mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
This fixes AOTAutograd rms_norm not being bitwise equivalent to eager, because it avoids a decomposition. You can force the decomposition by having the decomposition in the dispatch table, but if eager mode wouldn't have decomposed (because it went to the fused one), we now default to preserving the fused call by default. This largely reverts https://github.com/pytorch/pytorch/pull/103275/ for view ops. This means that in inference mode we could hit the wrong C++ kernel; if this occurs we should just SymInt'ify the C++ kernel. Another neat side effect of this change is that Inductor's generated kernels for rms_norm now have rms_norm in their name. Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/164939 Approved by: https://github.com/bdhirsh
789 lines
34 KiB
Python
789 lines
34 KiB
Python
# mypy: allow-untyped-defs
|
|
import contextlib
|
|
import warnings
|
|
import weakref
|
|
from abc import ABC, abstractmethod
|
|
from collections.abc import Callable
|
|
from contextlib import AbstractContextManager
|
|
from typing import Any, Optional, Union
|
|
|
|
import torch
|
|
import torch.utils._pytree as pytree
|
|
from torch._C import _functionalization_reapply_views_tls as _reapply_views
|
|
from torch._ops import _get_dispatch_mode_pre_dispatch
|
|
from torch._subclasses.meta_utils import is_sparse_any
|
|
from torch.utils._python_dispatch import (
|
|
_detect_infra_mode,
|
|
_disable_infra_mode,
|
|
autograd_would_have_decomposed,
|
|
return_and_correct_aliasing,
|
|
TorchDispatchMode,
|
|
)
|
|
|
|
|
|
not_implemented_log = torch._logging.getArtifactLogger(__name__, "not_implemented")
|
|
|
|
|
|
# NOTE Some special handling for tensor conversion during export is needed.
|
|
# Normally, when tracing through the model with tensor.to(), the maybe-aliasing
|
|
# relationship between input and output tensors will be baked into the graph.
|
|
# For example, if we got a tensor with device cpu and call tensor.to("cpu"),
|
|
# it will become a no-op in the graph. For a whole graph capture, this is not
|
|
# sound so we need to do something different. Instead, in export we will try to
|
|
# preserve the tensor conversion by forcing a non-semantic-breaking aten::_to_copy
|
|
# operator to be traced in the graph, and subsequently banning mutations on all
|
|
# such converted tensors.
|
|
# In addition to patching .to() method call in functionalization, we will have to
|
|
# patch other similar methods like float() and cpu(), because they intentionally
|
|
# don't fall back to .to() methods, but have the same behavior as .to() according to
|
|
# pytorch document. https://pytorch.org/docs/stable/generated/torch.Tensor.float.html
|
|
# thus we simply force them to go through .to() call.
|
|
def _conversion_method_template(**extra_kwargs):
|
|
def _(self, *args, **kwargs):
|
|
return self.to(*args, **{**kwargs, **extra_kwargs})
|
|
|
|
return _
|
|
|
|
|
|
class FunctionalTensor(torch.Tensor):
|
|
"""
|
|
Functional tensors represent tensors that will remove mutations
|
|
from a program. If you perform a mutable operation on a functional tensor,
|
|
it will re-dispatch to the functional variant of that operation.
|
|
|
|
Historically, functionalization is implemented in C++ in the dispatcher.
|
|
This class is a lightweight python shim around the C++ functionalization logic.
|
|
|
|
FunctionalTensor is required to be used with a corresponding
|
|
FunctionalTensormode active, because it relies
|
|
on using the mode for dispatch (which can properly handle factory functions).
|
|
"""
|
|
|
|
elem: torch.Tensor
|
|
# Indicates to our torch_dispatch dispatching infra that
|
|
# this is an "infra" mode with lower dispatching precedence.
|
|
_mode_key = torch._C._TorchDispatchModeKey.FUNCTIONAL
|
|
|
|
# Note: The reason we add these extra keys to our FunctionalTensor subclass
|
|
# is to mirror the behavior of C++ functionalization (we can choose to change this
|
|
# later, as long as it doesn't break anything).
|
|
# FunctionalTensorWrapper copies **all** dispatch keys from the inner tensor
|
|
# to the wrapper, excluding functorch and python dispatch keys.
|
|
# Here I'm trying to reuse the keyset the functorch wrapper subclasses copy,
|
|
# except that they don't include ZeroTensor so I'm manually adding it in.
|
|
_extra_dispatch_keys = torch._C._additional_keys_to_prop_for_wrapper_tensors.add(
|
|
torch._C.DispatchKey.ZeroTensor
|
|
)
