_single)>()
.call(grad_out, output_split_sizes, input_split_sizes, group_name);
// do an explicit wait to avoid cuda stream issues
// TODO: track active cuda stream in wait
out = c10::Dispatcher::singleton()
.findSchemaOrThrow("_c10d_functional::wait_tensor", "")
.typed<decltype(c10d::wait_tensor)>()
.call(out);
return {out, at::Tensor(), at::Tensor(), at::Tensor()};
}
};
at::Tensor all_to_all_single_autograd(
const at::Tensor& input,
at::SymIntArrayRef output_split_sizes,
at::SymIntArrayRef input_split_sizes,
const std::string& group_name) {
return AllToAllSingle::apply(
input, output_split_sizes, input_split_sizes, group_name);
}
class ReduceScatterTensor
: public torch::autograd::Function<ReduceScatterTensor> {
public:
static torch::autograd::Variable forward(
torch::autograd::AutogradContext* ctx,
const at::Tensor& input,
const std::string& reduce_op,
int64_t group_size,
const std::string& group_name) {
TORCH_CHECK(reduce_op == "sum", "Only sum reduce op is supported");
ctx->saved_data["group_size"] = group_size;
ctx->saved_data["group_name"] = group_name;
return c10::Dispatcher::singleton()
.findSchemaOrThrow("_c10d_functional::reduce_scatter_tensor", "")
.typed<decltype(c10d::reduce_scatter_tensor)>()
.call(input, reduce_op, group_size, group_name);
}
static torch::autograd::variable_list backward(
torch::autograd::AutogradContext* ctx,
const torch::autograd::variable_list& grad_out_list) {
const int64_t group_size = ctx->saved_data["group_size"].toInt();
const std::string& group_name = ctx->saved_data["group_name"].toStringRef();
DCHECK(grad_out_list.size() == 1);
const auto& grad_out = grad_out_list[0];
auto out =
c10::Dispatcher::singleton()
.findSchemaOrThrow("_c10d_functional::all_gather_into_tensor", "")
.typed<decltype(c10d::all_gather_into_tensor)>()
.call(grad_out, group_size, group_name);
// do an explicit wait to avoid cuda stream issues
// TODO: track active cuda stream in wait
out = c10::Dispatcher::singleton()
.findSchemaOrThrow("_c10d_functional::wait_tensor", "")
.typed<decltype(c10d::wait_tensor)>()
.call(out);
return {
out,
at::Tensor(),
at::Tensor(),
at::Tensor(),
};
}
};
at::Tensor reduce_scatter_tensor_autograd(
const at::Tensor& input,
const std::string& reduce_op,
int64_t group_size,
const std::string& group_name) {
return ReduceScatterTensor::apply(input, reduce_op, group_size, group_name);
}
class AllGatherIntoTensor
: public torch::autograd::Function<AllGatherIntoTensor> {
public:
static torch::autograd::Variable forward(
torch::autograd::AutogradContext* ctx,
const at::Tensor& input,
int64_t group_size,
const std::string& group_name) {
ctx->saved_data["group_size"] = group_size;
ctx->saved_data["group_name"] = group_name;
return c10::Dispatcher::singleton()
.findSchemaOrThrow("_c10d_functional::all_gather_into_tensor", "")
.typed<decltype(c10d::all_gather_into_tensor)>()
.call(input, group_size, group_name);
}
static torch::autograd::variable_list backward(
torch::autograd::AutogradContext* ctx,
const torch::autograd::variable_list& grad_out_list) {
const int64_t group_size = ctx->saved_data["group_size"].toInt();
const std::string& group_name = ctx->saved_data["group_name"].toStringRef();
DCHECK(grad_out_list.size() == 1);
const auto& grad_out = grad_out_list[0];
auto out =
c10::Dispatcher::singleton()
.findSchemaOrThrow("_c10d_functional::reduce_scatter_tensor", "")
.typed<decltype(c10d::reduce_scatter_tensor)>()
