Files
2024-07-25 04:17:54 +00:00

57 lines
1.9 KiB
Python

import torch
from torch.ao.quantization import MinMaxObserver
from torch.ao.quantization.experimental.fake_quantize import APoTFakeQuantize
from torch.ao.quantization.fake_quantize import FakeQuantize
from torch.ao.quantization.qconfig import QConfig
"""
Default symmetric fake_quant for activations.
"""
default_symmetric_fake_quant = FakeQuantize.with_args(
observer=MinMaxObserver, qscheme=torch.per_tensor_symmetric, dtype=torch.quint8
)
"""
Default symmetric fake_quant for weights.
"""
default_weight_symmetric_fake_quant = FakeQuantize.with_args(
observer=MinMaxObserver, qscheme=torch.per_tensor_symmetric, dtype=torch.qint8
)
# uniform activation and weight, b=8 k=2
uniform_qconfig_8bit = QConfig(
activation=default_symmetric_fake_quant,
weight=default_weight_symmetric_fake_quant.with_args,
)
# uniform activation, APoT weight, b=8 k=2
apot_weight_qconfig_8bit = QConfig(
activation=default_symmetric_fake_quant.with_args,
weight=APoTFakeQuantize.with_args(b=8, k=2, dtype=torch.qint8),
)
# APoT activation and uniform weight, b=8 k=2
apot_qconfig_8bit = QConfig(
activation=APoTFakeQuantize.with_args(b=8, k=2, dtype=torch.quint8),
weight=APoTFakeQuantize.with_args(b=8, k=2, dtype=torch.qint8),
)
# uniform activation and weight, b=4 k=2
uniform_qconfig_4bit = QConfig(
activation=default_symmetric_fake_quant.with_args(quant_min=0, quant_max=15),
weight=default_weight_symmetric_fake_quant.with_args(quant_min=0, quant_max=15),
)
# uniform activation, APoT weight, b=4 k=2
apot_weight_qconfig_4bit = QConfig(
activation=default_symmetric_fake_quant.with_args(quant_min=0, quant_max=15),
weight=APoTFakeQuantize.with_args(b=4, k=2, dtype=torch.qint8),
)
# APoT activation and uniform weight, b=4 k=2
apot_qconfig_4bit = QConfig(
activation=APoTFakeQuantize.with_args(b=4, k=2, dtype=torch.quint8),
weight=APoTFakeQuantize.with_args(b=4, k=2, dtype=torch.qint8),
)