|
|
|
|
# These are all aten ops that correspond to metadata queries.
|
|
# We want FunctionalTensor to be able to handle them directly.
|
|
metadata_fns = [
|
|
torch.ops.aten.is_contiguous.default, # type: ignore[has-type]
|
|
torch.ops.aten.is_contiguous.memory_format, # type: ignore[has-type]
|
|
torch.ops.aten.is_strides_like_format.default, # type: ignore[has-type]
|
|
torch.ops.aten.is_non_overlapping_and_dense.default, # type: ignore[has-type]
|
|
torch.ops.aten.size.default, # type: ignore[has-type]
|
|
torch.ops.aten.sym_size.default, # type: ignore[has-type]
|
|
torch.ops.aten.stride.default, # type: ignore[has-type]
|
|
torch.ops.aten.sym_stride.default, # type: ignore[has-type]
|
|
torch.ops.aten.storage_offset.default, # type: ignore[has-type]
|
|
torch.ops.aten.sym_storage_offset.default, # type: ignore[has-type]
|
|
torch.ops.aten.numel.default, # type: ignore[has-type]
|
|
torch.ops.aten.sym_numel.default, # type: ignore[has-type]
|
|
torch.ops.aten.dim.default, # type: ignore[has-type]
|
|
torch.ops.prim.device.default, # type: ignore[has-type]
|
|
]
|
|
|
|
# Used by auto_functionalize to determine base of tensors during inference mode.
|
|
_inference_mode_base: Optional["FunctionalTensor"] = None
|
|
|
|
def __new__(cls, elem, mode):
|
|
assert torch._is_functional_tensor(elem)
|
|
|
|
# In general, we'd like our functional tensor subclass to only be in charge of functionalization,
|
|
# and defer to the inner subclass for all other functionality.
|
|
# Example: If our inner tensor is a ZeroTensor, we would want to defer running the ZeroTensor fallback
|
|
# until after we redispatch to our inner ZeroTensor.
|
|
# However, there are a few keys that we need to mirror between the inner and outer tensors.
|
|
# Conjugate
|
|
# Negative
|
|
# Why? These keys are used to test metadata queries, like `.is_conj()` and `.is_neg()`.
|
|
# We **need** calls to is_conj() to return the same thing on the outer and inner tensors,
|
|
# Because user code / framework code that branches like so needs to do the same thing
|
|
# when it sees the outer FunctionalTensor:
|
|
# if (x.is_conj()) {
|
|
# return at::view_as_real(x.resolve_conj());
|
|
# } else {
|
|
# return at::view_as_real(x);
|
|
# }
|
|
extra_dispatch_keys = (
|
|
FunctionalTensor._extra_dispatch_keys & torch._C._dispatch_keys(elem)
|
|
)
|
|
|
|
out = torch.Tensor._make_wrapper_subclass(
|
|
# TODO: right now, _make_wrapper_subclass's dynamic shape interaction is not great.
|
|
# Calling the overload that has kwargs causes us to go down the first overload path,
|
|
# which will **always** specialize sizes.
|
|
# We should probably eventually fix this so that the first overload can just handle dynamic shapes.
|
|
cls,
|
|
elem.shape, # sizes
|
|
elem.stride() if not is_sparse_any(elem) else None, # strides
|
|
(
|
|
elem.storage_offset() if not is_sparse_any(elem) else None
|
|
), # storage_offset
|
|
None, # memory_format
|
|
elem.dtype, # dtype
|
|
elem.layout, # layout
|
|
elem.device, # device
|
|
False, # pin_memory
|
|
elem.requires_grad, # requires_grad
|
|
None, # dispatch_sizes_strides_policy
|
|
False, # dispatch_device
|
|
False, # dispatch_layout
|
|
extra_dispatch_keys, # _extra_dispatch_keys
|
|
)
|
|
torch._C._set_throw_on_mutable_data_ptr(out)
|
|
out.elem = elem
|
|
|
|
if (
|
|
not mode.export
|
|
and torch.is_inference_mode_enabled()
|
|
and torch._inductor.config.enable_auto_functionalized_v2
|
|
):
|
|
if out.is_base_tensor():
|
|
out._inference_mode_base = None
|
|
# This assumes that the FunctionalTensor.elem does not change its storage after this point.
|
|
# Otherwise this would be invalid.
|
|
mode._storage_to_base[out.elem.untyped_storage()] = out
|
|
else:
|
|
out._inference_mode_base = mode._storage_to_base[
|
|
out.elem.untyped_storage()
|
|
]
|
|
assert out._inference_mode_base is not None
|
|
return out
|
|
|
|
def __torch_dispatch__(self, func, types, args=(), kwargs=None): # type: ignore[override]
|
|
unrecognized_types = [
|
|
t
|
|
for t in types
|
|
if t not in [torch.Tensor, torch._subclasses.FakeTensor, FunctionalTensor]
|
|
]
|
|
if unrecognized_types:
|
|
not_implemented_log.debug(
|
|
"FunctionalTensor unrecognized subclass(es): %s", unrecognized_types
|
|
)