.call(grad_out, "sum", group_size, group_name);
// do an explicit wait to avoid cuda stream issues
// TODO: track active cuda stream in wait
out = c10::Dispatcher::singleton()
.findSchemaOrThrow("_c10d_functional::wait_tensor", "")
.typed<decltype(c10d::wait_tensor)>()
.call(out);
return {
out,
at::Tensor(),
at::Tensor(),
};
}
};
at::Tensor all_gather_into_tensor_autograd(
const at::Tensor& input,
int64_t group_size,
const std::string& group_name) {
return AllGatherIntoTensor::apply(input, group_size, group_name);
}
} // namespace
TORCH_LIBRARY(_c10d_functional_autograd, m) {
m.def(
"all_to_all_single("
"Tensor input, "
"SymInt[] output_split_sizes, "
"SymInt[] input_split_sizes, "
"str group_name) -> Tensor",
torch::dispatch(c10::DispatchKey::Autograd, ::all_to_all_single_autograd),
{at::Tag::pt2_compliant_tag});
m.def(
"reduce_scatter_tensor("
"Tensor input, "
"str reduce_op, "
"int group_size, "
"str group_name) -> Tensor",
torch::dispatch(
c10::DispatchKey::Autograd, ::reduce_scatter_tensor_autograd),
{at::Tag::pt2_compliant_tag});
m.def(
"all_gather_into_tensor("
"Tensor input, "
"int group_size, "
"str group_name) -> Tensor",
torch::dispatch(
c10::DispatchKey::Autograd, ::all_gather_into_tensor_autograd),
{at::Tag::pt2_compliant_tag});
}
namespace {
// DTensor related comm operations, sharing code with functional collective for
// now
at::Tensor shard_dim_alltoall(
const at::Tensor& input,
int64_t gather_dim,
int64_t shard_dim,
const std::string& group_name) {
auto group = c10d::resolve_process_group(group_name);
auto group_size = group->getSize();
std::vector<int64_t> input_sizes = input.sizes().vec();
std::vector<int64_t> output_sizes = input.sizes().vec();
if (input_sizes[shard_dim] % group_size != 0) {
LOG(WARNING) << "The shard dimension of the shard_dim_alltoall input ("
<< input_sizes[shard_dim]
<< ") is not divisible by the group size (" << group_size
<< ").";
}
input_sizes[shard_dim] /= group_size;
input_sizes.insert(input_sizes.begin() + shard_dim, group_size);
auto tensor_reshaped = input.view(input_sizes);
auto tensor_shard_contig = tensor_reshaped.movedim(shard_dim, 0).contiguous();
auto tensor_for_comm = input.is_complex()
? at::view_as_real(tensor_shard_contig)
: tensor_shard_contig;
auto recv_tensor = at::empty_like(tensor_for_comm);
std::vector<int64_t> out_split_sizes;
std::vector<int64_t> in_split_sizes;
c10d::AllToAllOptions opts;
auto work = group->alltoall_base(
recv_tensor, tensor_for_comm, out_split_sizes, in_split_sizes, opts);
// TODO: it's tricky to get the current async behavior work for shard dim
// alltoall so for now we just keep this comm op to be synchronous. We might
// need to have sth similar to future callback to do the permute, contiguous
// and view calls. We can revisit later how to support the async case with the
// Work registry.
work->wait();
auto output = recv_tensor.movedim(0, gather_dim).contiguous();
// view/reshape it back to the expected output shape
output_sizes[shard_dim] /= group_size;
output_sizes[gather_dim] *= group_size;
return input.is_complex() ? at::view_as_complex(output).view(output_sizes)
: output.view(output_sizes);
}
} // namespace
// DTensor comm op registry
TORCH_LIBRARY(_dtensor, m) {
m.def(
"shard_dim_alltoall(Tensor input, int gather_dim, int shard_dim, str group_name) -> Tensor",
torch::dispatch(
c10::DispatchKey::CompositeExplicitAutograd, ::shard_dim_alltoall),
{at::Tag::pt2_compliant_tag});
}