|
|
return NotImplemented
|
|
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
|
|
# FunctionalTensor needs to plumb all metadata requests to the inner tensor.
|
|
# In theory we don't have to do this - but if we want to service metadata requests here,
|
|
# we need to carefully make sure all metadata is accurate (including metadata mutations)
|
|
if func in FunctionalTensor.metadata_fns:
|
|
# All metadata accesses should be plumbed to the inner tensor, that way we don't have to worry
|
|
# about the problem of keeping metadata in sync between the wrapper and inner tensor.
|
|
# This also alleviates us from having to manually handle metadata mutations on the wrapper.
|
|
assert len(kwargs) == 0
|
|
if func in [
|
|
torch.ops.aten.is_strides_like_format.default,
|
|
torch.ops.aten.is_contiguous.memory_format,
|
|
]:
|
|
assert len(args) == 2 and isinstance(args[0], FunctionalTensor)
|
|
return func(torch._from_functional_tensor(args[0].elem), args[1])
|
|
assert len(args) == 1 and isinstance(args[0], FunctionalTensor)
|
|
|
|
return func(torch._from_functional_tensor(args[0].elem))
|
|
# Originally I tried to implement my subclass without giving it a torch_dispatch, but I gave up:
|
|
# - _make_wrapper_subclass requires a __torch_dispatch__
|
|
# - If we want to use _make_subclass(), we have a problem: the subclass will share a TensorImpl with the inner tensor,
|
|
# which is of type FunctionalTensorWrapper! We explicitly do not want our wrapper to be a FunctionalTensorWrapper.
|
|
# - If we use the default tensor.__new__(), we have another problem: it returns inner_tensor.alias(),
|
|
# which causes every subclass created above autograd to have autograd view metadata
|
|
# (in addition to also being a FunctionalTensorWrapper).
|
|
raise RuntimeError(
|
|
"Attempting to use FunctionalTensor on its own. Instead, please use it with a corresponding FunctionalTensorMode()"
|
|
)
|
|
|
|
def __repr__(self) -> str: # type: ignore[override]
|
|
return f"FunctionalTensor({repr(self.elem)})"
|
|
|
|
@staticmethod
|
|
def to_functional(x):
|
|
# We will do the wrapping for the user.
|
|
|
|
assert not torch._is_functional_tensor(x)
|
|
# The only autograd metadata we care about on the FunctionalTensor is:
|
|
# - requires_grad (so autograd runs)
|
|
# - is_leaf (so that mutations on graph inputs that are not leaves are allowed by the autograd engine)
|
|
# this is handled by FunctionalTensor.to_functional
|
|
x_functional = torch._to_functional_tensor(x)
|
|
# Technically the FunctionalTensormode here is unnecessary,
|
|
# but it avoids spurious NotImplemented logs during `ProxyTorchDispatchMode` tracing.
|
|
# _mirror_autograd_meta_to queries tensor sizes,
|
|
# and otherwise the sym_size() call will go to the proxy mode before hitting
|
|
# FunctionalTensor.__torch_dispatch__
|
|
|
|
functional_mode = _detect_infra_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL)
|
|
assert functional_mode is not None
|
|
|
|
with functional_mode:
|
|
torch._mirror_autograd_meta_to(x, x_functional) # type: ignore[attr-defined]
|
|
out = FunctionalTensor(x_functional, functional_mode)
|
|
torch._mirror_autograd_meta_to(x_functional, out) # type: ignore[attr-defined]
|
|
return out
|
|
|
|
def from_functional(self):
|
|
torch._sync(self)
|
|
return torch._from_functional_tensor(self.elem)
|
|
|
|
def is_base_tensor(self) -> bool:
|
|
return torch._is_functional_tensor_base(self.elem)
|
|
|
|
def replace_(self, output) -> None:
|
|
torch._functionalize_replace(self.elem, output)
|
|
|
|
def commit_update(self) -> None:
|
|
torch._functionalize_commit_update(self.elem)
|
|
|
|
def sync(self) -> None:
|
|
torch._functionalize_sync(self.elem)
|
|
|
|
def mark_mutation_hidden_from_autograd(self) -> None:
|
|
torch._functionalize_mark_mutation_hidden_from_autograd(self.elem)
|
|
|
|
def tolist(self) -> Any:
|
|
if self.elem.dim() == 0:
|
|
return self.elem.item()
|
|
elif self.elem.dim() == 1:
|
|
return [elem.item() for elem in self.elem]
|
|
else:
|
|
return [elem.tolist() for elem in self.elem]
|
|
|
|
def to(self, *args, **kwargs):
|
|
if _detect_infra_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL).export:
|
|
torch.ops.aten._assert_tensor_metadata(
|
|
self,
|
|
dtype=self.dtype,
|
|
device=self.device,
|
|
layout=self.layout,
|
|
)
|
|
return super().to(*args, **kwargs)
|
|
|
|
def cuda(self, device=None, *args, **kwargs):
|
|
device = device or torch.cuda.current_device()
|
|
if len(args) > 0:
|
|
return self.to(device, *args, **kwargs)
|
|
else:
|
|
return self.to(device=device, **kwargs)
|
|
|
|
char = _conversion_method_template(dtype=torch.int8)
|
|
cpu = _conversion_method_template(device=torch.device("cpu"))
|
|
bfloat16 = _conversion_method_template(dtype=torch.bfloat16)
|
|
byte = _conversion_method_template(dtype=torch.uint8)
|
|
double = _conversion_method_template(dtype=torch.float64)
|
|
float = _conversion_method_template(dtype=torch.float32)
|
|
bool = _conversion_method_template(dtype=torch.bool)
|
|
half = _conversion_method_template(dtype=torch.float16)
|
|
int = _conversion_method_template(dtype=torch.int32)
|
|
long = _conversion_method_template(dtype=torch.int64)
|
|
|
|
# TODO(sparse-team): fixes #133174 but can we do without the relay?
|
|
def to_dense(self): # type: ignore[override]
|
|
return self.elem.to_dense()
|
|
|
|
@property
|
|
def layout(self): # type: ignore[override]
|
|
return self.elem.layout
|
|
|
|
def __bool__(self):
|
|
return bool(self.item())
|
|
|
|
|
|
class FunctionalTensorMode(TorchDispatchMode):
|
|
def __init__(self, pre_dispatch=False, export=False, _allow_token_discovery=False):
|
|
super().__init__()
|
|
self.export = export
|
|
self.is_on_stack = False
|
|
self.enter_stack = []
|
|
# Indicates to our torch_dispatch dispatching infra that
|
|
# this is an "infra" mode with lower dispatching precedence.
|
|
self._mode_key = torch._C._TorchDispatchModeKey.FUNCTIONAL
|
|
self.pre_dispatch = pre_dispatch
|
|
# This will be turned off later for pre-dispatch functionalization
|
|
self._dispatch_key = torch._C.DispatchKey.PreDispatch if pre_dispatch else None # type: ignore[attr-defined]
|
|
# Map of effect type (ex. _EffectType.ORDERED) to a token. The tokens help keep
|
|
# track of the ordering between side effectful operations.
|
|
self._tokens: dict[Any, torch.Tensor] = {}
|
|
|
|
# Filled after forward tracing.
|
|
self._tokens_forward_output: dict[Any, torch.Tensor] = {}
|
|
|
|
# Functionalization runs twice in AOTAutograd, once in
|
|
# `run_functionalized_fw_and_collect_metadata` to collect metadata to
|
|
# see which tensors need to be functionalized and discover how many
|
|
# tokens we need, and another time in `make_fx` which does the actual
|
|
# tracing to replace ops with their functional variants and handling
|
|
# side-effectful ops. In the second stage there should be no token
|
|
# discovery. This flag distinguishes between the two stages.
|
|
self._allow_token_discovery = _allow_token_discovery
|
|
|
|
self._storage_to_base: weakref.WeakKeyDictionary[
|
|
torch.storage.UntypedStorage, Optional[FunctionalTensor]
|
|
] = weakref.WeakKeyDictionary()
|
|
|
|
# No-op if FunctionalTensorMode is already in use
|
|
def __enter__(self):
|
|
def _get_prev_mode():
|
|
if self._dispatch_key == torch._C.DispatchKey.PreDispatch:
|
|
return _get_dispatch_mode_pre_dispatch(
|
|
torch._C._TorchDispatchModeKey.FUNCTIONAL
|
|
)
|
|
return torch._C._get_dispatch_mode(
|
|
torch._C._TorchDispatchModeKey.FUNCTIONAL
|
|
)
|
|
|
|
if _get_prev_mode() is None:
|
|
self.enter_stack.append(True)
|
|
return super().__enter__()
|
|
else:
|
|
self.enter_stack.append(False)
|
|
return self
|
|
|
|
def __exit__(self, a, b, c):
|
|
is_on_stack = self.enter_stack.pop()
|
|
if is_on_stack:
|
|
super().__exit__(a, b, c)
|
|
|
|
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
|
|
unrecognized_types = [
|
|
t
|
|
for t in types
|
|
if not issubclass(t, torch._subclasses.FakeTensor)
|
|
and t not in [torch.Tensor, FunctionalTensor]
|
|
]
|
|
|
|
if unrecognized_types:
|
|
not_implemented_log.debug(
|
|
"FunctionalTensor unrecognized subclass(es): %s", unrecognized_types
|
|
)
|
|
return NotImplemented
|
|
|
|
def _can_decompose(func):
|
|
# See https://github.com/pytorch/pytorch/pull/115258#issuecomment-1900755832
|
|
# Never decompose dropout in export
|
|
if self.export and func == torch.ops.aten.dropout.default:
|
|
return False
|
|
|
|
# We unconditionally decompose ops that are maybe aliasing or mutating ops
|
|
from torch._decomp import _should_decompose_because_unsafe_op
|
|
|
|
if _should_decompose_because_unsafe_op(func):
|
|
return True
|
|
|
|
# (1) we unconditionally decompose maybe-aliasing or maybe-mutating ops,
|
|
# because we must know statically of an op mutates or aliasing in order to functionalize it properly
|
|
# (2) for mutating ops that have CompositeImplicit decomps, we choose to decompose them today.
|
|
# In theory, we could walk this back and avoid decomposing them later if we need to.
|
|
alias_info_present = any(arg.alias_info for arg in func._schema.arguments)
|
|
if alias_info_present or func._schema.is_mutable:
|
|
return True
|
|
|
|
# If we are here, it means we are seeing functional composite op.
|
|
# For pre-dispatch IR, we don't want to decompose this op
|
|
# For post-dispatch IR, we do want to decompose this op. it is fine
|
|
# to decompose here even if you want to preserve a CIA in post-dispatch export
|
|
# because we already override decompose behaviour so it will do the
|
|
# right thing.
|
|
if self.export:
|
|
if self.pre_dispatch:
|
|
# If it is CIA custom op, we warn that we are assuming this op is indeed functional.
|
|
if func.namespace not in ["aten", "prim"] and func._can_decompose():
|
|
warnings.warn(
|
|
f"At pre-dispatch tracing, we assume that any custom op marked with "
|
|
f"CompositeImplicitAutograd and have functional schema are safe to not decompose. "
|
|
f"Found {func} to be one such op."
|
|
)
|
|
return False
|
|
return True
|
|
|
|
# in normal torch.compile IR, we only decompose an op if autograd
|
|
# would have decomposed it (NB: autograd may have been skipped if
|
|
# we are in inference mode)
|
|
# TODO: the flatten here can potentially be deduped with the
|
|
# unwrapping pytree_map later
|
|
flat_args_kwargs, _ = pytree.tree_flatten((args, kwargs))
|
|
return autograd_would_have_decomposed(func, flat_args_kwargs)
|
|
|
|
if (
|
|
func not in FunctionalTensor.metadata_fns
|
|
and _can_decompose(func)
|
|
# Not all funcs from __torch_dispatch__ are actual dispatcher ops,
|
|
# e.g. prim.device
|
|
and torch._C._dispatch_has_kernel(func.name())
|
|
):
|
|
with self:
|
|
r = func.decompose(*args, **kwargs)
|
|
if r is not NotImplemented:
|
|
return r
|
|
|
|
def wrap(x):
|
|
# Only wrap our outputs in subclasses if the inner functionalization call
|
|
# also wrapped outputs into FunctionalTensorWrappers.
|
|
# When can this happen? e.g. `torch.div(2, 2)`
|
|
assert not isinstance(x, FunctionalTensor)
|
|
if isinstance(x, torch.Tensor) and torch._is_functional_tensor(x):
|
|
return FunctionalTensor(x, self)
|
|
return x
|
|
|
|
def unwrap(x):
|
|
return x.elem
|
|
|
|
from torch._higher_order_ops.auto_functionalize import (
|
|
can_auto_functionalize,
|
|
do_auto_functionalize,
|
|
do_auto_functionalize_v2,
|
|
)
|
|
|
|
if can_auto_functionalize(
|
|
func
|
|
) and not torch._C._dispatch_has_kernel_for_dispatch_key(
|
|
func.name(), torch._C.DispatchKey.Functionalize
|
|
):
|
|
import torch._inductor.config as inductor_config
|
|
|
|
if self.export or not inductor_config.enable_auto_functionalized_v2:
|
|
return do_auto_functionalize(self, func, args, kwargs)
|
|
else:
|
|
return do_auto_functionalize_v2(self, func, args, kwargs)
|
|
|
|
from torch._higher_order_ops.effects import handle_effects, has_effects
|
|
|
|
if has_effects(func, args, kwargs):
|
|
assert not torch._C._dispatch_has_kernel_for_dispatch_key(
|
|
func.name(), torch._C.DispatchKey.Functionalize
|
|
)
|
|
return handle_effects(
|
|
self._allow_token_discovery, self._tokens, func, args, kwargs
|
|
)
|
|
|
|
args_unwrapped, kwargs_unwrapped = pytree.tree_map_only(
|
|
FunctionalTensor, unwrap, (args, kwargs)
|
|
)
|
|
|
|
# Expectation: functionalization should not **already** be enabled above our mode.
|
|
# Why would that be bad? when we return a FunctionalTensor here, we don't want functionalization
|
|
# to run above this mode and further wrap that output in **another** C++ FunctionalTensorWrapper.
|
|
is_included = torch._C._dispatch_tls_is_dispatch_key_included(
|
|
torch._C.DispatchKey.Functionalize
|
|
)
|
|
is_excluded = torch._C._dispatch_tls_is_dispatch_key_excluded(
|
|
torch._C.DispatchKey.Functionalize
|
|
)
|
|
assert is_excluded or not is_included
|
|
include_to_set = (
|
|
torch._C._dispatch_tls_local_include_set()
|
|
| torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
|
|
)
|
|
exclude_to_set = (
|
|
torch._C._dispatch_tls_local_exclude_set().remove(
|
|
torch._C.DispatchKey.Functionalize
|
|
)
|
|
- FunctionalTensor._extra_dispatch_keys
|
|
)
|
|
|
|
# All we want to do here is reuse the existing C++ functionalization logic.
|
|
# This requires swizzling our TLS dispatch keys so that the Functionalize key is active.
|
|
with torch._C._ForceDispatchKeyGuard(include_to_set, exclude_to_set):
|
|
try:
|
|
# By default for python functionalization (for AOTAutograd), we reapply views.
|
|
old_apply_views = torch._functionalize_enable_reapply_views(True) # type: ignore[attr-defined]
|
|
|
|
# Sometimes these functions cannot be directly dispatched to functionalize key
|
|
# because args are sometimes not functional tensors for some reason?
|
|
if func in FunctionalTensor.metadata_fns:
|
|
outs_unwrapped = func(*args_unwrapped, **kwargs_unwrapped)
|
|
outs_wrapped = pytree.tree_map_only(
|
|
torch.Tensor, wrap, outs_unwrapped
|
|
)
|
|
else:
|
|
# When we dispatch to the C++ functionalization kernel, we might need to jump back to the
|
|
# PreDispatch mode stack afterwards, to handle any other PreDispatch modes underneath
|
|
# FunctionalTensorMode. If we call func() directly, we would need to exclude PreDispatch
|
|
# from the TLS in order to avoid infinite looping, but this would prevent us from coming
|
|
# back to PreDispatch later
|
|
outs_unwrapped = func._op_dk(
|
|
torch._C.DispatchKey.Functionalize,
|
|
*args_unwrapped,
|
|
**kwargs_unwrapped,
|
|
)
|
|
|
|
if self.export:
|
|
if func == torch.ops.aten.dropout.default:
|
|
torch._freeze_functional_tensor(outs_unwrapped) # type: ignore[attr-defined]
|
|
outs_wrapped = pytree.tree_map_only(
|
|
torch.Tensor, wrap, outs_unwrapped
|
|
)
|
|
finally:
|
|
torch._disable_functionalization()
|
|
torch._functionalize_enable_reapply_views(old_apply_views) # type: ignore[attr-defined]
|
|
|
|
is_included = torch._C._dispatch_tls_is_dispatch_key_included(
|
|
torch._C.DispatchKey.Functionalize
|
|
)
|
|
is_excluded = torch._C._dispatch_tls_is_dispatch_key_excluded(
|
|
torch._C.DispatchKey.Functionalize
|
|
)
|
|
assert is_excluded or not is_included
|
|
|
|
if (
|
|
# If no outputs are our functional subclass, then don't try to fix up aliasing
|
|
not any(
|
|
isinstance(x, FunctionalTensor)
|
|
for x in pytree.tree_leaves(outs_wrapped)
|
|
)
|
|
# Since lift_fresh lifts its argument into a functional tensor, we can skip the
|
|
# aliasing correction step. Otherwise, we would be setting the storage of a
|
|
# lifted tensor to that of an unlifted tensor.
|
|
# Ref: https://github.com/pytorch/pytorch/issues/111506
|
|
or func == torch.ops.aten.lift_fresh.default
|
|
):
|
|
return outs_wrapped
|
|
# for metadata mutations, need to manually mutate the metadata of the FunctionalTensor wrapper
|
|
if (
|
|
torch.Tag.inplace_view in func.tags
|
|
and func is not torch.ops.aten.set_.source_Tensor
|
|
):
|
|
with torch.utils._mode_utils.no_dispatch():
|
|
func(*args, **kwargs)
|
|
# Wrapper tensor subclasses do not have correct aliasing info! Use this util to manually correct the output aliasing.
|
|
# inplace ops like `aten.add_()` are expected to return inputs **directly**, instead of creating fresh tensor objects.
|
|
# Use this util to figure out the right thing to return.
|
|
# If none of our inputs were wrapped, then we have no FunctionalTensor outputs that we need to fix up storages for.
|
|
return return_and_correct_aliasing(func, args, kwargs, outs_wrapped)
|
|
|
|
@classmethod
|
|
def is_infra_mode(cls) -> bool:
|
|
return True
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def disable_functional_mode():
|
|
return _disable_infra_mode(torch._C._TorchDispatchModeKey.FUNCTIONAL)
|
|
|
|
|
|
# This is similar to torch.func.functionalize, but:
|
|
# - It uses FunctionalTensorMode, and FunctionalTensor (a python subclass).
|
|
# One important advantage to using this mode is that it will let us
|
|
# run functionalization underneath __torch_dispatch__,
|
|
# which we need in AOTAutograd.
|
|
# - Doing so means that it does not automatically compose with other
|
|
# functorch transforms, since these transforms always run above __torch_dispatch__.
|
|
# That's why this util lives here, and not in functorch.
|
|
def dispatch_functionalize(func, mode: FunctionalTensorMode = FunctionalTensorMode()):
|
|
# TODO: pull these from aot autograd
|
|
def to_fun(t):
|
|
if isinstance(t, torch.Tensor):
|
|
return FunctionalTensor.to_functional(t)
|
|
return t
|
|
|
|
def from_fun(t):
|
|
if not isinstance(t, FunctionalTensor):
|
|
# quick sanity assert
|
|
if isinstance(t, torch.Tensor):
|
|
assert not torch._is_functional_tensor(t)
|
|
return t
|
|
torch._sync(t)
|
|
return torch._from_functional_tensor(t.elem)
|
|
|
|
def inner(*args, **kwargs):
|
|
disable_above = torch._C._ExcludeDispatchKeyGuard(
|
|
torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
|
|
)
|
|
with disable_above, mode:
|
|
func_args = pytree.tree_map_only(torch.Tensor, to_fun, args)
|
|
func_kwargs = pytree.tree_map_only(torch.Tensor, to_fun, kwargs)
|
|
func_outputs = func(*func_args, **func_kwargs)
|
|
outputs = pytree.tree_map_only(FunctionalTensor, from_fun, func_outputs)
|
|
|
|
return outputs
|
|
|
|
return inner
|
|
|
|
|
|
class BaseFunctionalizeAPI(ABC):
|
|
@abstractmethod
|
|
def wrap_tensors(self, args: tuple[Any]) -> tuple[Any]:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def unwrap_tensors(
|
|
self, args: Union[torch.Tensor, tuple[torch.Tensor, ...]]
|
|
) -> Any:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def functionalize(self, inner_f: Callable) -> Callable:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def redispatch_to_next(self) -> AbstractContextManager:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def replace(self, input_tensor, output_tensor) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def commit_update(self, tensor) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def sync(self, tensor) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def mark_mutation_hidden_from_autograd(self, tensor) -> None:
|
|
pass
|
|
|
|
|
|
class PythonFunctionalizeAPI(BaseFunctionalizeAPI):
|
|
def __init__(
|
|
self, mode: Optional[FunctionalTensorMode] = None, pre_dispatch: bool = False
|
|
) -> None:
|
|
super().__init__()
|
|
self.mode = mode if mode else FunctionalTensorMode()
|
|
self.pre_dispatch = pre_dispatch
|
|
|
|
def wrap_tensors(self, args: tuple[Any]) -> tuple[Any]:
|
|
with self.mode:
|
|
return torch.utils._pytree.tree_map_only(
|
|
torch.Tensor, FunctionalTensor.to_functional, args
|
|
)
|
|
|
|
def unwrap_tensors(
|
|
self, args: Union[torch.Tensor, tuple[torch.Tensor, ...], list[torch.Tensor]]
|
|
) -> Any:
|
|
return torch.utils._pytree.tree_map_only(
|
|
FunctionalTensor, FunctionalTensor.from_functional, args
|
|
)
|
|
|
|
def functionalize(self, inner_f: Callable) -> Callable:
|
|
return dispatch_functionalize(inner_f, self.mode)
|
|
|
|
def redispatch_to_next(self) -> AbstractContextManager:
|
|
# [NOTE] We don't do anything here because at the time
|
|
# we exercise this path, we would have already popped the
|
|
# FunctionalTensorMode from mode stack. Since FunctionalTensorMode
|
|
# is now stateful, it is better to explicitly pass in correct mode
|
|
# directly instead of globally setting it.
|
|
return contextlib.nullcontext()
|
|
|
|
def replace(self, input_tensor, output_tensor) -> None:
|
|
assert isinstance(input_tensor, FunctionalTensor)
|
|
assert not isinstance(output_tensor, FunctionalTensor)
|
|
input_tensor.replace_(output_tensor)
|
|
|
|
def commit_update(self, tensor) -> None:
|
|
assert isinstance(tensor, FunctionalTensor)
|
|
tensor.commit_update()
|
|
|
|
def sync(self, tensor) -> None:
|
|
assert isinstance(tensor, FunctionalTensor)
|
|
tensor.sync()
|
|
|
|
def mark_mutation_hidden_from_autograd(self, tensor) -> None:
|
|
assert isinstance(tensor, FunctionalTensor)
|
|
tensor.mark_mutation_hidden_from_autograd()
|
|
|
|
|
|
class CppFunctionalizeAPI(BaseFunctionalizeAPI):
|
|
def wrap_tensors(self, args: tuple[Any]) -> tuple[Any]:
|
|
from torch._functorch.eager_transforms import _wrap_all_tensors_to_functional
|
|
|
|
return _wrap_all_tensors_to_functional(args, level=0)
|
|
|
|
def unwrap_tensors(
|
|
self, args: Union[torch.Tensor, tuple[torch.Tensor, ...]]
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
|
|
from torch._functorch.eager_transforms import (
|
|
_unwrap_all_tensors_from_functional,
|
|
)
|
|
|
|
return _unwrap_all_tensors_from_functional(args, reapply_views=_reapply_views())
|
|
|
|
def functionalize(self, inner_f: Callable) -> Callable:
|
|
return torch.func.functionalize(inner_f)
|
|
|
|
def redispatch_to_next(self) -> AbstractContextManager:
|
|
return torch._C._ExcludeDispatchKeyGuard(
|
|
torch._C.DispatchKeySet(torch._C.DispatchKey.Functionalize)
|
|
)
|
|
|
|
def replace(self, input_tensor, output_tensor) -> None:
|
|
torch._functionalize_replace(input_tensor, output_tensor)
|
|
|
|
def commit_update(self, tensor) -> None:
|
|
torch._functionalize_commit_update(tensor)
|
|
|
|
def sync(self, tensor) -> None:
|
|
torch._functionalize_sync(tensor)
|
|
|
|
def mark_mutation_hidden_from_autograd(self, tensor) -> None:
|
|
torch._functionalize_mark_mutation_hidden_from_autograd(tensor)
|
|
|
|
|
|
class FunctorchFunctionalizeAPI(BaseFunctionalizeAPI):
|
|
def __init__(self, interpreter):
|
|
self.interpreter = interpreter
|
|
|
|
def wrap_tensors(self, args: tuple[Any]) -> tuple[Any]:
|
|
from torch._functorch.eager_transforms import _wrap_all_tensors_to_functional
|
|
|
|
return _wrap_all_tensors_to_functional(args, level=self.interpreter.level())
|
|
|
|
def unwrap_tensors(
|
|
self, args: Union[torch.Tensor, tuple[torch.Tensor, ...]]
|
|
) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
|
|
from torch._functorch.eager_transforms import (
|
|
_unwrap_all_tensors_from_functional,
|
|
)
|
|
|
|
return _unwrap_all_tensors_from_functional(
|
|
args, reapply_views=self.interpreter.functionalize_add_back_views()
|
|
)
|
|
|
|
def functionalize(self, inner_f: Callable) -> Callable:
|
|
return torch.func.functionalize(
|
|
inner_f,
|
|
remove=(
|
|
"mutations_and_views"
|
|
if self.interpreter.functionalize_add_back_views()
|
|
else "mutations"
|
|
),
|
|
)
|
|
|
|
def redispatch_to_next(self) -> AbstractContextManager:
|
|
return self.interpreter.lower()
|
|
|
|
def replace(self, input_tensor, output_tensor) -> None:
|
|
torch._functionalize_replace(input_tensor, output_tensor)
|
|
|
|
def commit_update(self, tensor) -> None:
|
|
torch._functionalize_commit_update(tensor)
|
|
|
|
def sync(self, tensor) -> None:
|
|
torch._functionalize_sync(tensor)
|
|
|
|
def mark_mutation_hidden_from_autograd(self, tensor) -> None:
|
|
torch._functionalize_mark_mutation_hidden_from_autograd(tensor)
|
|
|
|
|
|
def mb_unwrap_functional_tensor(tensor: torch.Tensor):
|
|
if isinstance(tensor, FunctionalTensor):
|
|
return torch._from_functional_tensor(tensor.elem)
|
|
return tensor
|